
����������
�������

Citation: Zbrzezny, A.M.; Zbrzezny,

A. Bounded Model Checking for

Metric Temporal Logic properties of

Timed Automata with Digital Clocks.

Sensors 2022, 22, 9552. https://

doi.org/10.3390/s22239552

Academic Editor: Christian Haubelt

Received: 3 November 2022

Accepted: 2 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Bounded Model Checking for Metric Temporal Logic Properties
of Timed Automata with Digital Clocks †

Agnieszka M. Zbrzezny 1 and Andrzej Zbrzezny 2,*

1 Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Sloneczna 54,
10-710 Olsztyn, Poland

2 Department of Mathematics and Computer Science, Jan Dlugosz University in Czestochowa,
Armii Krajowej 13/15, 42-200 Czestochowa, Poland

* Correspondence: a.zbrzezny@ujd.edu.pl
† This paper is an extended version of our paper published in Zbrzezny, A.M. and Zbrzezny, A. Simple

Bounded MTL Model Checking for Discrete Timed Automata (Extended abstract). In Proceedings of the 23th
International Workshop on Concurrency, Specification and Programming (CS&P 2016), Rostock, Germany,
28–30 September 2016; Volume 1698, CEUR Workshop Proceedings, pp. 37–48.

Abstract: Metric temporal logic (MTL) is a popular real-time extension of linear temporal logic (LTL).
This paper presents a new simple SAT-based bounded model-checking (SAT-BMC) method for MTL
interpreted over discrete infinite timed models generated by discrete timed automata with digital
clocks. We show a new translation of the existential part of MTL to the existential part of linear
temporal logic with a new set of atomic propositions and present the details of the new translation.
We compare the new method’s advantages to the old method based on a translation of the hard reset
LTL (HLTL). Our method does not need new clocks or new transitions. It uses only one path and
requires a smaller number of propositional variables and clauses than the HLTL-based method. We
also implemented the new method, and as a case study, we applied the technique to analyze several
systems. We support the theoretical description with the experimental results demonstrating the
method’s efficiency.

Keywords: bounded model checking; timed automata; digital clocks; metric temporal logic; satisfia-
bility problem

1. Introduction

This paper is a full version of the extended abstract published in informal proceedings
of the 25th International Workshop on Concurrency, Specification and Programming [1].
Improvements and extensions compared to that paper are listed in Appendix A.

There are many ways to check the model. Hardware- and software-based systems
are increasingly used in safety-critical situations to control and connect physical systems,
e.g., simple cardiac pacemakers or very complex space rockets. The complexity and
criticality of systems also increase the need for effective verification techniques.

The specification language and the system model usually depend on the type of prop-
erty we want to verify. Suppose we want to verify the discrete-time execution properties of
a system. In that case, discrete-time logic may be the correct specification choice, and the
system may best be represented as a discrete timed automaton.

Integrating specialized components is fundamental to many embedded engineering
projects. The behavior of these components is often specified in informal timing diagrams
that engineers interpret during interface hardware and software design [2–7]. The timed
automata are one of the models that enable the formal modeling of those components.

Timed automata (TA) [8] are finite-state automata augmented with a finite set of vari-
ables called clocks. The clocks are used to measure the elapsed time. Timed automata are

Sensors 2022, 22, 9552. https://doi.org/10.3390/s22239552 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239552
https://doi.org/10.3390/s22239552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9897-3561
https://orcid.org/0000-0003-2771-9683
https://doi.org/10.3390/s22239552
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239552?type=check_update&version=3

Sensors 2022, 22, 9552 2 of 26

very convenient for modeling and reasoning about timed systems: they combine a pow-
erful formalism with advanced expressiveness and efficient algorithmic and tool support.
The timed automata formalism is applied to the analysis of software and asynchronous
circuits [9] and real-time control programs [10].

The model-checking technique is widely used in sensor verification [2–7]. The sensor
networks are modeled, e.g., by the network of timed automata, and their properties are
specified in terms of temporal logic.

One of the most famous frameworks in the specification and verification of computer
systems is temporal logic. There are many types of temporal logic to express the require-
ments of the systems: computation tree logic (CTL) [11], soft real-time CTL (RTCTL) [12],
linear temporal logic (LTL) [13], and metric temporal logic (MTL) [14].

Linear temporal logic (LTL) allows expressing properties about each execution of a
system, such as the fact that any occurrence of a problem eventually triggers the alarm.
Metric temporal logic (MTL) extends LTL by constraining the temporal operators with time
intervals. It was introduced by Koymans [14] in 1990 and has appeared as a real-time speci-
fication formalism. MTL has two main semantics: ”continuous” and ”pointwise” [15–18].
The pointwise semantics is based on timed words, the widespread interpretation for sys-
tems modeled as timed automata [8]. Both semantics have been extensively studied [15–18].
MTL allows expressing, for example, that any occurrence of a problem in a system will
trigger the alarm within at most five units of time. Here, we consider MTL with pointwise
semantics interpreted over linear discrete infinite digital-clock models [19] generated by
timed automata with integer time.

Bounded model checking [20–22] (BMC) is one of the symbolic model-checking tech-
niques designed for finding witnesses for existential properties or counterexamples for
universal properties. Its main idea is to consider a model reduced to a specific depth.
The method works by mapping a BMC problem to the satisfiability problem (SAT). The
MTL satisfiability and model-checking problems are undecidable over interval-based
semantics [23]. It has led to various restrictions being considered on MTL to recover
decidability [24,25].

We provide a new, efficient method of the bounded model-checking technique for
metric temporal logic properties of timed automata with digital clocks, which can be
successfully used to verify sensor networks.

Developing new model-checking techniques for a network of automata is an essential
research direction. It is due to the fact that timed automata are used to verify the modes
of, often, life-critical time systems. Systems and their properties are becoming more and
more complex. It results in developing model-checking methods that will work faster than
the older methods. To be successfully applied, these methods should be faster than the old
ones and use as little memory as possible. However, they should also be easy to implement
and understand so that everything is evident at the design stage of such a method. For
such a reason, in this paper, we developed a completely new and much faster method of
bounded model checking than the one presented in [26].

