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Abstract: Hip-worn triaxial accelerometers are widely used to assess physical activity in terms of
energy expenditure. Methods for classification in terms of different types of activity of relevance to
the skeleton in populations at risk of osteoporosis are not currently available. This publication aims
to assess the accuracy of four machine learning models on binary (standing and walking) and tertiary
(standing, walking, and jogging) classification tasks in postmenopausal women. Eighty women
performed a shuttle test on an indoor track, of which thirty performed the same test on an indoor
treadmill. The raw accelerometer data were pre-processed, converted into eighteen different features
and then combined into nine unique feature sets. The four machine learning models were evaluated
using three different validation methods. Using the leave-one-out validation method, the highest
average accuracy for the binary classification model, 99.61%, was produced by a k-NN Manhattan
classifier using a basic statistical feature set. For the tertiary classification model, the highest average
accuracy, 94.04%, was produced by a k-NN Manhattan classifier using a feature set that included all
18 features. The methods and classifiers within this study can be applied to accelerometer data to
more accurately characterize weight-bearing activity which are important to skeletal health.

Keywords: machine learning; signal processing; activity type recognition; accelerometry; classification

1. Introduction

Osteoporosis is a major public health problem that most often affects postmenopausal
women. One in three of all postmenopausal women aged 50 years or older will have an
osteoporotic fracture. These fractures often result in significant pain, loss of independence,
and increased morbidity and mortality [1,2]. Physical inactivity is a modifiable risk factor
for osteoporosis, and regular physical activity positively affects bone health [3,4]. Physical
Activity (PA) guidelines recommend the accumulation of at least 150 min of moderate
PA each week to benefit general health and fitness [5], but there is a lack of specific PA
recommendations for reducing the risk of poor bone health. This is partly because there is
a lack of research that has accurately assessed weight-bearing physical activity relevant to
the skeleton.

Accelerometers worn at the waist are the most widely used method for objective
assessment of habitual weight-bearing PA in population-based studies aimed at character-
ising relationships with different health related outcomes [6,7]. This device is also used to
provide objective outcome measures for interventions intended to increase weight-bearing
PA [8]. However, there are important limitations in how accelerometry data are processed
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and analysed, which have major implications in the conclusions drawn from studies using
this technology. Activity is generally defined in terms of duration above thresholds, based
on proprietary counts per minute (cpm), denoting sedentary, light, moderate, and vigorous
intensity PA [9]. The application of cut-point methods to accelerometer data in this way
is associated with large misclassification errors [10]. In addition, translation of findings
from epidemiological research into public health recommendations would be considerably
helped if results were based on directly observed relationships with specific types of activity,
such as walking or running/jogging. There is now a shift in emphasis away from cut-points,
but analytical challenges remain in terms of how to characterise specific activities from
raw accelerometry data [11]. A further limitation is that count-based thresholds based
on measured energy expenditure may be relevant for studying relationships between PA
and obesity and related outcomes such as cardiovascular disease and type II diabetes, but
different measures of PA intensity may be needed when studying other health outcomes
such as bone mineral density.

Several attempts have been made to classify walking and other types of weight-bearing
PA based outputs of accelerometers attached to the centre of mass. One approach is to de-
tect sit to stand transitions by combining features from accelerometers and gyroscopes [12].
Subsequent studies have utilised machine learning techniques for activity class prediction
from raw accelerometer signals [13], whereby algorithms are developed using a training
set comprising labelled data obtained from individuals performing a pre-determined set
of activities. Using this approach studies developing machine learning models have com-
monly used support vector machine (SVM), random forest and artificial neural networks to
classify activities with relatively high accuracies from wrist-worn accelerometers [14,15]
or thigh and back worn accelerometers in children and adults [16]. However, equivalent
classifiers are yet to be developed for activity recognition in waist worn accelerometer
outputs from postmenopausal women, in whom movement patterns related to specific
activities differ substantially compared to younger individuals.

The purpose of this study was to evaluate four machine learning models (k-Nearest
Neighbours (NN) Manhattan, k-NN Euclidian, Decision Tree (DT) and Support Vector
Machine (SVM)) on a binary movement classification (standing and walking) and a tertiary
movement classification (standing, walking, and jogging) using accelerometry data from
postmenopausal women. These models were chosen as they have been used by previous
authors in the field of human movement classification. They are relatively simple to
implement, robust and have previously provided accurate results for physical activity
classification on different activity types compared to this study [17,18]. In regard to data pre-
processing, combinations of raw data and feature sets have been investigated as the input to
machine learning modes and have previously provided high accuracy results [19]. However,
an optimal set of features for activity-type recognition have not been found and may also
differ depending on the model used. Therefore, it is hypothesised that, by using novel
combinations of features extracted from the data as inputs to the machine learning models,
high levels of accuracy can be achieved for binary and tertiary movement classification.

