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Abstract: Deficient air quality in industrial environments creates a number of problems that affect
both the staff and the ecosystems of a particular area. To address this, periodic measurements must
be taken to monitor the pollutant substances discharged into the atmosphere. However, the deployed
system should also be adapted to the specific requirements of the industry. This paper presents a
complete air quality monitoring infrastructure based on the IoT paradigm that is fully integrable
into current industrial systems. It includes the development of two highly precise compact devices
to facilitate real-time monitoring of particulate matter concentrations and polluting gases in the air.
These devices are able to collect other information of interest, such as the temperature and humidity
of the environment or the Global Positioning System (GPS) location of the device. Furthermore,
machine learning techniques have been applied to the Big Data collected by this system. The results
identify that the Gaussian Process Regression is the technique with the highest accuracy among
the air quality data sets gathered by the devices. This provides our solution with, for instance, the
intelligence to predict when safety levels might be surpassed.

Keywords: air quality monitoring; particulate matter; polluting gas; machine-learning

1. Introduction

Air quality is one of the main aspects to consider in environmental impact assessment.
It not only affects the environment but also has an effect on the health of the people living
and working near industrial activities. Industrial spaces are particularly susceptible to air
contamination due to the manipulation of chemical components and processes that emit
polluting gases and small particles into the air. These types of particles are made up of
a complex mixture of solid, solid and liquid, or liquid particles of organic and inorganic
substances suspended in the air [1]. They can penetrate the respiratory tract, reaching
greater depths the smaller their size [2]. The WHO states that particulate matter is affecting
the world’s population more than any other type of pollutant. In addition, it recommends
not exceeding the levels of particles specified in Table 1 [3]. Therefore, polluting gases
that could potentially harm human health are also present in the air. These gases are often
monitored together with particulate matter levels to establish air quality indexes, such as
the European Air Quality Index [4] that provides an air quality evaluation ranging from
good to extremely poor based on the data gathered from over 3500 stations and following
the EU air quality directives [5]. Sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone
(O3), and carbon monoxide (CO) are among the most harmful substances. Table 2 shows
the threshold values that the WHO recommends not exceeding [6]. As a consequence,
industries are requesting ways to track and control their emissions in real time to avoid
facing penalties for exceeding the limits established where they operate.
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Table 1. Maximum particle levels recommended by the WHO.

WHO Recommended Values Annual Average 24 h Average

PM2.5 10 µg m−3 25 µg m−3

PM10 20 µg m−3 50 µg m−3

Table 2. Maximum concentrations of SO2, NO2, and O3 recommended by the WHO.

WHO Rec-
ommended

Values

Annual
Average 24 h Average 8 h Average Hourly

Average
10 min

Average

SO2 – 20 µg m−3 – – 500 µg m−3

NO2 40 µg m−3 – – 200 µg m−3 –
O3 – – 100 µg m−3 – –

Air quality is usually monitored using precision stations deployed at specific locations,
many of which are integrated into (official) meteorology monitoring stations. However,
as interest in monitoring air quality to improve health and implement better policies has
increased, the development of portable and affordable devices has multiplied. Specifically,
there are many proposals in the context of Smart Cities for indoor and outdoor air quality
monitoring [7]. These types of systems are usually deployed under the Internet of Things
(IoT) umbrella [8], where devices are used in a variety of locations. The data gathered can be
processed to map a city’s air quality [9] or provide the air quality history of a location. Other
proposals include devices such as pUAV to monitor air quality from different areas [10].
These devices can communicate with others through wireless connections or connect to the
Internet with a cabled Ethernet connection to forward data to the server for storage and
processing. Among the available wireless technologies, WiFi, ZigBee, or LoRa are popular
choices for IoT air quality monitoring. Monitored data analysis has also evolved to include
Artificial Intelligence (AI) techniques. Machine learning, as a part of the solutions AI
provides, is suitable to perform predictions and estimations of air quality [11]. Furthermore,
environments such as industrial facilities may need to adopt certain standards to ensure
interoperability with other systems and devices, for example, the INSPIRE specifications
based on infrastructures for spatial data [12].

This paper presents an air quality measurement architecture comprised of devices
capable of measuring polluting gases and suspended particulate matter. To facilitate the
installation of these devices so that they are totally independent of the electrical network,
an anti-vandalism structure with a solar panel on the top and housing, an auxiliary battery
to provide continuous power has been designed. In addition, a LoRaWAN network has
been designed, implemented, and deployed, through which the devices communicate with
a server that processes and stores the data captured in databases for further analysis. An
alert system has also been developed with email alerts and/or instant message alarms.
We have designed and implemented software modules to communicate our solution with
OPC systems. These systems are widely used in the industry to control pPLC and the
information exchanges between their systems. Moreover, the Big Data generated has been
extensively analyzed using several machine learning techniques to determine which is the
most accurate one. Therefore, it is possible to forecast trends of future data and predict,
for instance, inadmissible pollution levels. The combination of the above functionalities
results in a robust air quality measurement architecture that can be fully integrated with the
systems traditionally used by industry. This makes it an ideal industry focused solution for
real-time air quality monitoring. Specifically, the proposed system would benefit industries
working with soils, stones, grains, or other materials that can produce particulate matter as
well as industries susceptible to high levels of NO2, O3, SO2, and CO.

The rest of the paper has been organized as follows. Section 2 presents the related
work. In Section 3, the developed infrastructure is detailed. Section 4 describes the design
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of the monitoring devices. Section 5 discusses the obtained results. Finally, Section 6
concludes.

2. Related Work

Insufficient air quality can lead to severe health problems, but precision air quality
monitoring devices may be costly and difficult to deploy in a variety of settings. As a
result, several studies have been conducted to determine the correlation between more
affordable sensors and precision air quality stations. Evangelos Bagkis et al. analyzed
in [13] the performance of an air quality monitoring device compared to a reference station.
Seven machine learning algorithms were employed to model a correction factor. The results
showed that variations in the meteorological conditions affected the quality of the data.
Among all the techniques tested, the Convolutional Neural Network (CNN) obtained the
best overall performance. Furthermore, the average of several estimators improved the
metrics. Byoung Gook Loh et al. used Web Query and Machine Learning to calibrate a
device for PM2.5 particulate matter monitoring [14]. The algorithms employed as regression
models for the calibration were k-nearest neighbors, Extreme Gradient Boosting, Support
Vector Machine, and Random Forest. Stratified k-fold cross-validation was applied to
evaluate the performance. Results showed that the best performance was obtained by the
Extreme Gradient Boosting algorithm.