The main contributions of the paper are as follows:

• Defining the translation of the existential model-checking problem for MTL to the exis-
tential model-checking problem for linear temporal logic with additional propositional
variables qI (this logic is denoted by LTLq);

• Clarification of the steps of the new method;
• Proving the correctness of the above translation;
• Defining bounded semantics for LTLq;
• Defining the BMC algorithm;
• Implementing the new method;
• A detailed experimental evaluation of the old and the new methods on two earlier

presented benchmarks: a timed generic pipeline paradigm (TGPP) and a timed train
controller system (TTCS),

Sensors 2022, 22, 9552 3 of 26

• Modeling a dining philosophers problem with time as the timed dining philosophers
problem (TDPP);

• A detailed experimental evaluation of the old and the new methods on TDPP.

In this paper, we used the weakly monotonic semantics [27] for timed automata with
digital clocks [19,27]. The main steps of our new method for MTL and TA with discrete
time can be described as follows: first, the infinite timed model is reduced to a finite model.
Next, the MTL formulae are translated to LTLq formulae [1], and eventually, since the
interval modalities in MTL appear as literals in the LTLq formula, existential properties
are reduced to a satisfiability problem (SAT). Our method’s main advantages are that the
translation from MTL to LTLq requires neither new clocks nor new transitions. Moreover,
our BMC method needs only one path, whereas the BMC method from [26] needs many
paths depending on a given formula ϕ. Thus, one may expect that our method is much
more effective since the intuition is that an encoding that results in fewer variables and
clauses is usually easier to solve.

We evaluate the BMC method using a timed generic pipeline paradigm (TGPP), a timed
train controller system (TTCS), and the timed dining philosophers problem (TDPP), which
we model by a network of discrete timed automata and compare with the corresponding
method [26].

Related Work

Timed automata were introduced in the early 1990s by Alur and Dill [8] to model
real-time systems. Timed automata cause the specification and verification of models of
real-time systems to be easier. The two primary semantics are discussed in the literature:
the discrete-time and dense-time semantics [8]. However, the dense-time semantics is more
natural from a real-life point of view. It allows us to model real-time systems easily.

Our choice of time domain isN, the set of natural numbers. In our method, the key
property of the time domain is its discreteness, which implies that a finite amount of events
can happen at different times in any interval of nonzero length. There are many methods
for verifying real-time systems using discrete-time models [12,28–31]. Authors of [19]
established that the timed reachability problem has the same answer, irrespective of the
choice betweenN and IR under certain restrictions.

The other formalisms for discrete time modeling apart from discrete timed automata
were presented, such as durational transition graphs (DTG [32]) and embedded system
modeling language (EMLAN [33]).

Discrete time models were also widely used for modeling systems’ behaviors [34–38].
MTL has been widely discussed in the literature. Checking properties expressed in

MTL in timed automata is still an actual research topic [39–44]. In [45], the authors took
into account MTL over the N. They also used the pointwise semantics over the N and
considered two semantic variants: the non-strict and strict semantics. They devised two
translations from MTL to LTL:

1. The time difference translation for strict semantics, where new propositional variables
encode time differences between states (the time difference translation is similar to
the method presented in [1]).

2. The gap translation for the strict semantics uses a new propositional variable, called
gap, to encode the jumps between states. The gap is intended to be true in LTL
states corresponding to unmapped time points in MTL models. The main idea for
their translation is to map each timed state sequence into a state sequence. Both LTL
translations are exponential in the size of the MTL input formula due to the binary
encoding of the numbers in the intervals.

In [26], the authors investigated a SAT-based BMC method for MTL that is also
interpreted over linear discrete infinite time models generated by discrete timed automata.
They translated the existential model-checking problem for MTL into the existential model-
checking problem for a variant of linear temporal logic (called HLTL). They also provided
a SAT-based BMC technique for HLTL. The presented translation requires as many new

Sensors 2022, 22, 9552 4 of 26

clocks as there are intervals in a given formula. It also requires adding exponential resetting
transitions and many paths that depend on a given MTL formula. The complexity of the
satisfiability and model-checking problems for fragments of MTL concerning different
semantic models were studied in [46] and in [15]. MTL expressiveness was extensively
discussed in [17,47,48]. The BMC problem for MTL properties of timed automata with the
dense time was discussed in [49]. However, experimental results have shown that this is
not feasible.

Additionally, other types of logic were used for the specification of discrete-time
systems, such as QsCTL [29], which extends CTL [11] with quantitative bounded temporal
operators and is a variant of RTCTL [11], discrete-time CTL [33], and HyperLTL [50], which
is a temporal logic for hyper-properties, which allows reasoning about multiple execution
paths simultaneously.

2. Discrete Timed Automata and MTL

In this paper, we used the weakly monotonic semantics [27] for timed automata with
digital clocks [19,27]. The paper [19] shows that bounded invariance MTL properties and
bounded-response MTL properties are digitizable. That is why we consider timed automata
with digital clocks.

The formalism of timed automata was defined in [8] by Alur and Dill for represent-
ing systems with real-time constraints. A timed automaton is a finite automaton which
manipulates finitely many variables called clocks.

2.1. Discrete Timed Automata

Let N = {0, 1, 2, . . .} be the set of natural numbers, and N+ = N \ {0}. We assume
a finite set X = {x0, . . . , xn−1} of variables, called clocks. Each clock is a variable ranging
over N. A clock valuation is a total function v : X → N that assigns to each clock x a non-
negative integer value v(x). The set of all the clock valuations is denoted byNX . For X ⊆ X ,
the valuation v′ = v[X := 0] is defined as ∀x∈X, v′(x) = 0 and ∀x∈X \ X, v′(x) = v(x).
By δ, we denote a delay of δ > 0 time units. For δ ∈ N+, v + δ denotes the valuation v′′

such that ∀x ∈ X , v′′(x) = v(x) + δ; let x ∈ X , c ∈ N, and ∼ ∈ {<,6,=,>,>}. The set
C(X) of clock constraints over the set of clocks X is defined by the abstract grammar:

cc := x ∼ c | cc∧ cc.