2. Materials and Methods
2.1. Participamts

Eighty healthy postmenopausal women from Pamplona, Spain (mean age 58.4± 5.2 years;
mean body mass 68.4 ± 9.6 kg; mean height 158.0 ± 6.7 cm) were recruited via advertise-
ments placed at health medical centres to perform a submaximal incremental shuttle test
on an indoor track, of which 30 also completed an incremental shuttle test on a treadmill,
whilst wearing a hip-worn triaxial accelerometer [20,21]. A detailed description of the
inclusion and exclusion criteria has been published previously by Gil-Rey et al. [20]. The
local hospital’s ethical committee approved the study (Pyto2011/71) and written informed
consent was obtained from all participants before any study procedures were undertaken.
The procedure of the study was in accordance with the Declaration of Helsinki and was
registered in ClinicalTrials.gov PRS (NCT02984553).
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2.2. Data Aquisition

Triaxial accelerometers (Actigraph WGT3X-BT, Pensacola, FL, USA) placed over the
right iliac crest in the mid-axillary line collected data from participants throughout the
exercise tests. The device measured triaxial acceleration in the x, y, and z axis at a sampling
frequency of 50 Hz for most of the subjects. The x-axis corresponds to anterior/posterior
movement, y-axis corresponds to vertical movement, and the z-axis corresponds to me-
dial/lateral movement. 39 of the 110 tests were recorded with a sampling frequency of
100 Hz; these were down sampled to 50 Hz prior to further analysis. ActiLife software
(Version 6.8.1) was used to construct date and time stamped files of raw acceleration signal
in the vertical, medial–lateral, and anterior–posterior planes.

The accelerometer data were obtained from two incremental speed tests performed on
a treadmill ergometer (Kuntaväline, Hyper Treadmill 2040, Finland) and a 20-metre track
marked with two cones; a detailed description of the trials and data collection protocols
have been published previously [20,21]. The data set used for analysis combined 80 track
tests and 40 treadmill tests that were completed in a single session and performed over
15 incremental stages, summarized in Table 1. Three minutes of standing data were
collected in Stage 1, and 1.5 min of accelerometry data per stage were collected for the
remaining stages. Each participant was free to start jogging from the 7th stage onwards
(6.1 km/h), or the operator suggested to do so when the participant was not able to match
the required speed.

Table 1. The stage number and corresponding speed of movement for the track and treadmill tests.

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speed (km/h) 0 2.4 3.0 3.6 4.3 4.9 5.5. 6.1 6.7 7.3 7.9 8.5 9.1 9.8 10.4

2.3. Class Definitions

The combination of direct observation during the tests and offline visual inspection
of raw accelerometry traces were used to define the two classification sets used within
this study. The binary classes were ‘Standing’ and ‘Walking’ and the tertiary classes were
‘Standing’, ‘Walking’ and ‘Jogging’. These characteristics showed that across all participants
and tests, the participants were ‘Standing’ at Stage 1 and ‘Walking’ between Stages 2–8.
This formed the criteria for the binary classifier, which was the same across the whole data
set. For the more complex tertiary classifier, the classes were defined on a test-by-test basis.

2.4. Data Pre-Processing

Prior to extracting features from the accelerometer signals, it was necessary to pre-
process the data, including filtering out noise and segmentation. Typically, accelerometer
signals may contain noise due to additional frequency bands related to acceleration due to
gravity between 0–0.8 Hz; a high pass filter can be used to eliminate this noise, typically
previously applied with a cut-off frequency (fc) at 0.5 Hz [22,23].

Windowing of accelerometer signals is extremely common among activity classifica-
tion studies as a method of dividing the signal into various smaller segments [24]. This
aids to increase the number of observations available per classification, thus increasing the
number of ways each class may be described as features are extracted on a segment-by-
segment basis. According to Banos et al. [24], the recommended window length for activity
classification applications is between 1 and 2 s.

For this study, a custom Hamming window Finite Impulse Response (FIR) high pass
filter with cut-off frequency fc = 0.5 Hz and an order of 1000 was designed using MATLAB’s
Filter Designer App.

The accelerometer signals were split into 2-s windows, with 100 samples per window at
the sampling frequency of the data, 50 Hz, like in a study by Preece et al. [25]. Additionally,
a 50% overlap of the windows was used to double the segment size, as was proven useful
in a study by Bao & Intille [26] to further increase observation numbers per category.
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2.5. Feature Extraction

For each participant, various feature sets were extracted using different signal process-
ing techniques, as shown in Table 2. A total of 18 features were extracted from each window
of data. Out of these features, three: (Lempel Ziv (LZ) Complexity, Central Tendency
Measure (CTM) and Correlation Dimension (D2)) have not been applied to the analysis of
accelerometry data in human movement classification in previous studies.