As air monitoring devices have become more affordable, and health concerns about
poor air quality have increased, interest in deploying air quality monitoring systems in
different environments has grown. Andrew Rebeiro-Hargrave et al. developed in [9] a
system for urban air quality monitoring. Their system can generate history graphs and
pollution maps from the information gathered. The devices are portable and low-cost and
can monitor air pollutant gases (O3, CO, and NO2) and PM2.5 particles. The system was
tested in Helsinki, and a pollution profile of the city was created. It was presented as a
tool to generate policies to improve the city’s air quality. Aditiyo Hermawan Kuncor et
al. designed in [15] an air quality monitoring system based on IoT that was deployed
and tested in the city of Tasikmalaya. CO, O3, and CH4 were monitored using MQ-7,
MQ-131, and MQ-4 sensors, respectively. Arduino microprocessors were employed to
obtain the data from the sensors and forward them through the Internet to be visualized
in real-time. Steven J. Johnston et al. presented in [16] a system for air quality monitoring.
The devices were equipped with four PM sensors and LoRaWAN transceivers. Tests
were performed in the city of Southampton in the UK. The results proved that the system
performed correctly on a city scale. Furthermore, some of the low-cost sensors were
suitable for monitoring particles and detecting trends. These types of systems for air quality
monitoring are usually deployed as Wireless Sensor Networks (WNS), such as the one
presented by Patricia Arroyo et al. [17]. Data were gathered from the ZigBee nodes and
forwarded to the server through the gateway. Cloud computing systems stored, processed,
and monitored volatile organic compounds, such as benzene, xylene, ethylbenzene, and
toluene. Data were processed using Support Vector Machine and a backpropagation
learning algorithm. The results showed good behavior in obtaining concentrations of
volatile organic compounds. The work by Ivan Popović et al. proposed a framework for air
quality monitoring in urban environments [18]. The system was designed with a layered
architecture based on fog computing supporting real-time operation to perform activities
such as fault diagnosis and automatic reporting. The processing performed on the sensors
was presented as microservices located on the different layers of the architecture. The
system was deployed and tested in a time frame of six months, monitoring O3, CO, CO2,
SO2, NO, and NO2, as well as PM1, PM2.5, and PM10. Meteorological parameters, such as
air temperature, humidity, and pressure were also monitored. The results corroborated
good system performance.

In addition to urban environments, indoor and industrial environments are also
considered for air quality measurement deployments. JunHo Jo et al. presented in [19]
an indoor air quality monitoring system able to measure CO, CO2, VOC, and aerosol
concentrations, in addition to air temperature and humidity. The data were forwarded
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to the server in real time through LTE and could be accessed through a web server or a
specifically developed application. The system was tested at Hanyang University, and
the results showed the prototype implementation and data collected from the application.
Judith Molka-Danielsen et al. in [20] studied the deployment of an air quality monitoring
system in industrial environments, specifically, a logistics shipping base. The authors
discussed how to process the obtained data to evaluate the impact of high CO2 levels
in an industrial workplace. They stressed the importance of the correct transformation
of data to facilitate their visualization. Furthermore, the authors suggested using smart
closed-loop systems that could detect spikes of potentially harmful polluting gases and
trigger actuators to provide more ventilation.

The popularity and effectiveness of AI has led to the introduction of machine learning
techniques in air quality monitoring systems. C. Amuthadevi et al. used different machine
learning approaches to develop an air quality monitoring model [11]. The selected machine
learning methods were Non-Linear Artificial Neural Network (ANN), Neuro-Fuzzy, Statis-
tical Multilevel Regression, and Deep Learning Long-Short-Term Memory (DL-LSTM). To
determine the accuracy of the different methods, the RMSE (root-mean-square error), R2,
and MAPE parameters were used. Outcomes showed that DL-LSTM presented the best
result among the tested methods. Dixian Zhu et al. employed machine learning to develop
a forecasting model for air quality [21]. They used a refined model with regularization
to enforce the prediction models. MTL, nuclear norm regularization, Frobenius norm
regularization, and l2,1 -norm regularization were compared. The results of the experiments
proved the efficiency of their proposed method. Similarly, Naomi Zimmerman et al. [22]
employed machine learning to create calibration models to improve the performance of
low-cost sensors for air quality monitoring. The results of testing univariate Linear Re-
gression, Random Forests, and Empirical Multiple Linear Regression showed Random
Forests to be the one that enabled low-cost sensors to meet the requirements of the US
EPA Air Sensors Guidebook. In addition, differences in NO2 concentrations were found
in less than 1.5 km. Finally, other works, such as [23] dealt with data acquisition and IoT
communication architecture from a general perspective.

The existing proposals have been developed considering the environment of the
deployment without taking into account any standards in device design apart from com-
munication protocols. This could be due to a lack of standards for certain environments.
However, considering the existing standards in industrial environments it is important to
ensure the integration, interoperability, and scalability of feasible solutions. Therefore, the
solution proposed in this work integrates high-quality components calibrated with preci-
sion sensors. We adopt the OPC standard, which is widely used in industrial environments.
Furthermore, analyzing the acquired air quality data with machine learning techniques has
contributed to determining the best algorithm for processing air quality data in industrial
environments and predicting trends for future datasets.

3. Architecture Description

In this section, the proposed system architecture for air quality monitoring in industrial
environments is described.

Figure 1 shows the general scheme of the developed infrastructure. The goal is to
plot air quality for end-clients from the data collected by a series of sensors. The acquired
data is forwarded by the devices using LoRa communication technology on the 868 MHz
frequency band, as stated in the LoRaWAN specification for deployments in Europe [24].

The server has a data management system in charge of storing data in an InfluxDB
database [25]. This type of database stores time series of data and manages the huge
amounts of data generated by the devices, applications, and infrastructures, providing a
timestamp for each of them when stored. This is useful for their later representation in
graphs using the Grafana software. Grafana is a web server that depicts data time series in
graph format [26]. This web server represents the evolution (over time) of the particulate
matter or polluting gases and the internal parameters of the devices, such as communication
link quality levels, allowing the visualization and supervision of the deployment. In this
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way, any device connected to the internal network of a client company can display the
data. Furthermore, different types of data sources can be configured in Grafana. In this
proposal, the InfluxDb data base and Prometheus monitoring system were configured
to visualize the state of the servers and the operating services. The server integrates an
OPCUA (OPC Unified Architecture) server and, if necessary, there is also a virtual machine
in Windows OS where a proxy can obtain the data stored in the OPCUA server and send
it to the OPCDA (OPC Data Access) client company’s server. The use of Windows OS is
required since OPCDA uses Microsoft DCOM protocol.