Let v be a clock valuation, and cc ∈ C(X). A clock valuation v satisfies a clock constraint cc,
written as v |= cc if cc evaluates to true using the clock values given by the valuation v.

Definition 1. A discrete timed automaton (DTA for short) is a tuple

A = (Act, Loc, `0,X , T, Inv,AP , V), where

• Act is a finite set of actions,
• Loc is a finite set of locations,
• `0 ∈ Loc is the initial location,
• X is a finite set of clocks,
• T ⊆ Loc× Act× C(X)× 2X × Loc is a transition relation,
• Inv : Loc→ C(X) is a state invariant function,
• AP is a set of atomic propositions, and
• V : Loc→ 2AP is a valuation function assigning to each location a set of atomic propositions

true in this location.

Each t ∈ T, denoted by `
σ,cc,X−→ `′, represents a transition from ` to `′ on the action σ. X ⊆ X

is the set of the clocks to be reset upon this transition, and cc ∈ C(X) is the enabling condition for t.

2.2. Product of a Network of Discrete Timed Automata

A network of discrete timed automata can be composed into a global (product) discrete
timed automaton [51] in the following way. The transitions of the discrete timed automata

Sensors 2022, 22, 9552 5 of 26

that do not correspond to a shared action are interleaved, whereas the transitions labeled
with a shared action, are synchronized.

Let n ∈ N, I = {1, . . . , n} be a non-empty and finite set of indices, {Ai | i ∈ I} be
a family of discrete timed automata Ai = (Acti, Loci, `0

i ,Xi, Ti, Invi,AP i, Vi) such that
Xi ∩ Xj = ∅ and AP i ∩AP j = ∅ for i 6= j. Moreover, let I(σ) = {i ∈ I | σ ∈ Acti}. The
parallel compositioni of the family {Ai | i ∈ I} of discrete timed automata is the discrete
timed automaton A = (Act, Loc, `0,X , T, Inv,AP , V) such that:

• Act = ∏i∈I(Acti),
• Loc = ∏i∈I Loci,
• `0 = (`0

1, . . . , `0
n),

• X =
⋃

i∈I Xi,
• Inv(l1, . . . , ln) =

∧n
i=1 Invi(li),

• AP =
⋃

i∈I AP i,
• V(`1, . . . , `n) =

⋃n
i=1 Vi(`i)

and a transition is defined as follows:

((`1, . . . , `n), (σ1, . . . , σn),
∧

i∈I cci,
⋃

i∈I Xi, (`′1, . . . , `′m)) ∈ T
iff (∀i ∈ I))(`i, σi, cci, Xi, `′i) ∈ Ti) and (∀i ∈ I \ I(σ))`′i = `i.

2.3. Concrete Model

The semantics of the DTA is defined by associating with it a transition system, which
we call a concrete model.

Definition 2. Let A = (Act, Loc, `0,X , T, Inv,AP , V) be a DTA, and v0 a clock valuation such
that ∀x∈X , v0(x) = 0.

The concrete model for A is a tuple

MA = (Q, q0,−→,V), where

• Q = Loc×NX is the set of the concrete states.
• q0 = (`0, v0) is the initial state.
• A valuation function V : Q → 2AP is defined as V((`, v)) = V(`) for each state (`, v) ∈

Q −→⊆ Q × (Act ∪N+) × Q is a transition relation on Q defined by action and time
transitions as follows.

• For a ∈ Act and δ ∈ N+:

1. Action transition: (`, v) a−→ (`′, v′) if there is a transition `
a,cc,X−→ `′ ∈ T such that

v |= cc∧ Inv(`) and v′ = v[X := 0] and v′ |= Inv(`′),

2. Time transition: (`, v) δ−→ (`, v + δ) iff v |= Inv(`) and (∀0 < δ′ ≤ δ)
v + δ |= Inv(`).

Let us observe that for the considered set of clock constraints C(X), the condition

of the time transition (l, v) δ−→ (l, v + δ) can be replaced by a simpler one. Namely,
v |= Inv(`) and v + δ |= Inv(`).

A path ρ in A is an infinite sequence of concrete states q0, q1, q2, . . . such that for all

j ∈ N, qj
µj−→ qj+1 for some µj ∈ N+ ∪ Act. Such a definition of the path permits two

consecutive actions to be performed one after the other, i.e., no time has to elapse between
two consecutive actions. It means that we are dealing with the point-based weakly monotonic
integer-time semantics.

From now on, for a path ρ = q0, q1, q2, . . ., by ρ(m), we denote the state qm.

2.4. MTL Logic

MTL [14,15] (metric LTL) is the extension of LTL in which temporal operators are
replaced by its time-constrained versions. MTL can express many time constraints. For ex-

Sensors 2022, 22, 9552 6 of 26

ample, we can express a system property: if a system is in the state q, then it will be in the
state q′ exactly 3 time units later.

2.4.1. Syntax

We begin with some preliminary definitions. Let p ∈ AP be an atomic proposition
and I the set of all the intervals in N of the form [a, b) or [a, ∞), where a, b ∈ N and
a < b, and let I ∈ I . Observe that we do not exclude one-element intervals since [a, a]
can be expressed as [a, a + 1). The MTL logic in positive normal form is defined in the
following way:

α := true | false | p | ¬p | α ∧ α | α ∨ α | αUIα | GIα.

The operators UI and GI are called bounded until and bounded always, respectively,
and they are read as “until in the interval I” and “always in the interval I”. The operator FI

is defined in the standard way: FIα
df
= true UI α.

2.4.2. Semantics

There are two possible semantics for metric temporal logic: the “pointwise” semantics
and the “continuous” semantics [15]. In the pointwise approach, temporal assertions are
interpreted only at time points where the action happens in the observed timed behavior of
a system. In the continuous one, it is allowed to assert formulae at arbitrary time points
between actions as well. In the presented method, we use the pointwise semantics.