Table 2. List of features extracted from the pre-processed data set, traced throughout this report using
a unique identifier and linked to research papers each feature is used within.

Unique Identifier Feature Papers Used within

1 Mean [17,18,25–30]
2 Median [25]
3 Standard Deviation [18,25,28]

4, 5 25th and 75th Percentiles [25,28,30]
6 Skewness [18,27,28]
7 Kurtosis [18,27,28]
8 Principal Frequency [22,23,25,27]
9 Spectral Energy [17,25,26,28,29,31]
10 LZ Complexity N/A
11 CTM N/A
12 D2 N/A

13 Wavelet 1, Level 1
(Daubechies 2 Mother Wavelet) [25]

14 Wavelet 2, Level 1
(Daubechies 2 Mother Wavelet) [25]

15–16 Wavelet 1, Levels 2–3
(Daubechies 2 Mother Wavelet) [25]

17–18 Wavelet 2, Levels 2–3
(Daubechies 2 Mother Wavelet) [25]

Identifier 1 is the arithmetic mean, computed for each time series window using
Equation (1).

x = ∑
xi
n

, (1)

where x is the mean, xi is the ith number in the series and n is the length of the series.
Identifier 2 is the median, computed as the middle value, n, of xi, in each time series

window using Equation (2).

n =
N + 1

2
, (2)

where n is the middle value and N is the length of the series.
Identifier 3 is the standard deviation, calculated using Equation (3).

σ =

√
1

n− 1 ∑(xi − x)2, (3)

where σ is the standard deviation, n is the length of the series, xi is the ith number in the
series and x is the mean of the series.

Identifiers 4 and 5 are the 25th and 75th percentiles and are calculated as the values
below which 25% or 27% of the data is found.

Identifier 6 is skewness, which is a measure of the symmetry of the data, calculated
using Equation (4).

Skewness = m3σ−
3
2 , (4)

where m3 is the third moment and σ is the standard deviation.
Identifier 7 is Kurtosis, which is a measure of the spread of a data distribution, calcu-

lated using Equation (5) [32].
Kurtosis = m4σ−2, (5)
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where m4 is the fourth moment and σ is the standard deviation.
Identifier 8 is Principal Frequency, which is the frequency band that is computed to

have the highest power in the signal. It is found by producing the frequency spectrum of a
time series using the Fast Fourier Transform (FFT) and identifying the frequency with the
highest power. The power can be estimated using Equation (6).

Power =
| f f t(x)|2

n
, (6)

where f f t is the Fast Fourier Transform of the time series, x is the filtered time series and n
is the length of the series.

Identifier 9 is Spectral Energy, defined as the sum of the squared FFT coefficients,
calculated using Equation (7).

Spectral Energy = ∑n
i=1 f f t(xi)

2, (7)

where f f t is the Fast Fourier Transform of the time series, x is the filtered time series and
n is the length of the series.

Identifier 10 is the LZ Complexity which is a measure of the complexity of a signal and
is a method of graining measurements. The signal is converted to a binary signal, where
the numbers 0 and 1 describe whether the value is below or above a certain threshold,
respectively. The threshold is commonly defined as the median of the sequence [33]. The
coarse graining is calculated using Equation (8), and then is scanned from left to right
using the Lempel-Ziv 1976 algorithm to identify the number of different sub-sequences in
the time series [34]. That complexity count is normalised to obtain a LZ complexity value
between 0 and 1.

s(i) =
{

0 i f x(i) < Td
1 i f x(i) ≥ Td

, (8)

where s(i) is the coarse-grained sequency, x(i) is the original series and Td is the threshold
(median) of the series.

Identifier 11 corresponds to the CTM which is a measure of the variability encountered
in a signal. A plot of the first differences of the signal provides a graphical representation
of this variability of a time series. A radius, ρ, is defined, and the CTM is defined as the
proportion of the data series which falls inside that region, calculated in Equation (9). For
this study, ρ = 0.1 was chosen as it was able to inform a CTM value for both slower and
faster speed stages.