The data reaching the OPCDA server is then forwarded to an external server through
a VPN to facilitate a secure connection. A copy of the data is stored on this server as well,
and Grafana can represent the data from any device with an Internet connection since it
has its own public IP address that the client can access. This server also has an alert system.
As a basic service, Grafana’s integrated default warning system can be used to inform the
user when abnormal levels of contamination are detected. As an advanced service, the
Prometheus Alertmanager tool will notify the network manager of any failure detected in any
of the provided services. In the following subsections, all these components are described
in detail.

LoRa gateway

Virtual server

Windows 
virtual 

machine

PM/Gas 
sensor

PM/Gas 
sensor

PM/Gas 
sensor

Industrial OPCDA 
server Data 

controller

OPCUA client

OPC UA-DA 
proxy

LoRa server

Telemetry 
database

OPCDA 
server

Sensor data 
kiosk

Telemetry 
server

Server
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Connection

Telemetry 
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Server

Telemetry 
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Sensor alert 
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Preventive 
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Figure 1. System architecture.

3.1. Network Deployment

A LoRaWAN network has been developed including the different gateways required
to send the received data to a server through the network. LoRaWAN is a Medium
Access Control protocol for wide area networks built on the LoRa modulation. It enables
low-power devices with applications connected to the Internet to communicate through



Sensors 2022, 22, 9221 6 of 45

long-range wireless communication links. LoRa is a Wireless modulation technology robust
against electromagnetic disturbances and able to provide long-distance data transmissions.
It is suitable for telemetry applications where small data packets are transmitted using
low bitrates. Its built-in features make LoRa an excellent technology choice for low-power
sensors. It can be used with different unlicensed frequency bands, such as 915 MHz,
868 MHz, and 433 MHz [27], depending on the region where the devices are located. In
this proposal, the suitable frequency band for Europe is the 868 MHz unlicensed band.

An outdoor gateway able to offer radio coverage of approximately 10 km in rural
areas and 1 km in urban areas has also been used. This gateway provides bidirectional
communication between the devices connected to the network and the server, which is
connected to the gateway through an Ethernet connection. Figure 2 illustrates the antenna
and the gateway we have deployed and installed for this work. The server is equipped with
Chirpstack, which is a network server for LoRAWAN networks. It offers a web interface
that easily configures new gateways, defines different types of applications for different
uses, and adds the devices required for each application [28].

Figure 2. Antenna and Gateway.

These devices, called microcontrollers, are responsible for data acquisition and their
transmission to the network. The LoRa class establishing the form of communication must
be configured in each of the devices. The LoRaWAN specification defines three classes of
devices: class A, class B, and class C [27]. Our devices can able to operate as class A or
C. The differences between the classes reside in the time the receive windows are open,
which is two times for class A and constantly open for class C [29]. These receive windows
enable communication from the gateway to the devices. However, the longer the receive
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window is open, the higher the energy consumption of the device. As a result, class A
devices are more energy efficient and are usually powered by a battery [27]. For this reason,
the microcontroller in this proposal has been configured as a class A device.

LoRa provides two authentication methods for devices: Over-The-Air-Activation
(OTAA) and Authentication By Personalisation (ABP). The devices have a unique identifier
known as DevEUI, which is defined by the manufacturer. However, to identify the device
and all the communications coming from this device in a LoRa network, a not necessarily
unique identifier is used. It is known as DevAddr. When the activation process starts,
regardless of whether OTAA or ABP is employed, a DevAddr is assigned to the device. For
ABP, the device has a DevAddr and static session keys stored in its memory. Therefore,
even a network activation process is not necessary. In the case of OTAA, the device must
initiate a login process to the network, and the DevAddr and the keys change as a new
session is established [30]. For this proposal, both authentication methods have been used.
However, ABP was prioritized. This is because OTAA must have a high-quality connection
to ensure that the data packets coming from the gateway, which are necessary to activate
the device, are received. This could be a problem for devices located in areas with limited
radio coverage.

MQTT Server Configuration

An MQTT server is a lightweight protocol in which messages have a topic. The body of
the message receives the data from the Chirpstack server. The data is then forwarded through
a device to a broker that redirects them to the subscribers of the topic of the message. The
subscribers can only receive messages with the topic they are subscribed to [31].

Figure 3 illustrates an example of an MQTT operation, where the particulate matter
measuring device publishes a message with the topic “particles” and the broker re-sends it
to the two servers subscribed to that topic. In our proposal, the Chirpstack server relays
the data received through LoRa to a broker located within the server itself.

Figure 3. Diagram of the particulate matter device operation.

A series of scripts related to the subscribed topics of interest has been developed in
Python. These topics include: (i) link quality data encompassed within a topic bridging
information, like RSSI (Received Signal Strength Indicator) or SNR (signal-to-noise ratio),
and (ii) environmental pollution data received from the sensors, which is included in the
topics of each application configured in the Chirpstack server. When data reaches the
MQTT server, these scripts decode, analyze, and store them in different InfluxDB databases.
Redundant databases facilitate that the data be stored certainly in our system.
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3.2. OPC Standard

To develop an operational industrial infrastructure to monitor air quality, the devices
must consider the conditions of industrial environments both in hardware and software
design. Specifically, regarding the software, the system has been integrated into the open-
source OPC communication standard, which is widely used to monitor industrial processes
among pieces of equipment from different manufacturers.

In the case of OPC DA, the client accesses data from the server locally or through an
Ethernet connection. Moreover, the server can simultaneously read and write commands
from the client. This allows for three methods of accessing the data from the OPC server: in
synchronous mode, asynchronous mode, or subscription mode [32].

The OPC UA [33] is a more modern version that integrates all the functionalities
of the OPC specifications into one working environment. Apart from adding the classic
operations, it includes other functionalities, such as finding available OPC servers on the
network, managing important notifications according to the client’s requirements, and
hierarchically representing the data, among other things. It is independent of the platform;
thus, it can be run on any device with any operating system. It includes important security
improvements such as identifying both clients and servers through X509 certificates and
requesting client authentication to gain access to particular applications. It also allows new
functionalities to be added without disrupting the existing applications, which ensures
smooth operating with newly developed systems.

The Linux server used in this proposal is hosted in an OPC UA server developed
in Python. Clients can access this server to receive their data. If sending the data to an
OPC DA server is required, a proxy is developed in a Windows machine to obtain the data
from the OPC UA server and forward them to the OPC DA server. Windows was used
because this operating system is the only one that permits the use of DCOM, which is a
Microsoft-developed technology needed for OPC DA communications. To develop the
proxy, the OpenOPC library from Python was used.