Let A be a DTA, and MA the concrete model for A. For a path ρ = q0, q1, . . ., let

Γρ(j) = {i ∈ N | i < j and for some δi ∈ N, qi
δi−→ qi+1}, i.e Γρ(j) is a set of indices of time

transitions. Now, we define a function ζρ : N→ N such that, for all j > 0, ζρ(j) = ∑i∈Γρ(j) δi.
For all j > 0, the function ζρ(j) returns the value of the global time (called “duration” in [15]).

Here and in what follows, we use the convention to omit the model from expressions
with |= for the sake of brevity.

Definition 3. Let α and β be MTL formulae. The satisfaction relation |=MTL, which defines truth
of an MTL formula in the concrete model MA along a path ρ starting at position m ∈ N, is
defined inductively:

• (ρ, m)|=MTL true,
• (ρ, m) 6|=MTL false,
• (ρ, m)|=MTL p iff p ∈ V(ρ(m)),
• (ρ, m)|=MTL ¬p iff p 6∈ V(ρ(m)),
• (ρ, m)|=MTL α ∧ β iff (ρ, m)|=MTL α and (ρ, m)|=MTL β,
• (ρ, m)|=MTL α ∨ β iff (ρ, m)|=MTL α or (ρ, m)|=MTL β,
• (ρ, m)|=MTL αUIβ iff (∃j ≥ m)(ζρ(j)− ζρ(m) ∈ I and

(ρ, m + j)|=MTL β and (∀m 6 j′< j)(ρ, m + j′)|=MTL α),
• (ρ, m)|=MTL GIβ iff (∀j ≥ m)(ζρ(j)− ζρ(m) ∈ I implies(ρ, m + j)|=MTL β).

For simplicity of notation, we write ρ instead of (ρ, 0). Therefore, we shall write
MA, ρ|=MTL ϕ forMA, (ρ, 0)|=MTL ϕ. An MTL formula ϕ is existentially valid in the model
MA, which is denoted as MA|=MTLEϕ, if and only if MA, ρ|=MTL ϕ for some path ρ
starting in the initial state ofMA. Determining whether an MTL formula ϕ is existentially
valid in a given model is called the existential model-checking problem.

3. Bounded Model Checking

The verification method presented in this paper is based on the translation of MTL
formula to LTLq formula. We extend a standard LTL logic by adding an extra set of
propositional variables. We compare our new method with the corresponding method
presented in [26].

Sensors 2022, 22, 9552 7 of 26

3.1. The Translation

The set of all the clock valuations is infinite, which means that the model has an
infinite set of states. We need to abstract the proposed model before we can apply the
BMC technique.

3.1.1. Abstract Model

Let A = (Act, Loc, `0, T,X , Inv,AP , V) be a discrete timed automaton
with X = {x0, . . . , xn−1}. For each j ∈ {0, . . . , n − 1}, let cmax

j be the largest constant
appearing in any clock constraint involving clock xj and used in the state invariants and
guards of A. Two clock valuations v and v′ in NX are equivalent, which is denoted by
v ' v′, if and only if for each 0 6 j < n either v(xj) > cmax

j and v′(xj) > cmax
j or v(x) 6 cmax

j
and v′(x) 6 cmax

j and v(x) = v′(x).
It is easy to see that the relation ' is an equivalence relation, which enables us to

construct a finite abstract model.
To this end, we define the set of possible values of clock xj in the abstract model as

IDj = {0, . . . , cmax
j + 1} for 0 6 j < n. Moreover, for two clock valuations v and v′ in

ID0 × . . .× IDn−1, we say that v′ is the time successor of v (denoted succ(v)) as follows: for
each 0 6 j < n,

succ(v)(xj) =

{
v(xj) + 1, if v(xj) 6 cmax

j ,
cmax

j + 1, if v(xj) = cmax
j + 1.

Definition 4. Let A = (Act, Loc, `0,X , T, Inv,AP , V) be a discrete timed automaton. The ab-
stract model for A is a tuple

M̂ = (Ŝ, s0, ↪→, V̂), where

• Ŝ = L× (ID0 × . . .× IDn−1) is the set of abstract states;
• s0 = (`0, {0}n) is the initial state;
• V̂ : Ŝ→ 2AP is a valuation function such that for all p ∈ AP , p ∈ V̂((`, v)) if and only if

p ∈ V(`);
• ↪→⊆ S× Act′ × S, where Act′ = Act ∪ {τ} is a transition relation defined by the time and

action transitions.

– The time transition is defined as (`, v)
τ
↪→ (`, v′) if and only if v |= Inv(`), v′ = succ(v)

and v′ |= Inv(`).
– The action transition is defined as follows: for any a ∈ Act, (`, v)

a
↪→ (`′, v′) if and only

if there exists a transition `
a,cc,X−→ `′ ∈ T such that v |= cc ∧ Inv(`), v′ = v[X := 0]

and v′ |= Inv(`′).

Definition 5. A path in the abstract model M̂ is a sequence π = (s0, s1, . . .) of states such that
for each j ∈ N, either (sj

τ
↪→ sj+1) or (sj

a
↪→ sj+1), for some action a ∈ Act.

For a given path π, π(j) denotes the j-th state sj of the path π, π[..j] = (π(0), . . . , π(j))
denotes the j-th prefix of the path π ending with π(j). Given a path π one can define
a function ζπ : N 7→ N such that, for each j > 0, ζπ(j) is equal to the number of time
transitions on the prefix π[..j].

Definition 6. LetMA be the concrete model for A and M̂ the abstract model for A. We say that
a state q = (l, v) in the concrete modelMA, and a state s = (l′, v′) in the abstract model M̂ are
equivalent, which is denoted by q ∼= s, if and only if l = l′ and v ' v′.

It is well-known [52] that the relation∼= is weak-time-bisimulation equivalent between the
concrete model and the abstract model. The reason is that one can replace one δ-value time

Sensors 2022, 22, 9552 8 of 26

transition in the concrete model by δ individual transitions in the abstract model, whereas δ
individual transitions in the abstract model can be replaced by one δ-value time transition
in the concrete model.