CTM =
∑N−2

n=1 δ(dn)
N−2 ,

δ(dn) =

{
1, i f

[
(x(n + 2)− x(n + 1))2 + (x(n + 1)− x(n))2

]1/2
< ρ

0, otherwise
,

(9)

where N is the length of the time series, ρ is the radius and x is the data series.
Identifier 12 is the D2 which is another measure of the dimensional complexity of

a signal and is computed as described by Grassberger & Procaccia [35]. It is noted that
meaningful results cannot traditionally be extracted from physiological data due to the
large number of data required for D2, in addition to assuming the signal is stationary.

Identifiers 13 to 18 are calculated using the Discrete Wavelet Transform (DWT). In
short, DWT passes the signal through a series of filter banks to decompose the signal into
approximation (low-pass filtering) and detail (high-pass filtering) coefficients [36]. It pro-
duces the minimum number of coefficients required to recover the signal, which is ideal for
efficiency computing compared to its counterpart, Continuous Wavelet Transform (CWT).

Using the features extracted from the data, nine different sets were created combining
features of similar characteristics, shown in Table 3. Principle Component Analysis (PCA),
used in Feature Sets B and D, was used to reduce the dimensionality of the feature sets.
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Neighbourhood Component Analysis (NCA) was used to select the features in sets C1 and
C2. Any features with a weight of >0.2 were extracted and used in these sets.

Table 3. List of feature set identifiers and names, with a description of each and the dimensionality of
each feature set.

Unique Identifier Feature Set Name Description Dimensionality

A All Features All features described in Table 2 54
B 3D PCA Reduced PCA Reduction of Feature Set A 3

C1 NCA Selected Features NCA Selection of Features, λ = default Model Dependent
C2 NCA Selected Features NCA Selection of Features, λ = 0 Model Dependent
D NCA Selected Features and 3D PCA Reduced PCA Reduction of Feature Set C2 3
E Basic Statistics Features 1–5 15
F Frequency Domain Features 8–9 6
G Non-Linear Features Features 10–12 9
H Wavelets Features 13–18 18

NCA is a method that can be used to select the best features of a data set to avoid
overfitting of machine learning models. It calculates the weights of each feature that are
computed and is regularized with a parameter called Lambda (λ) [37].

PCA is a method that transforms a ser of correlated variables into a new set of uncor-
related variables in principal components. It involves determining the covariance matrix of
the data set and subsequently decomposing the matrix using eigenvalue decomposition
into the eigenvector matric and eigenvalues [38].

2.6. Machine Learning Classification

Four different Machine Learning classifiers, shown in Table 4, were employed in this
study to predict the class of each segment of data within the selected Feature Set.

Table 4. A list of machine learning models used and their associated descriptions.

Model (X = Binary or Tertiary) Description

X.1 k-NN Classifier (Manhattan)
X.2 k-NN Classifier (Euclidian)
X.3 Decision Tree (DT) Classifier
X.4 Support Vector Machine (SVM)

The k-Nearest Neighbours (k-NN) classifier is one of the simplest and most straight-
forward machine learning algorithms to implement. This classifier is distance-based and
produces a model directly based on the available training data [38]. The classifier calculates
the distance, in the feature space, between a given test point and the points in the training
set, producing the k-nearest points. The value of k-nearest points is defined in the training
of the model and for this study was set at 10, matching a recent study by Ryu et al. [39]. The
class that most of the k-nearest points belongs to results in the predicted class for the test
point. There are two different distance measures that are commonly used, the Euclidian
distance and the Manhattan distance. The Euclidian distance, commonly known as the
straight-line distance, gives the shortest distance between two points whereas the Manhat-
tan distance is the sum of the absolute differences of each coordinate axis. The Euclidian
distance is calculated using Equation (10) and the Manhattan distance is calculated using
Equation (11).

dist = ∑n
i−1

√
(qi − pi)

2, (10)

where pi and qi are n-dimensional points.

dist = ∑n
i−1

√
|qi − pi , (11)



Sensors 2022, 22, 9176 7 of 17

where pi and qi are n-dimensional points.
Classification tree models, or Decision Trees (DT), are based on dividing the feature

space into several rectangles and fitting a unique model within each one. This process can
be represented through a tree, as the name of the classifier suggests [40]. At the top of the
tree, the model considers all the features of the data set. When analysing a test point, its
value for the first feature is considered as the start. A decision of which class the data point
might belong to is made based on information from the training data, subsequently defining
the following branch of the tree. This is repeated for each feature, until a final decision of
the predicted class of the test point is made. This method is known as CART [41].