3.3. Sending Alerts

Alerts are sent in two ways. The first one sends alerts from the Grafana server. These
types of alerts inform the client of high pollution levels, low battery levels, connection loss
with the devices, or malfunctions. One of the advantages of using Grafana to send alerts is the
convenience of attaching the panels where the data time series are represented. This allows
the client to visualize the evolution of the pollution levels leading to the alert in their email.
Grafana also permits alert transmission through the instant messaging application Telegram.

Prometheus software has been used to monitor the servers and the offered services.
It is an open tool for monitoring and sending alerts about the state of the devices and
services. Alertmanager is one of the integrated services available in Prometheus. It provides
a web interface where the metrics and the state of the devices are represented called Node
Exporter, which monitors the server where the Prometheus software is installed. One of
the Prometheus tools used in the system presented in this paper is the Blackbox Exporter.
This tool monitors the devices using protocols such as HTTP, TCP, or ICMP. It can provide
multiple metrics such as the general state of the device, response time, and redirection
information [34]. Prometheus has numerous advantages. One of them is the possibility
of performing powerful queries to obtain the stored time series data and use them to
generate graphs, tables, or alerts. It also offers varied visualization options, including its
own web interface and the integration of the data in Grafana panels. Alerts can be sent
as well and it can also be integrated with third-party applications [35]. In the case of the
Prometheus Alertmanager extension, which is used to send alerts to network administrators,
the possibility of dispatching emails to inform about system crashes is available.

4. Design of the Monitoring Devices

In this section, the designs of the suspended particulate matter measuring device,
polluting gas measuring device, structure that protects the devices, and powering system
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are presented in detail. Note that the company manufacturing these devices is denoted as
Qartia Smart Technologies [36].

4.1. Suspended Particulate Matter Measuring Device

The development of the device to measure particulate matter in suspension began with
the integration of its different components. Inside the device, which can be seen in Figure 4,
there is a suspended particulate matter measuring sensor that can measure particles in the
range of 0.3 µm to 40 µm. It can be configured to measure any size particles within that
range. In this case, the device has been configured to measure PM10, PM2.5, and PM1.0
particles. In addition, the device has a temperature and humidity sensor, a GPS receiver,
and a microcontroller. The microcontroller reads the data from the sensors, processes them,
and sends them to the LoRaWAN network. It has been programmed using the MicroPython
programming language, which is an efficient and simple implementation of the Python 3
language with a subset of Python libraries, optimized for use in microcontrollers [37].

Figure 4. Polluting particle metering device.

Programming in MicroPython is very simple since the code is loaded into the internal
memory with a program designed for a specific type of microcontroller. Communication
with the microcontroller is usually set by emulating a serial interface [38], and the program-
ming is carried out through a terminal application on a computer. We have configured the
device to send data every five minutes, which is a reasonable value for industrial processes.
These data are the average particle concentrations registered since the previous data were
sent, as well as the temperature, humidity, and GPS positioning. To communicate with
the different sensors connected to the microcontroller, MicroPython has a library capable of
handling different communication interfaces [37], such as SPI, used in communication with
the particle sensor, and UART, for communication with the GPS or I2C receiver needed to
read data from the temperature and humidity sensors.

Inside the device, there is a charge controller that manages the recharging process of
an internal high-capacity lithium battery. It has approximately two-days’ autonomy in
case it is disconnected from the power grid or the auxiliary battery. When an occasional
measurement in a concrete area is needed, our solution can be portable. The device can
be moved to the location required. Furthermore, a casing has been designed keeping in
mind that the device must withstand adverse weather conditions. It includes air input and
output on both sides for the particle sensor. A nozzle faces downwards to ensure that the
device is protected and the particle concentrations are correctly monitored.

The flow diagram of the software developed for this device is represented in Figure 5.
After pressing the ON button, placed on one side next to the charge connector, the device
begins the boot up sequence of the integrated particle sensor. Then, the request for the
histogram is initiated and an average of the particle concentration data from the previous 5
min is obtained. Then, the device collects the temperature and humidity data and calculates
the percentage of remaining battery. Next, the device finds the GPS location, which is only
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acquired in open spaces. All this information is sent to the LoRaWAN network. After that,
the histogram request sequence starts again to continue running the software in a loop.

Figure 5. Flow diagram of the operation of the particulate matter measuring device.

4.2. Polluting Gas Measuring Device

The development of this device also began with the integration of its different compo-
nents. It (see Figure 6) was designed to measure four different types of polluting gases. In
this case, the device can detect concentrations of four of the most dangerous gases found in
the air: SO2, NO2, O3, and CO2. SO2 is released from coal and oil combustion, and it can
lead to respiratory diseases or even death. NO2 is produced from road traffic and other
fossil fuel combustion processes. It contributes to acid rain and can lead to pulmonary
irritation, among other health problems. O3 originates from the chemical reaction between
sunlight and the pollutants from vehicles and industries. It can lead to breathing difficulties,
respiratory infections, or premature death. Lastly, CO2 is released in the combustion of
wood, oil, and natural gas and has been linked to headaches, breathing difficulties, loss of
consciousness, and even death [39].
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Figure 6. Polluting gas measuring device.

The sensors react to gases generating voltage levels on their electrodes. These lev-
els must be measured to calculate the gas concentration in the air. The measurement is
performed by two electrodes: a working electrode and an auxiliary electrode. This com-
pensates for the errors caused by the effects of ambient temperature and humidity. The
aim is to obtain the equivalence between the voltage levels and the accurate concentration
of each of the gases in µg m−3. The calibration of the sensors was twofold. On the one
hand, all the sensors were first calibrated under laboratory conditions. Secondly, a second
calibration of all sensors in working conditions was made (outdoors). To do this, sensor
devices were measuring during several weeks together with an official air quality station
belonging to the administration. The results of both measurement systems were compared,
and the measurements of our devices were adjusted using a linear regression. This second
calibration allowed us to take into account the impact of interfering gases on our sensors
without laboratory conditions.

The device includes analog-to-digital converters to obtain digital values from the
voltage measured at the electrodes of the sensors. Then, the microcontroller integrated
into the device reads these values and sends them through LoRa to the server to carry out
postprocessing actions on the data. Similar to the particulate matter measuring device, the
pollutant gas measuring device integrates a GPS and temperature and humidity sensor
which, in this case, are necessary for postprocessing since the gas sensors are even more
sensitive to temperature and humidity. In addition, this device includes a charge controller
and a battery with enough capacity for three days of continuous use.

The software developed for this device reads the voltage values of the main and
auxiliary electrodes of the gas sensors for 1 minute, carrying out one measurement per
second and calculating the average value. This value is stored to later be forwarded to the
server. After this, the GPS location of the device is attained and, lastly, the device reads
the current temperature and humidity. Once all the necessary data are collected, they are
dispatched to the LoRaWAN network for postprocessing and storage at the server. The
flow chart of the operation of the device is presented in Figure 7.