3.1.2. MTL Semantics in the Abstract Model

Definition 7. The satisfiability relation |=d
MTL, which defines the truth of an MTL formula in

the abstract model M̂ along the abstract path π with the starting point m at the depth d > m, is
inductively defined as follows:

• (π, m)|=d
MTLtrue,

• (π, m) 6|=d
MTL false,

• (π, m)|=d
MTL p iff p ∈ V̂(π(d)),

• (π, m)|=d
MTL¬p iff p 6∈ V̂(π(d)),

• (π, m)|=d
MTLα ∧ β iff (π, m)|=d

MTLα and (π, m)|=d
MTLβ,

• (π, m)|=d
MTLα ∨ β iff (π, m)|=d

MTLα or (π, m)|=d
MTLβ,

• (π, m)|=d
MTLαUIβ iff (∃j ≥ d)(ζπ(j)− ζπ(d)∈ I and (π, d)|=j

MTLβ

and (∀d 6 i< j)(π, d)|=i
MTLα),

• (π, m)|=d
MTLGIβ iff (∀j ≥ d)(ζπ(j)− ζπ(d)∈ I implies (π, d) |=j

MTL β).

In the above definition, m does not play itself a part in the satisfaction relation. How-
ever, this notation is helpful for Definition 8.

Theorem 1 (The equivalence of the MTL semantics in the concrete and abstract models).
Let M̂ be the abstract model for the discrete timed automaton A andMA the concrete model for
A. Then, for each MTL formula ϕ, the following equivalence holds: M̂, (π, m)|=d

MTL ϕ ⇐⇒
MA, (ρ, m) |=MTL ϕ.

Proof. The proof of Theorem 1 follows from the definition of the satisfiability relation and
the weak-timed-bisimulation equivalence of the modelsMA and M̂.

3.1.3. LTLq Logic

Let I be the set of all intervals and API = {qI | I ∈ I} a set of the new propositional
variables. An LTLq formula in the negation normal form is defined by the following
grammar:

ψ ::= true | false | p | ¬p | qI | ¬qI | ψ ∧ ψ | ψ ∨ ψ | ψUψ | Gψ,

where p ∈ AP and qI ∈ API .

Definition 8. The satisfaction relation |=d, which defines the truth of an LTLq formula in the
abstract model M̂ along the abstract path π at the position m, at depth d > m is inductively defined
as follows:

• (π, m) |=d true,
• (π, m) 6|=d false,
• (π, m) |=d p iff p ∈ V̂(π(d)),
• (π, m) |=d ¬p iff p /∈ V̂(π(d)),
• (π, m) |=d qI iff ζπ(d)− ζπ(m) ∈ I,
• (π, m) |=d ¬qI iff ζπ(d)− ζπ(m) 6∈ I,
• (π, m) |=d α ∧ β iff (π, m) |=d α and (π, m) |=d β,
• (π, m) |=d α ∨ β iff (π, m) |=d α or (π, m) |=d β,
• (π, m) |=d αUβ iff (∃j > d)

(
(π, d) |=j β and (∀d 6 i < j)(π, d) |=i α)

)
,

• (π, m) |=d Gβ iff (∀j > d)((π, d) |=j β).

Sensors 2022, 22, 9552 9 of 26

An LTLq formula ψ is existentially valid in the abstract model M̂, denoted as M̂ |= Eψ,
if and only if M̂, (π, 0) |=0 ψ on some path π starting in the initial state of M̂.

3.1.4. The Translation from MTL to LTLq

Two translations from MTL to LTL were described in [45]. However, in the first
translation, the new propositional variables encode time differences between states, and in
the second translation a new propositional variable called gap encodes the jumps between
states. In the translation presented below, we use global time approach [1]. However, in [1]
the strongly monotonic semantics was used.

Definition 9. Let p ∈ AP , and α, β a MTL formulae. The translation from MTL to LTLq is
defined as a function tr : MTL→ LTLq by the following equations:

• tr(true) = true,
• tr(false) = false,
• tr(p) = p,
• tr(¬p) = ¬p,
• tr(α ∧ β) = tr(α) ∧ tr(β),
• tr(α ∨ β) = tr(α) ∨ tr(β),
• tr(αUIβ) = tr(α)U(qI ∧ tr(β)), and
• tr(GIβ) = G(¬qI ∨ tr(β)).

The translation of the FI operator follows from its definition in terms of the UI operator.
Observe that the translation of literals, as well as logical connectives, is straightforward.
The translation of the operator UI ensures that the formula β holds at some point in the
interval I (it is expressed by the requirement qI ∧ tr(β)) and α holds everywhere before β
holds. Similarly, the translation of the GI operator ensures that β holds at every point in
the interval I (it is expressed by the requirement ¬qI ∨ tr(β)).

The translation from EMTL to ELTLq is more straightforward than the one presented
in [48], e.g., TPTL expressiveness is higher than LTLq. In our case, we do not need this
extension of the logic to solve the given problem.

Theorem 2. Let A be a discrete timed automaton, ϕ an MTL formula, and M̂ the abstract model
for A. Then M̂ |=MTL E ϕ if, and only if M̂ |= E tr(ϕ).

4. Proof of the Theorem 2

A proof of the Theorem 2 follows directly from the Lemmas 1 and 2.

Lemma 1. Let A be a discrete timed automaton, ϕ an MTL formula, M̂ an abstract model for
discrete timed automaton A, and π an abstract path in the abstract model M̂. If (π, m) |=d

MTL ϕ,
then (π, m) |=d tr(ϕ).

Proof. We proceed by induction on the length of a given formula.
Assume that (π, m) |=d

MTL ϕ. Consider the following cases:

1. ϕ ∈ AP . Because tr(ϕ) = ϕ, it is obvious that tr(ϕ) ∈ AP . Therefore, (π, m) |=d
MTL ϕ

⇐⇒ ϕ ∈ V̂(π(d)) ⇐⇒ tr(ϕ) ∈ V̂(π(d)) ⇐⇒ (π, m) |=d tr(ϕ).
2. ϕ = ¬p, where p ∈ AP . Thus, tr(ϕ) = ϕ. Therefore, (π, m) |=d

MTL ϕ ⇐⇒ ϕ /∈
V(π(d)) ⇐⇒ (π, m) |=MTL¬p ⇐⇒ (π, m) |=d ϕ ⇐⇒ (π, m) |=d tr(ϕ).