A Support Vector Machine (SVM) produces decision boundaries with the aim of
optimising a margin between two classes to obtain the best separation of classes as possible.
The goal of an SVM is to identify the ideal hyperplane decision boundary. The SVM
algorithm places data points in a feature space where each of the classes are set as −1 and
1. This is done to simplify the calculation of a hyperplane decision boundary, which would
exist at 0. This assumption is used in conjunction with a linear discriminant, shown in
Equation (12), to find the margin and maximise it according to input patterns and weight
vector [38]. This process can also be used for three-class classification by splitting the
problem into one-versus-one classification cases and combining the results, which adds
complexity to algorithm.

y = ∑M
i=1 xiwi + b, (12)

where M is the number of features, xi are the input variables, wi are the model weights, b is
the bias and y is −1 or 1 for each of the classes.

As detailed in Duarte et al. [42], k-NN, DT and SVM classifiers have previously been
used in similar applications using frequency domain features to produce accuracy results
that are greater than 90% for human activity recognition. Therefore, these classifiers were
chosen for further analysis within this study.

2.7. Training Methods & Model Evaluation

The models outlined in Table 4 were trained and tested using 3 alternative methods
with the idea to initially establish the best performing models and then assess their re-
peatability to acquire the best model overall. The first method combined all the track and
treadmill data into a single data set and randomly assigned 70% of the data to a training
set and the remaining 30% of the data to a test set. Randomising and combining the data
allows a better chance of avoiding overfitting due to the increased data variability. The 30%
test set provides a large pool of data to evaluate the performance of the model on without
compromising the training set.

The second method is k-fold cross-validation. The entire data set is randomly split
into k folds; in the case of this study, k = 10. For k tests, one fold is used to test the model
and the remaining 9 folds are used to train the model. It minimizes any effect of the order
of the data and is a common method used to evaluate the overall performance of a model.

The final method is commonly referred to as ‘leave-one-out’ cross-validation. This
method takes the data sources, n = 110, and performs training using n − 1 = 109 of these
sources and tests on the remaining data source. It repeats this process n number of times,
so that each source becomes the test set. The results from the tests given an indication of
the repeatability of the model’s performance.

The performance of the model within this study primarily relates to the percentage
accuracy of the classification of the test set. The accuracy is calculated as the number
of correct predictions, compared to the predefined ground truth labels, as a percentage
of the total number of predictions made. Confusion Matrices is the reporting metrics
used to assess the performance of machine learning classifiers. Confusion Matrices show
the relationship between the number of predictions for each class and the number of
correct/incorrect results. Per class accuracies within confusion matrices can be useful in
assessing the performance of a classifier to understand bias. Due to the large number of
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tests detailed in the Results section, the confusion matrices are shown for the top three
performing models.

3. Results
3.1. Binary Machine Learning Classification

Initially, each feature set was tested against each model for the binary classification
problem using the 70% train, 30% test method. The results, shown in Table 5, show that
overall, the k-NN classifier Manhattan and Feature Set C1 produced the highest accuracy
results of 99.70%. The top 3 mean accuracy results across all models were Feature Set A, C1
and E. These feature sets were therefore taken forward for cross-validation evaluation.

Table 5. A summary of each feature set paired with each model for the binary classification problem,
tested using the 70% train, 30% test method. The mean accuracy value for each feature set and model
number are also shown.

Total No. Data Points
Model Number

Binary.1 Binary.2 Binary.3 Binary.4 MEAN

Feature Set

A 84,191 99.62 99.61 99.38 99.56 99.54
B 84,191 96.31 96.25 94.41 90.93 94.48

C1 84,191 99.70 99.68 99.37 99.63 99.60
C2 84,191 99.58 99.57 99.33 99.55 99.51
D 84,191 96.37 96.36 94.75 94.80 95.57
E 88,892 99.59 99.57 99.31 99.53 99.50
F 88,892 98.04 97.87 99.42 95.55 97.72
G 84,191 99.32 99.19 99.10 99.41 99.26
H 88,892 99.55 99.53 99.31 99.54 99.48

MEAN 98.68 98.63 98.26 97.61

The 10-fold cross-validation results for Feature Sets A, C1 and E for the binary clas-
sification problem are shown in Table 6. Feature Set A is a high dimensionality set that
includes all calculated features. Feature set C1 reduced upon the dimensionality of Feature
Set A using NCA, requiring significantly more computing power than Feature Set A and E.
Feature Set E contains basic statistics and is the simplest to calculate out of the three sets.
In addition to this, the very similar 10-fold cross-validation accuracy results displayed be-
tween the three feature sets, Feature Set E was chosen to be taken forward for leave-one-out
cross-validation testing.

Table 6. A summary of Feature Sets A, E and H pair with each model for the binary classification
problem, tested using 10-fold cross-validation. The mean percentage accuracy values for each feature
set and model number are also shown. The results highlighted in yellow show the top 3 performing
models in terms of mean percentage accuracy.