The device was calibrated by obtaining voltage samples from the two electrodes of each
of the sensors for a long time window (one month) with the device placed near an official
station with highly calibrated gas sensors. Once the necessary samples were obtained, the
data were stored in a csv format. This csv format includes hourly averages of the voltage
data from the four sensors’ working and the auxiliary electrodes, ambient temperature
and humidity data at the time the sample was taken, and the gas concentrations from the
official station. The data from the official station is public and updated every hour with the
average concentration of the previous hour.
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Figure 7. Flow diagram of the pollutant gas measuring device operation.

The device was calibrated using Python and the Linear Regression method, which
is one of the most well-known algorithms in machine learning. Linear Regression uses
an equation to obtain a predicted value from the input data. A coefficient is assigned to
each input value. When this coefficient is zero, the input value does not influence the
result of the prediction [40]. To calculate the coefficients of the Linear Regression algorithm,
data from the official station were used as the expected result. The voltage values from
the electrodes and the ambient temperature and humidity obtained at the time of taking
these samples were used as input values to calibrate each device. As a result, different
adjustment coefficients were generated for each of the gas sensors. These coefficients must
be multiplied by the input data to obtain the gas concentration in µg m−3.

Note that measurements from other sensors were also considered since there is cross
interference among them. Therefore, a sensor positioned to measure the concentration of
a specific gas may react to the presence of other gases, producing undesirable voltage in
its electrodes.

The results of this calibration process were highly satisfactory. Concentration values
very similar (up to around 90%) to those of the official station were obtained. Therefore,
our device is a good option as a small and affordable solution to measure the concentration
of gases and particulate matter in the air of industrial environments.

4.3. Powering and Structure

One of the main objectives of this project is to create a structure that accommodates
both devices, providing them with complete independence from the power grid. For this
reason, the structure includes a solar panel at the top. This facilitates installation since
the structure need only be placed in the desired location and the devices installed inside.
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However, it is necessary to previously verify that there is enough radio coverage for the
devices to establish a connection to the gateway.

Some factors, such as deploying the solar panel inclined and facing south were consid-
ered. Moreover, the structure includes a large battery that can store the energy provided
by the solar panel and provide the necessary weight to keep the structure stable without
anchoring it to the floor, although the latter is recommended for improved safety. Both the
battery and the solar panel controller are placed inside a watertight box in the lower part
of the structure. The cables from the solar panel are connected to the controller through
the lower part of the box. The power cords of the two devices monitoring air quality are
also connected to the controller using USB ports through the lower part of the box. The
controller is connected to the battery.

The solar panel is placed on the top of the structure protecting the suspended partic-
ulate matter measuring device and the polluting gas measuring device. This structure is
encased in a metal grid with a door. The structure and solar panel are shown in Figure 8.

Figure 8. Storage structure for the air quality monitoring sensors in its development stage.

5. Results

This section presents the graphical interface and the alert features of our system, as
well as the machine learning study determining the best prediction-making algorithm based
on the data obtained from the sensors of the different devices discussed in the previous
sections. These predictions permit early detection and report alerts about dangerous levels
of gases or particulate matter.

5.1. Graphical Interface

To visualize the data, Grafana panels were used. These panels show the information
stored in the InfluxDB database sorted into different sections. The panel shown in Figure 9
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shows how the information about particulate matter in the air is organized. It has been
designed to show the average concentration of the previous half hour on the upper left
part of the panel. There are also warning indicators that vary in color as concentrations
increase. For example, the PM10 display is green if it does not surpass the 25 µg m−3

threshold, yellow if the concentration ranges from 25 to 50 µg m−3, and red when it exceeds
50 µg m−3. These values are based on the WHO’s recommendations for annual and daily
measurements, as indicated in Section 1. In the case of PM2.5, the same criteria was applied.
Lastly, for PM1, the same values as PM2.5 were used since the WHO does not provide
any recommendation.

The graph on the upper right part of the panel shows the evolution of particulate
levels. The graph with the daily average of the previous seven days is displayed below.
The central left part shows the location of the device, forwarded by the integrated GPS. To
do this, the WorldMAp extension in Grafana must be installed. The real time temperature
and humidity values and the graphs representing their evolution are located on the lower
part of the panel.

Figure 9. Visualization panel for the particulate matter concentrations in the air.

Figure 10 shows the panel with the concentrations of the four different gases monitored
by the device. The upper part shows the geolocation of the device. The graphs of the
individual concentrations of each gas have been divided into sections. Each section shows
the average concentration of the previous half hour, the evolution of the concentration by
hour, and the average daily concentration. The device also includes a section displaying
the temperature and humidity.
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Figure 10. Visualization panel for concentrations of the four gases in the air.

Regarding the alerts, Figure 11 shows an example of the alert that is forwarded to a
client when the established threshold (50 µg m−3) is surpassed for an hour. This alert is
sent through Grafana, and the evolution of the particulate matter levels over time can be
seen in an email.

Figure 11. Alert for high PM10 particulate matter levels in the air using the service integrated
in Grafana.

Figure 12 shows an alert received by the network administrator notifying about a series of
crashed services. This alert has been forwarded using the Prometheus AlertManager functionality.

The industry may use these alerts to create specific policies and determine the actions
to be performed to reduce pollution emissions. Furthermore, as the location of all the
deployed devices is known, the source of the pollution is identified by the device that
activates the alert.
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Figure 12. Example of an alert forwarded using Prometheus AlertManager.

5.2. Machine Learning Techniques Applied to the Environmental Data

The continuous operation of this system for industrial air quality monitoring has
generated Big Data that can provide useful insights into the future air quality conditions
of the area. In this subsection, various machine learning techniques are applied to the Big
Data obtained from the environmental monitoring devices to determine the most accurate
algorithm. In the following paragraphs, we detail the methodology used to select the best
machine learning technique.

Once the data were collected by the devices, we identified the values considered
outliers (unrepresentative values or errors), which were removed from the population
(in this work, the sampling values coincide with those of the population). The reason is
because, occasionally, sensors can fail in the measurement when capturing particles or the
gases under study. To this end, diverse analytical techniques can be applied depending on
the sample distribution and the percentage of data to be eliminated. In our case, if the data
are treated as separate variables, outliers can be eliminated employing a univariate method.
We propose Tukey’s method [41], in which the distribution of a dataset is observed and
different regions are identified from their statistical information. To do this, we defined the
interquartile range (IQR) as the difference between Q3 (the third quartile or 75th percentile)
and Q1 (the first quartile or 25th percentile). Thus, if we want to eliminate extreme values,
those greater than Q3 + 3 × IQR and those less than Q1 − 3 × IQR must be removed.