3. ϕ = α∧ β. From the definition of the satisfiability relation (Definition 7) it follows that
(π, m) |=d

MTL α and (π, m) |=d
MTL β. By inductive hypothesis, we obtain (π, m) |=d

tr(α) and (π, m) |=d tr(β). Therefore, (π, m) |=d tr(α) ∧ tr(β), and hence (π, m) |=d

tr(α ∧ β) ⇐⇒ (π, m) |=d tr(ϕ).
4. ϕ = α ∨ β. From the definition of the satisfiability relation (Definition 7) it follows

that (π, m) |=d
MTL α or (π, m) |=d

MTL β. By inductive hypothesis, we obtain that

Sensors 2022, 22, 9552 10 of 26

(π, m) |=d tr(α) or (π, m) |=d tr(β). Therefore, (π, m) |=d tr(α) ∨ tr(β), and hence
(π, m) |=d tr(α ∨ β) ⇐⇒ (π, m) |=d tr(ϕ).

5. ϕ = αUIβ. Assume that (π, m) |=d
MTL ϕ. From the definition of the satisfiability

relation (Definition 7), it follows that ζπ(j) − ζπ(d) ∈ I and ((π, d) |=j
MTL β and

(∀d 6 i < j)(π, d) |=i
MTL α), for some j ≥ d. By inductive hypothesis, we obtain

ζπ(j) − ζπ(d) ∈ I and (π, d) |=j tr(β), for some j ≥ d and (π, d) |=i tr(α), for all
d 6 i< j. Therefore, (π, d) |=j qI ∧ tr(β), for some j ≥ d, and (π, d) |=i tr(α), for all
d 6 i< j. Therefore, we conclude that (π, m) |=d tr(αUIβ).

6. ϕ = GIβ. Assume that (π, m) |=d
MTL ϕ. From the definition of the satisfiability relation

(Definition 7), it follows that (∀j ≥ d)(ζπ(j) − ζπ(d) ∈ I implies (π, d) |=j
MTL β),

which means that ζπ(j) − ζπ(d) /∈ I ∨ (π, d) |=j
MTL β, for all j ≥ d. By inductive

hypothesis, we obtain ζπ(j) − ζπ(d) /∈ I ∨ (π, d) |=j tr(β), for all j ≥ d. Hence,
(π, d) |=j ¬qI ∧ tr(β), for all j ≥ d. From the semantics of LTLq, it follows that
(π, m) |=d G(¬qI ∨ tr(β)). So, we can conclude that (π, m) |=d tr(GIβ).

Lemma 2. Let A be a discrete timed automaton, ϕ an MTL formula, M̂ an abstract model for the
discrete timed automaton A, and π an abstract path in the abstract model M̂. If (π, m) |=d tr(ϕ),
then (π, m) |=d

MTL ϕ.

Proof. We proceed by induction on the length of a given formula.

1. ϕ ∈ AP . Since ϕ = tr(ϕ), it follows that ϕ ∈ AP . Therefore, (π, m) |=d tr(ϕ) ⇐⇒
tr(ϕ) ∈ V̂(π(d)) ⇐⇒ ϕ ∈ V̂(π(d)) ⇐⇒ (π, m)|=d

MTL ϕ.
2. ϕ = ¬p, where p ∈ AP . Then ϕ = tr(ϕ). Therefore, (π, m) |=d tr(ϕ) ⇐⇒ tr(ϕ) /∈

V(π(d)) ⇐⇒ ϕ /∈ V(π(d)) ⇐⇒ (π, m) |=d
MTL¬p ⇐⇒ (π, m) |=d

MTL ϕ.
3. ϕ = α ∧ β. Thus, tr(ϕ) = tr(α ∧ β) = tr(α) ∧ tr(β). From the definition of the

satisfiability relation (Definiton 8) it follows that (π, m) |=d tr(α) and (π, m) |=d

tr(β). By inductive hypothesis, we obtain (π, m)|=d
MTLα and (π, m)|=d

MTLβ. Hence,
(π, m)|=d

MTLα ∧ β and thus (π, m)|=d
MTLα ∧ β ⇐⇒ (π, m)|=d

MTL ϕ.
4. ϕ = α ∨ β. Then tr(ϕ) = tr(α ∨ β) = tr(α) ∨ tr(β). From the definition of the

satisfiability relation (Definition 8) it follows that (π, m) |=d tr(α) or (π, m) |=d

tr(β). By inductive hypothesis, we obtain (π, m)|=d
MTLtr(α) or (π, m)|=d

MTLtr(β).
Hence, (π, m) |=d α ∨ β, and thus (π, m)|=d

MTLα ∨ β ⇐⇒ (π, m)|=d
MTL ϕ.

5. ϕ = αUIβ. Assume that (π, m) |=d
MTL ϕ. From the definition of the translation, it

follows that (π, m) |=d tr(α)U(qI ∧ tr(β)). From the definition of the satisfiability
relation 8, it follows that (π, d) |=j qI ∧ tr(β) and (∀d 6 i < j)(π, d) |=i tr(α),
for some j > d. Therefore, (π, d) |=j ζπ(j)− ζπ(d)∈ I∧ (π, d) |=j tr(β) and (∀d 6
i < j)(π, d) |=i tr(α), for some j > d. From the inductive hypothesis, we obtain
(π, d) |=j

MTL ζπ(j)− ζπ(d)∈ I∧ (π, d) |=MTL
j β and (∀d 6 i < j)(π, d) |=i

MTL α, thus

(π, d) |=j
MTL ζπ(j)− ζπ(d)∈ I∧ β and (∀d 6 i < j)(π, d) |=i

MTL α. Thus, we conclude
that (π, m) |=d

MTLαUIβ.
6. ϕ = GIβ. Assume that (π, m) |=d ϕ. From the definition of the translation, it

follows that (π, m) |=d G(¬qI ∨ tr(β)). From the definition of the satisfiability
relation (∀j > d)((π, d) |=j ¬qI or (π, d) |=j tr(β)), which means ((π, d) |=j ζπ(j)−
ζπ(d) /∈ I or (π, d) |=j tr(β)), for all j > d. By inductive hypothesis, we obtain
(∀j > d)((π, d) |=j

MTL ζπ(j) − ζπ(d) /∈ I or (π, d) |=j β), which is equivalent to

(∀j > d)((π, d) |=j
MTL ζπ(j)− ζπ(d) /∈ I∨ β). Therefore, (π, m) |=MTL

d GIβ.