Total No. Data Points
Model Number

Binary.1 Binary.2 Binary.3 Binary.4 MEAN

Feature Set
A 84,191 99.62 99.62 99.34 99.60 99.55
C1 84,191 99.60 99.60 99.32 99.57 99.52
E 84,191 99.63 99.62 99.37 99.60 99.56

MEAN 99.62 99.61 99.34 99.59

The confusion matrices for the top 3 performing models, highlighted yellow in Table 6,
are shown in Figure 1a–c, respectively.
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The leave-one-out cross-validation testing of Feature Set E for the binary classification
problem is shown in Table 7. Similarly, to the cross-validation training, the k-NN Manhattan
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model classifier produced the overall best mean accuracy results. One participant (Treadmill
25) produced significantly poorer accuracy results (87.43% across all four models) than the
overall mean. Treadmill 25 was one of only 2 treadmill subjects that completed the entire
test up to speed stage 15, indicating the data in higher speed stages negatively skews the
model’s performance.

Table 7. A summary of Feature Set E with each model for the binary classification problem, tested
using leave-one-out cross-validation. The mean accuracy, standard deviation (SD), minimum and
maximum values for each model number are also shown.

Feature Set E
Model Number

Binary.1 Binary.2 Binary.3 Binary.4

Mean 99.61 99.61 99.43 99.58
SD 1.34 1.34 1.34 1.36

Min 87.43 87.43 87.43 87.43
Max 100.00 100.00 100.00 100.00

3.2. Tertiary Machine Learning Classification

Each feature set was created for the tertiary classifier using all available Stages for
each subject. Each feature set was tested against each model for the tertiary classification
problem using the 70% train, 30% test method.

The results, shown in Table 8, show again that the k-NN Manhattan classifier and
Feature Set C2 produced the highest accuracy results of 95.56%. The top 4 mean accuracy
results across all models were Feature Set A, C1, C2 and H. As C1 and C2 only differ by the
adjusted NCA parameters used, C2 was removed, leaving Feature Set A, C1 and H taken
forward for cross-validation evaluation.

Table 8. A summary of each feature set paired with each model for the binary classification problem,
tested using the 70% train, 30% test method. The mean accuracy value for each feature set and model
number are also shown.

Total No. Data Points
Model Number

Tertiary.1 Tertiary.2 Tertiary.3 Tertiary.4 MEAN

Feature Set

A 108,855 95.47 93.95 94.17 92.46 94.53
B 108,855 84.71 84.80 81.28 72.93 83.60

C1 108,855 94.85 93.78 94.12 91.89 94.25
C2 108,855 95.56 93.90 94.13 92.35 94.53
D 108,855 85.67 85.70 81.80 75.40 84.39
E 113,450 91.49 91.36 87.84 89.58 90.23
F 113,450 91.23 90.83 92.55 81.38 91.54
G 108,855 88.66 88.16 86.51 87.86 87.78
H 113,450 92.91 92.81 90.52 91.29 92.08

MEAN 91.17 90.59 89.21 86.13

The 10-fold cross-validation results for Feature Sets A, C1 and H for the tertiary
classification problem are shown in Table 9. Feature Set A was chosen to be taken forward
for leave-one-out cross-validation testing as it provided the most consistent results across
the 4 classifiers.

The confusion matrices for the top 3 performing models, highlighted in yellow in
Table 9, are shown in Figure 2a–c, respectively.
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Table 9. A summary of Feature Sets A, E and H paired with each model for the tertiary classification
problem, tested using 10-fold cross-validation. The mean percentage accuracy values for each feature
set and model number are also shown. The results highlighted in yellow show the top 3 performing
models in terms of mean percentage accuracy.

Total No. Data Points
Model Number

Tertiary.1 Tertiary.2 Tertiary.3 Tertiary.4 MEAN

Feature Set
A 84,191 95.48 94.02 94.31 92.30 94.03
C1 84,191 95.15 93.83 94.26 91.91 93.79
E 84,191 93.06 92.98 90.43 91.44 91.98

MEAN 94.56 93.61 93.00 91.88
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The leave-one-out cross-validation testing of Feature Set A for the tertiary classification
problem is shown in Table 10. The SVM classifier was excluded from the analysis due to the
significantly longer processing time required per subject (>40 min) compared to the other
classifiers. Similarly to the binary models tested using this method, the Manhattan k-NN
classifier produced the overall best mean accuracy results. In addition, three participants
(Track 62, Track 64, and Treadmill 25) produced significantly poorer accuracy results than
the overall mean. In addition to Treadmill 25, Track 62 and Track 64 were two of only five
track subjects that completed the entire test up to speed stage 15, further indicating the
data in higher speed stages negatively skews the model’s performance.