The next step was to separate the data into two groups, denoted as training and test,
to derive a good regression model. The cross-validation technique was used, which divides
the sample into k groups of data. One of them was used for testing and the remaining
for training. Once the algorithm was trained and the model obtained, we verified its
performance using new data that had not been used in the training process. We used the
test data for this. If the error of the test data was much larger than the error of the training
data, the model suffered from overfitting that decreased the generality of the test set. In our
case, cross-validation was carried out by dividing the sample size into 10 random groups,
the last one being the test group.

Finally, several machine learning techniques were selected to process the acquired
air quality data and determine which of them made better predictions. Machine learning
is a popular solution applied to Big Data obtained from multiple sources to detect and
estimate of patterns. In this study, a total of five supervised learning algorithms based on
regression were selected, namely Linear Regression, Random Forest Regression, k-nearest
neighbors, Support Vector Machine, and Gaussian Process Regression (GPR). The RMSE
and R2 metrics were obtained for each technique to determine the most accurate among
the tested machine learning techniques.

The statistical details of the datasets gathered by the polluting gas measuring device
are presented in Table 3, and the ones for the suspended particulate matter measuring
device are presented in Table 4. The polluting gas measuring device gathered over 70,280
observations. The machine learning techniques were checked with 70,000 observations.
This number sometimes varied when the outliers were removed. The Gaussian Process
Regression technique was tested with 35,000 observations due to the specific processing
requirements of this algorithm. The particulate matter measuring device gathered 33,119
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observations, which were employed by each of the machine learning techniques under
consideration. Tests were performed for the data series acquired from each device without
removing the outlier values and once the outlier values were removed. Figures referring to
the statistical results presented in Tables 3–5 are available in the Appendix A. Finally, note
that all the devices were placed in the same location as the official station with the goal of
(i) calibrating our devices and (ii) verifying the proper operation of our complete system in
real time.

Table 3. Statistical details of the data for the polluting gas measuring device.

Statistics CO NO2 O3 SO2 Temperature Humidity

Number of
observations 70,288 70,288 70,288 70,285 70,300 70,300

Observations
used as dataset

30,000 (30,000
GPR)

70,000 (35,000
GPR)

70,000 (35,000
GPR)

70,000 (35,000
GPR)

70,000 (35,000
GPR)

70,000 (69,303
without

outliers, 35,000
GPR)

Min value 0.0 0.0 0.0 0.0751 9.35 12.2
Max value 0.481 61.4 130.0 22.4 38.7 94.9
Average 0.178254 17.349788 37.530987 8.697915 21.273490 64.605873
Median 0.177 16.7 37.0 8.34 21.8 65.8
Range 0.481 61.4 130.0 22.3249 29.35 82.7

Variance 0.017707 96.316110 533.894591 18.737172 38.397426 189.958547
Standard
deviation 0.133069 9.814077 23.106159 4.328646 6.196566 13.782545

Q1 0.0487 8.94 20.7 4.94 15.5 56.5
Q2 0.177 16.7 37.0 8.34 21.8 65.8
Q3 0.297 25.2 54.1 12.2 26.4 74.5

Outliers
(Tukey) 0 85 169 0 0 997

Table 4. Statistical details of the data for the particulate matter measuring device.

Statistics PM2.5 PM1 PM10 Temperature Humidity

Number of
observations 33,119 33,119 33,119 33,119 33,119

Observations used
as dataset

33,119 (31,508
without outliers)

33,119 (31,203
without outliers)

33,119 (31,356
without outliers)

33,119 (69,303
without outliers,

33,119 GPR)

33,119 (32,708
without outliers)

Min value 0.17 0.0877 0.208 12.5 7.94
Max value 242.0 30.6 1180.0 40.7 93.9
Average 7.149944 2.259642 21.286887 23.838428 55.414704
Median 5.49 1.59 15.9 24.5 56.6
Range 241.83 30.5123 1179.792 28.2000 85.9600

Variance 36.935864 5.937856 504.650397 34.680362 154.826213
Standard deviation 6.077488 2.436772 22.464425 5.889004 12.442918

Q1 3.2 0.919 9.21 18.1 48.2
Q2 5.49 1.59 15.9 24.5 56.6
Q3 9.19 2.76 26.7 28.6 64.3

Outliers (Tukey) 1611 1916 17.49 0 411
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Table 5. Statistical details of the particulate matter measuring device # 2.

Statistics PM2.5 PM1 PM10 Temperature Humidity

Number of
observations 9015 9015 9015 9015 9015

Observations used
as dataset

9015 (8303 without
outliers)

9015 (8105 without
outliers)

9015 (8454 without
outliers)

9015 (9007 without
outliers)

9015 (8983 without
outliers)

Min value 0.0 0.0 0.0 0.0 0.0
Max value 142.0 76.0 332.0 37.9 94.0
Average 7.178333 2.949178 16.880263 21.480355 53.868830
Median 4.81 1.51 12.6 20.7 54.4
Range 142.0 76.0 332.0 37.9 94.0

Variance 62.614450 21.759026 228.405765 27.381352 154.361420
Standard deviation 7.912929 4.664657 15.113099 5.232719 12.424227

Q1 3.0475 0.97375 7.92 17.0 46.0
Q2 4.81 1.51 12.6 20.7 54.4
Q3 8.24 2.91 20.9 25.2 62.8

Outliers (Tukey) 712 906 561 8 32

5.2.1. Machine Learning Techniques Applied to the Data from the Polluting Gas
Measuring Device

This subsection presents the results of applying the selected machine learning tech-
niques to the data from the polluting gas measuring device.

Table 6 specifies the RMSE and R2 results referring to CO gas for each algorithm. As
can be seen, the tests were performed only once due to the absence of outlier values. The
Gaussian Process Regression algorithm provided the best results, followed by the Random
Forest Regression and the k-nearest neighbors algorithms. For the Gaussian Process Re-
gression algorithm, we used an exponential kernel that adjusted to the dataset better than
Random Forest Regression (where the variance reduction is applied as selection criterion
from the mean squared error metric), k-nearest Neighbors (based on Euclidean distance),
Support Vector Machine (using radial basis function kernel), or Linear Regression algo-
rithms. However, it is important to address the differences in processing times required by
these algorithms since the Gaussian Process Regression algorithm required more processing
and memory resources than the remaining techniques under consideration. Specifically, the
Gaussian Process Regression needed over five hundred times more processing time than
Random Forest Regression or k-nearest Neighbors. The Support Vector Machine algorithm
was the one offering the worst results, except for the humidity data, being the Linear
Regression algorithm the one providing the worst results for all types of data gathered.