Sensors 2022, 22, 9552 11 of 26

Proof of Theorem 2. (=⇒) Assume that M̂ |=MTL Eϕ. Therefore, M̂, π |=0
MTL ϕ, for some

abstract path π in M̂ such that π(0) = s0. It means that M̂, (π, 0) |=0
MTL ϕ. From Lemma 1,

it follows that (π, 0) |=0 tr(ϕ). Therefore, (π, m) |=0 tr(ϕ), for m = 0. Thus M̂ |= Etr(ϕ).
(⇐=) Assume that M̂ |= Etr(ϕ). Hence, M̂, π |=0 tr(ϕ), for some abstract path π in
M̂ such that π(0) = s0. It means that (π, 0) |=0 tr(ϕ). From Lemma 2, it follows that
M̂, (π, 0)|=0

MTL ϕ. Therefore, M̂, (π, m)|=0
MTL ϕ, for m = 0. Thus M̂ |=MTL Eϕ.

4.1. Bounded Semantics

To define the bounded semantics, we need to represent infinite paths in the abstract
model using k-paths and loops [20,21].

Definition 10. Let M̂ be an abstract model, k ∈ N and 0 6 l 6 k. A k-path is a pair (π, l), which
is also denoted as πl , where π is a finite sequence of the abstract states π = (s0, . . . , sk) such that
for each 0 6 j < k, either (sj

τ
↪→ sj+1) or (sj

a
↪→ sj+1), for some a ∈ Act. Moreover, every action

transition is preceded by at least one time transition. A k-path πl is a loop, written as a(πl) for
short, if l < k and π(k) = π(l).

If a k-path πl is a loop, it represents the infinite path of the form uvω, where
u = (π(0), . . . , π(l)) and v = (π(l + 1), . . . , π(k)). We denote this unique path by π̃l .
Note that for each j ∈ N, π̃l(l + j) = π̃l(k + j).

Given a path π̃l , one can define a function ζπ̃l
: N 7→ N such that for each j > 0, ζπ̃l

(j)
is equal to the number of time transitions on the prefix π̃l [..j]. Note that for each j > 0,
ζπ̃l

(j) gives the value of the global time in the j-th state.
In the definition of bounded semantics for variables from API , one needs to use only

a finite prefix of the sequence (ζπ̃l
(0), ζπ̃l

(1), . . .). Namely, for a k-path πl that is not a loop,
the prefix of the length k is needed, and for a k-path πl that is a loop, the prefix of the length
k + k− l is needed.

Definition 11 (Bounded semantics). Let M̂ be the abstract model, πl a k-path in M̂, 0 6 m 6 k,
and 0 6 d 6 k. The relation |=d

k is defined inductively as follows:

(πl , m) |=d
k true,

(πl , m) 6|=d
k false,

(πl , m) |=d
k p iff p ∈ V(πl(d)),

(πl , m) |=d
k ¬p iff p /∈ V(πl(d)),

(πl , m) |=d
k qI iff


ζπl (d)− ζπl (m) ∈ I, if ¬a(πl),
ζπl (d)− ζπl (m) ∈ I, if a(πl) and d > m,
ζπ̃l

(d + k− l)− ζπ̃l
(m) ∈ I, if a(πl) and d < m,

(πl , m) |=d
k ¬qI iff (πl , m) 6|=d

k qI,
(πl , m) |=d

k α ∧ β iff (πl , m) |=d
k α and (πl , m) |=d

k β,
(πl , m) |=d

k α ∨ β iff (πl , m) |=d
k α or (πl , m) |=d

k β,
(πl , m) |=d

k αUβ iff (∃d6j6k)
(
(πl , d) |=j

k β and (∀d6i<j)(πl , d) |=i
k α
)

or
(
a(πl) and (∃l<j<d)(πl , d) |=j

k β and
(∀l<i<k) (πl , d) |=j

k α and (∀d6i6k) (πl , d) |=i
k α
)
,

(πl , m) |=d
k Gβ iff a(πl) and (∀j6k)j > min(d, l) implies (πl , d) |=j

k β.

The proof of Lemma 3 below is based on induction on the length of the given formula.
It is analogous to the proof of Lemma 7 from the paper [20].

Lemma 3. Let A be a discrete timed automaton, ϕ an LTLq formula, and M̂ the abstract model
for the automaton A. For each LTLq formula ϕ, each k−path πl in M̂, each 0 ≤ m ≤ k and

Sensors 2022, 22, 9552 12 of 26

each 0 ≤ d ≤ k, if (πl , m) |=d
k ϕ, there exists a path π′ such that π′[..k] = πl and m ≤ d and

(π′, m) |=d ϕ or m > d and (π′, m) |=d+k−l ϕ.

The proof of the Lemma 4 below is based on the well-known fact that if the LTL
formula is true on some infinite path, it is also true on an infinite path of the form uvω,
where u and v are finite sequences of states [20].

Lemma 4. Let A be a discrete timed automaton, ϕ an LTLq formula, M̂ the abstract model for the
automatonA, π a path in the abstract model, and k ≥ 0. For each LTLq formula ϕ, each 0 ≤ m ≤ k
and each 0 ≤ d ≤ k, if (π, m) |=d ϕ, there exists a k−path πl such that (πl , m) |=d

k ϕ.