Table 10. A summary of Feature Set A with each model for the tertiary classification problem, tested
using leave-one-out cross-validation. The mean, standard deviation (SD), minimum and maximum
values for each model number are also shown.

Feature Set E
Model Number

Tertiary.1 Tertiary.2 Tertiary.3 Tertiary.4

Mean 94.04 92.96 93.14 N/A
SD 5.33 5.39 5.19 N/A

Min 69.82 68.54 72.09 N/A
Max 100.00 100.00 99.45 N/A

4. Discussion

To the best of our knowledge, this is the first study to develop and test a wide vari-
ety of feature extraction methods applied to machine learning models for the automatic
identification of weight-bearing physical activity types in postmenopausal women from
hip-worn commercial devices. This study included a significant number of tests utilising
various feature sets and classifiers. It also provided in depth analysis of these feature sets
and classifiers, as well as the results from them. Furthermore, our classifiers were devel-
oped from two different sets of accelerometer data (track and treadmill) collected in the
laboratory, which enabled the control of a range of activities and intensities which allowed
calibration of the results. The hip is the most common wear location for Actigraph devices
in longitudinal and intervention studies in the bone health field, so the accuracy of models
for this location and device has relevance for researchers and health practitioners [43].

The highest overall cross-validated accuracy for the binary classifier was 99.63% us-
ing Feature Set E (Basic Statistics) and the k-NN Manhattan classifier. Almost identical
accuracies were seen for both the k-NN Manhattan and k-NN Euclidian classifiers across
Feature Sets A (All Features), C1 (NCA Selected Features, λ = default) and E. The tertiary
classifier had a much wider spread between cross-validated accuracies, with 95.48% for
Feature Set A using the k-NN Manhattan classifier to 90.43% for Feature Set H (Wavelets)
using the DT classifier. The leave-one-out cross-validation results were slightly lower than
the cross-validated results, with a mean of 99.61% for the binary k-NN Manhattan classifier
using Feature Set E and 94.04% for the tertiary k-NN Manhattan classifier using Feature Set
A. The use of the leave-one-subject-out cross-validation, ideal for smaller data sets, high-
lights any overfitting of the machine learning models and challenges the model’s general
applicability to new data which is needed for clinical applications [44,45]. Therefore, the
results obtained are expected as the classifiers perform sub-optimally for some individual
subjects which could be attributed to overfitting within the model and the expectation that
there may be lower performance when working with human experimental data. Interest-
ingly, even though the k-NN Manhattan classifier was the simplest, it produced the highest
performance, suggesting that the other classifiers may have been overcomplicating the
classification task.

The data set used has a clear bias towards the walking class, as there was only one
standing stage and less running speed stages per subject. This is highlighted in the binary
results, where over the three highest accuracy models, the walking class had an average
prediction error of 0.2% and the standing class had an average prediction error of 1.3%.
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This bias is shown in a different way for the tertiary classifier, where the average prediction
error of the running class was 18.3% compared to 2.2% for the standing class and 2.9% for
the walking class. As expected, this high percentage for the running class is made up of
mostly incorrect walking predictions, possibly due to similar patterns in the feature sets
between walking and running. This bias could also be attributed to instances where were
participants felt uncomfortable to walk at higher speeds. Therefore, they started to combine
walking and running for short periods to match the required speed for the test.

In terms of feature sets, it is also worth noting that the complex computational and
feature reduction methods used in sets B (3D PCA Reduced), C1, C2 (NCA Selected
Features, λ = 0), D (NCA Selected Features and 3D PCA Reduced) typically did not yield
the best results. This could suggest that, in the case of Feature Set A, the large number of
features (18) provided more information to the model and therefore yielded more accurate
predictions. In contrast, in the case of Feature Set E, the features that carry the most
important information for this classification are held in simple, well-known, and quick to
calculate features.

For real-time applications, it is vital that a machine learning model computes results
quickly as well as accurately. Using the examples above, Feature Set E consisting of
basic statistics is much less computationally expensive than Feature Set A which required
complex non-linear calculations to be conducted. The computational time is affected by the
dimensionality of the feature set, indicating that the optimum combination for real-time
applications would be simple features with a low dimensionality.

Although comparing results between studies is complicated due to differences in pop-
ulations, tests and monitor placements that may influence classification, our overall finding
agrees with previous studies showing that machine learning algorithms can be used to
produce accuracies greater than 80% [46]. Similar research that conducted laboratory-based
testing to validate types of activity algorithms including machine learning has provided
per class accuracies greater than 99% for standing, walking, and jogging [47]. However,
these studies included fewer subjects and samples and a monitor placement that could
provide more obvious detectable changes between different activities, compared to our
study. Additionally, Pires et al. [48] provided a detailed review of many additional studies
within activity recognition using accelerometry data and machine learning, further suggest-
ing that these methods can produce accurate and repeatable results [48]. In addition, our
results further improve on many published papers within this field as different verification
methods are analysed within our study to describe the robustness of the proposed method.