The results for the Gaussian Process Regression algorithm as the best machine learning
technique for air quality data were repeated for all the other sensors in the device, as shown
in Table 7 for the NO2 data, Table 8 for the O3 data, Table 9 for the SO2 data, Table 10
for the temperature data, and Table 11 for the humidity data. Also, the graphical results
for the Gaussian Process Regression technique are represented in Figures 13 and 14. The
graphical results for the other machine learning techniques are available in the Appendix A
due to space constraints. The Random Forest Regression technique obtains better results
than k-nearest neighbors for all the data from all the sensors. However, this difference
is minimum if we consider the R2 results. Only the results achieved for the NO2 and O3
sensors presented a greater, but still small, difference in accuracy.
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Table 6. CO results.

ML Technique RMSE R2

Linear Regression 0.0606371383 0.3457382025
Random Forest 0.0027354389 0.9986685398

k-nearest Neighbors 0.0058150782 0.9939829269
Support Vector Machine 0.0658647137 0.2280666840

Gaussian Process Regression 3.360786×10−10 1.0

Table 7. NO2 results.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 5.4769488137 0.6876423557 5.3936471548 0.6927516006
Random Forest 0.5663131998 0.9966604485 0.5646376756 0.9966328340

k-nearest Neighbors 1.2744028099 0.9830882630 1.2713923804 0.9829280247
Support Vector

Machine 8.9792770734 0.1604288238 8.9049484749 0.1624950419

Gaussian Process
Regression 9.334332×10−12 1.0 9.334332×10−12 1.0

Table 8. O3 results.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 17.7787994723 0.4072129179 17.5737743925 0.4076389808
Random Forest 1.8993777128 0.9932342407 1.8971387578 0.9930967346

k-nearest Neighbors 4.0697119444 0.9689385869 4.0633023644 0.9683324358
Support Vector

Machine 22.2863901849 0.0685204441 22.0219104740 0.0698213572

Gaussian Process
Regression 1.794862×10−12 1.0 1.812172×10−12 1.0

Table 9. SO2 results.

ML Technique RMSE R2

Linear Regression 2.4381959621 0.6823210137
Random Forest 0.1537149787 0.9987373481

k-nearest Neighbors 0.3163279069 0.9946528017
Support Vector Machine 3.5221020014 0.3370891440

Gaussian Process Regression 1.780470×10−11 1.0

Table 10. Temperature results.

ML Technique RMSE R2

Linear Regression 3.0491692194 0.7579604526
Random Forest 0.0698949997 0.9998728210

k-nearest Neighbors 0.1536363707 0.9993855149
Support Vector Machine 5.3579532919 0.2526550146

Gaussian Process Regression 3.742109×10−12 1.0
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Table 11. Humidity results.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 13.6195399392 0.0242659737 12.7454834625 0.0212357020
Random Forest 0.3295573320 0.99942869433 0.32521124 0.9993627694

k-nearest Neighbors 0.7228922741 0.9972511329 0.7246940306 0.9968357203
Support Vector

Machine 13.0700416068 0.1014122056 12.1187865560 0.1151212523

Gaussian Process
Regression 1.483299×10−12 1.0 1.461812×10−12 1.0

Figure 13. Gaussian Process Regression graphical results for the polluting gas measuring device of
(a) the CO sensor data, (b) the NO2 data with outliers, (c) the NO2 data without outliers, and (d) the
O3 data with outliers.

5.2.2. Machine Learning Techniques Applied to the Data from the Suspended Particulate
Matter Measuring Device

The results for the suspended particulate matter measuring device are presented in
this subsection.

Similar to the results obtained for the previous device, the Gaussian Process Regression
technique had the best results in terms of accuracy, followed by Random Forest Regression
and k-nearest neighbors. Linear Regression presented the worst results for PM2.5, PM1, and
humidity data. For the rest of the cases, the worst algorithm was Support Vector Machine.
These results are presented in Table 12 for the PM2.5 data, Table 13 for the PM 1 data,
Table 14 for the PM 10 data, Table 15 for the temperature data, and Table 16 for the
Humidity data. Figures 15 and 16 show the graphical results of the Gaussian Process
Regression algorithm for the data captured by the sensor in this device. The rest of the
graphical results are available in the Appendix A.
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It is important to note that the differences between the results for the Random Forest
Regression and k-nearest neighbors are greater than in the previous case. Thus, Random
Forest Regression is the best algorithm if there are strict processing time requirements.

Figure 14. Gaussian Process Regression graphical results for the polluting gas measuring device of
(a) the O3 data without outliers, (b) the SO2 data, (c) the temperature data, (d) the humidity data with
outliers, and (e) the humidity data without outliers.
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Table 12. PM2.5 results for the suspended particulate matter measuring device.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 5.6339723184 0.1406358736 3.6301232426 0.1995078571
Random Forest 1.0374533951 0.9708603054 0.5031288140 0.9846229611

k-nearest Neighbors 2.2764688104 0.8596956256 1.0622312628 0.9314586755
Support Vector

Machine 5.7086327664 0.1177086638 3.4673092396 0.2697030477

Gaussian Process
Regression 1.065542×10−11 1.0 1.342590×10−11 1.0

Table 13. PM1 results for the suspended particulate matter measuring device.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 2.3789249781 0.0469026363 1.0393676099 0.2139804370
Random Forest 0.1702871285 0.99511640748 0.0980717224 0.9930018604

k-nearest Neighbors 0.3686441913 0.9771129106 0.2101723417 0.9678599814
Support Vector

Machine 2.08949638433 0.2647093837 0.59679607853 0.7408525621

Gaussian Process
Regression 3.009160×10−11 1.0 4.645474×10−11 1.0

Table 14. PM10 results for the suspended particulate matter measuring device.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 21.6415626560 0.07191445240 10.8970611274 0.12145507861
Random Forest 5.6658624623 0.93638744595 2.04753945533 0.96898228817

k-nearest Neighbors 12.177188817 0.70616409871 4.4184046941 0.85556375755
Support Vector

Machine 22.5837680622 0.010656531 11.2120912053 0.06992399072

Gaussian Process
Regression 3.232586×10−12 1.0 4.685818×10−12 1.0

Table 15. Temperature results for the suspended particulate matter measuring device.

ML Technique RMSE R2

Linear Regression 3.2755739004 0.69075451886
Random Forest 0.15767071532 0.99928347618

k-nearest Neighbors 0.35182904520 0.99643227035
Support Vector Machine 5.08413090899 0.25499016306

Gaussian Process Regression 4.0773021×10−12 1.0
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Table 16. Humidity results for the suspended particulate matter measuring device.

With Outliers Without Outliers

ML Technique RMSE R2 RMSE R2

Linear Regression 11.9691770543 0.075222614053 11.38285383117 0.0706829763
Random Forest 0.55854782387 0.99798613967 0.55092812436 0.99782303493

k-nearest Neighbors 1.23655479781 0.99012958638 1.2362885504 0.98903771045
Support Vector

Machine 11.72825025083 0.11207748857 11.0564348600 0.1232176516

Gaussian Process
Regression 1.764964×10−12 1.0 1.758820×10−12 1.0

Figure 15. Gaussian Process Regression graphical results for the suspended particulate matter
measuring device of (a) the PM2.5 sensor data with outliers, (b) the PM2.5 data without outliers, (c)
the PM1 data with outliers, and (d) the PM1 data without outliers.
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Figure 16. Gaussian Process Regression graphical results for the suspended particulate matter
measuring device of (a) the PM10 data with outliers, (b) the PM10 data without outliers, (c) the
temperature data, (d) the humidity data with outliers, and (e) the humidity data without outliers.

6. Conclusions and Future Work

A complete air quality monitoring infrastructure for deployment in industries has
been presented. Specifically, the proposed system would benefit industries working with
soils, stones, grains, or other materials that can produce particulate matter as well as
industries susceptible to generate high levels of NO2, O3, SO2, and CO. However, this
system can also be extended to other areas of application (smart cities, precision agriculture,
smart grids, etc.). Increasingly popular IoT communications technologies, such as LoRa,
have been used. Two robust and precise devices have been designed and developed that
are able to measure: (i) particulate matter from PM0.3 to PM40 and, (ii) four different
gases, SO2, NO2, O3 and CO, which are the main polluting gases in the air according
to the WHO. The programming language Python was used to program the controllers
of the server, the OPCUA server, and the OPCUA-DA proxy. MicroPython was used to
program the microcontrollers of the IoT devices. InfluxDB was the database chosen to store
all the received data, and Grafana panels were selected to visualize the time series data.
An alert system was developed as well. Being aware of environmental pollution levels
and when they exceed established limits in real time is vital to proceed with correction
interventions, such as halting production processes for a period of time. These alerts can be
forwarded through conventional email and by means of instant messaging applications.
The development of the infrastructure includes the design of an anti-vandalism casing
for both devices, as well as a solar panel able to generate enough power for both devices
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and charge an auxiliary battery for continuous operation. This facilitates deployment as it
provides more flexibility when choosing the location of the facilities.

An intensive study based on machine learning techniques has been carried out to deter-
mine the best algorithm to predict trends in future datasets (acquired by the gas/particulate
matter devices). These predictions endow our solution with intelligence and activate early
alerts, with special emphasis on those that exceed WHO recommended levels.

For future work, we plan to upload the firmware of the devices through OTAA,
employing the LoRa communications infrastructure. Creating a mobile app that integrates
the Grafana panels, receives alerts, and shows the state of the network with an interface
that allows limited modifications to the firmware of the devices, smart dynamic calibration,
and predictive maintenance are contemplated as well.
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Appendix A

The data presented in the appendix are the graphical results from the statistical
analysis of the data and the Machine-Learning results for each technique applied to the
data gathered by all the sensors that comprise the the polluting particle metering devices
and the polluting gas measuring device.
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Appendix A.1. Graphics of the Statistical Data

Figure A1. Statistics for (a) CO (b) NO2 (c) O3 (d) SO2 (e) Temperature and (f) Humidity for the
polluting gas measuring device.
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Figure A2. Statistics for (a) PM2.5 (b) PM1 (c) PM10 (d) Temperature and (e) Humidity for particulate
matter measuring device # 1.
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Figure A3. Statistics for (a) PM2.5 (b) PM1 (c) PM10 (d) Temperature and (e) Humidity for particulate
matter measuring device # 2.
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Appendix A.2. Graphics of the Results for the Machine Learning Techniques Applied to the Data
Obtained from the Air Quality Monitoring Devices

Figure A4. CO results for (a) Linear Regression (b) Random Forest Regression (c) KNN and (d) Sup-
port Vector Machine.

Figure A5. Cont.
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Figure A5. NO2 results with outliers for (a) Linear Regression (b) Random Forest Regression (c) KNN
and (d) Support Vector Machine, and without outliers for (e) Linear Regression (f) Random Forest
Regression (g) KNN and (h) Support Vector Machine.
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Figure A6. O3 results with outliers for (a) Linear Regression (b) Random Forest Regression (c) KNN
and (d) Support Vector Machine, and without outliers for (e) Linear Regression (f) Random Forest
Regression (g) KNN and (h) Support Vector Machine.
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Figure A7. SO2 results for (a) Linear Regression (b) Random Forest Regression (c) KNN and (d) Sup-
port Vector Machine.

Figure A8. Temperature results for (a) Linear Regression (b) Random Forest Regression (c) KNN and
(d) Support Vector Machine.
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Figure A9. Humidity results with outliers for (a) Linear Regression (b) Random Forest Regression (c)
KNN and (d) Support Vector Machine, and without outliers for (e) Linear Regression (f) Random
Forest Regression (g) KNN and (h) Support Vector Machine.
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Figure A10. PM2.5 results of the articulate matter measuring device # 1 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.
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Figure A11. PM1 results of the articulate matter measuring device # 1 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.
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Figure A12. PM10 results of the articulate matter measuring device # 1 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.
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Figure A13. Temperature results for the articulate matter measuring device # 1 for (a) Linear Regres-
sion (b) Random Forest Regression (c) KNN and (d) Support Vector Machine.

Figure A14. Cont.
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Figure A14. Humidity results of the articulate matter measuring device # 1 with outliers for (a)
Linear Regression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and
without outliers for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support
Vector Machine.

Figure A15. Cont.
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Figure A15. PM2.5 results of the articulate matter measuring device # 2 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.

Figure A16. Cont.
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Figure A16. PM1 results of the articulate matter measuring device # 2 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.

Figure A17. Cont.
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Figure A17. PM10 results of the articulate matter measuring device # 2 with outliers for (a) Linear Re-
gression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without outliers
for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.

Figure A18. Cont.
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Figure A18. Temperature results of the articulate matter measuring device # 2 with outliers for
(a) Linear Regression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and
without outliers for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support
Vector Machine.

Figure A19. Cont.
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Figure A19. Humidity results of the articulate matter measuring device # 2 with outliers for (a) Linear
Regression (b) Random Forest Regression (c) KNN and (d) Support Vector Machine, and without out-
liers for (e) Linear Regression (f) Random Forest Regression (g) KNN and (h) Support Vector Machine.
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