Results from our study support the use of accelerometers and machine learning
approaches to classify physical activity types. Accurate recognition of stationary be-
haviour [49] from weight-bearing physical activity was achieved using features consisting
of basic statistics with a low dimensionality. This finding is of significance in the context of
increased emphasis on changes in habitual physical activity and for future understanding
of the long-term health implications of stationary behaviour [50]. Our classifiers were able
to accurately detect bouts of walking and jogging, which are important activities for several
health outcomes [51] including skeletal health. Clinical trials have shown that walking
improves femoral neck bone mineral density [52], and population studies have found that
participation in walking since age 50 is associated with higher levels of osteogenic physical
activities in older age [53]. Similarly, an analysis of UK Biobank data found that accumu-
lating 1–2 min/day or high intensity PA equivalent to slow jogging in postmenopausal
women was associated with better bone health [54]. Automatic recognition of walking
and jogging is therefore critical to monitor the effectiveness of interventions and may help
clinicians and policy makers with public health messaging. The accurate classification of
these specific activities may also lead to fully understanding relationships between duration
and intensity of weight-bearing PA and different health outcomes in large-scale studies
that typically use commercially available activity monitors like the Actigraph; ultimately
making clinical recommendations easier.



Sensors 2022, 22, 9176 14 of 17

Nevertheless, our study also has several limitations that should be acknowledged.
The models were trained on a relatively small number of healthy postmenopausal and may
not reflect the full range of movement patterns and intensity associated with activity in all
post-menopausal women. Moreover, the machine learning algorithms were developed and
tested on activity performed under controlled laboratory conditions, which may limit their
performance during free-living activities [55]. However, the laboratory-based data set did
contain walking and jogging activities that were performed with varying linear (treadmill)
and dynamic turns (track). The classifiers developed in this study should be validated in a
free-living set-up and compared to a similar algorithm developed on free-living data.

5. Conclusions

This study presents a method to produce highly accurate results for the classification
of standing, walking and jogging of postmenopausal women using triaxial accelerometry
data. The process involved pre-processing and extracting 18 different features, from the
raw data, which were then grouped into 9 unique feature sets. These feature sets were used
as the input to four different machine learning models, k-NN Manhattan, k-NN Euclidian,
Decision Tree & SVM, for a binary (standing and walking) and tertiary (standing, walking
and running) classification problems. The results from the models were initially tested
using 70% of the data for training and the remaining 30% for testing. From these results, the
top 3 highest accuracy models were then validated using two different methods: 10-fold
cross-validation and leave-one-out validation. For the binary classifier, the best performing
classifier used Feature Set E, which consisted of basic statistical features, as an input to a
k-NN Manhattan classifier. This combination yielded the highest overall cross-validated
accuracy of 99.63%. For the tertiary classifier, the best performing classifier used Feature
Set A, which consisted of a combination of all the 18 features from linear and non-linear
methods, as an input to a k-NN Manhattan classifier. This combination yielded the highest
overall cross-validated accuracy of 95.48%. The leave-one out results from these same
models yielded binary classification accuracy results of 99.61% and tertiary classification
accuracy results of 94.04%. The results of this test indicated that these models are, on
average, accurate when applied to individual data sets and suggests that the models exhibit
minimal overfitting. Low overfitting is a desired trait when applying machine learning
models to unseen data. Overall, these models have produced high accuracy results with
more rigorous validation testing when compared to similar studies within this field.

Our results further suggest that future studies could use these classifiers to characterise
weight-bearing PA, such as walking and jogging, more accurately and provide a basis for
PA based policies and interventions intended to improve bone health and a broad range
of health outcomes in this age group. Alternative data sets could also be applied to these
models to further enhance the classifiers’ use case. These data sets could include formats
such as free-living accelerometry data or accelerometry data sets from cohort studies.
For example, the classifier could be used to analyse raw accelerometry datasets from
cohort studies which would allow the relationships between specific types of physical
activity and important health outcomes to be investigated further. Accurate classifiers on
free-living accelerometry data would advance these tools towards usability in a clinical
setting. Their properties could include longer assessment times, populations with multiple
long-term conditions, a wider range of recorded activities and additional or alternatively
located accelerometers; all of which would provide additional information for wider
classification decisions.
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