An LTLq formula ϕ existentially k-holds in the model M̂, written as M̂ |=k E ϕ,
if and only if M̂, (πl , 0) |=0

k ϕ for some k−path πl starting at the initial state.
Theorem 3 shows that for some specific bound, bounded and unbounded semantics

are equivalent. The proof of Theorem 3 follows directly from Lemmas 3 and 4.

Theorem 3. Let M̂ be the abstract model and ϕ an LTLq formula. Then, M̂ |= E ϕ if and only if
there exists a k > 0 such that M̂ |=k E ϕ.

Example 1. Figure 1 shows an automaton modeling a simple light switch. It consists of two
locations, a and b. When the action on is performed, the clock x0 is reset. The automaton can stay in
the location b until the valuation of the clock x0 is less or equal to 6. The transition from location b
to location a (action off) can be performed when the valuation of the clock x0 is greater than 3.

a
true

b
x0 6 6

true, {x0}
on

off

x0 > 3, {}

Figure 1. The simple light switch.

Figure 2 shows an abstract path in the abstract model for the simple light switch. Under the
states, we show the global time at the given position.

(a, 0)
0

ζ
π̃l

= 0

(a, 1)
1

ζ
π̃l

= 1

(b, 0)
2

ζ
π̃l

= 1

(b, 1)
3

ζ
π̃l

= 2

(b, 2)
4

ζ
π̃l

= 3

(b, 3)
5

ζ
π̃l

= 4

(a, 3)
6

ζ
π̃l

= 4

(a, 4)
7

ζ
π̃l

= 5

(b, 0)
8

ζ
π̃l

= 5

q q q

Figure 2. An example of the path.

Example 2. Let us check the satisfiability of formula qI for the case when πl is not a loop. Let
I = [0, 5), k = 2, m = 3 and d = 5.

(π2, 3) |=5
8 qI ⇐⇒ ζπ(5)− ζπ(3) ∈ I ⇐⇒ 2 ∈ I.

Figure 3 shows an example of the k−path, which is a loop. Note that for l = 2 and k = 8,
u = (π(0), π(1), π(2)), and v = (π(3), π(4), π(5), π(6), π(7), π(8)). Under the states, we
show the global time in the given state.

Sensors 2022, 22, 9552 13 of 26

(a, 0)
0

ζ
π̃l

= 0

(a, 1)
1

ζ
π̃l

= 1

(b, 0)
2

ζ
π̃l

= 1

(b, 1)
3

ζ
π̃l

= 2

(b, 1)
9

ζ
π̃l

= 6

(b, 2)
4

ζ
π̃l

= 3

(b, 2)
10

ζ
π̃l

= 7

(b, 3)
5

ζ
π̃l

= 4

(b, 3)
11

ζ
π̃l

= 8

(a, 3)
6

ζ
π̃l

= 4

(a, 3)
12

ζ
π̃l

= 8

(a, 4)
7

ζ
π̃l

= 5

(a, 4)
13

ζ
π̃l

= 9

(b, 0)
8

ζ
π̃l

= 5

l = 2

Figure 3. An example of the k-path, which is a loop.

Example 3. Let us check the satisfiability of formula qI for the case when πl is a loop and d ≥ m.
Let I = [0, 5), k = 8, l = 2, m = 3 and d = 5.

(π2, 3) |=5
8 qI ⇐⇒ ζπ̃l

(5)− ζπ̃l
(3) ∈ I ⇐⇒ 2 ∈ I.

Example 4. Let us check the satisfiability of the formula qI for the case when πl is a loop and
d < m. Let I = [0, 5), k = 8, l = 2, m = 8 and d = 5.

(π2, 8) |=5
8 qI ⇐⇒ ζπ̃l

(5 + 8− 2)− ζπ̃l
(8) ∈ I ⇐⇒ ζπ̃l

(11)− ζπ̃l
(8) ∈ I ⇐⇒ 4 ∈ I.

4.2. Translation to SAT

The last step of our method is the standard one ([26,53]). It consists in encoding the
transition relation of M̂ and the LTLq formula tr(ϕ). The only novelty lies in the encoding
of the finite prefix of the sequence (ζπ̃l

(0), ζπ̃l
(1), . . .).

Let M̂ be the abstract model for the automaton A, tr(ϕ) be the LTLq formula,
and k ≥ 0 a bound. The formula [tr(ϕ)]k encodes a bounded semantics of the LTLq formula
tr(ϕ). It is defined over the same set of the propositional variables as the propositional
formula [M̂tr(ϕ),s0

]k.
The definition of the formula [M̂tr(ϕ),s0

]k assumes that, states and actions in the
abstract model M̂, and passage of time are encoded symbolically. This is possible if
the set of states and the set of actions are finite. Formally, each symbolic abstract state
ŝ ∈ Ŝ is represented by a vector, w = ((w1, v1), . . . , (wr, vr)) of propositional variables,
where the length r depends on the number of states in the abstract model. This vector is
called a symbolic state. Each action a ∈ Act is represented by a vector a = (a1, . . . , at) of
propositional variables, where the length t depends on number of local actions in A. It is
called a symbolic action.

A pair consisting of a sequence of the symbolic transitions and a symbolic num-
ber is called a symbolic k-path. Let π be a pair which represents a symbolic k-path:
((w0, w1, . . . , wk−1, wk), u), where wi is a symbolic state, for 0 ≤ i ≤ k, and u is a symbolic
number, which is a vector u = (u1, . . . , uy) of propositional variables with
y = max(1, dlog2(k + 1)e). Moreover, let ai, for 0 < i ≤ k, be a symbolic action.

Let w and w′ be two different symbolic states, a a symbolic action and u a symbolic
number. To define the formula [M̂tr(ϕ),s0

]k, we use the following auxiliary propositional
formulae: Iŝ(w) encodes a state ŝ in the abstract model M̂, H(w, w′) encodes the equality
of two global states, TAct(w, a, w′) encodes an action transition in M̂, Tτ(w, τ, w′) encodes
a time transition in M̂, B∼j (u), for ∼∈ {<,≤,=,>,≥} encodes the relation ∼ between j

and u, and Ll
k,m(π) encodes the existence of a loop for path π at position l.

The propositional formula [M̂tr(ϕ),s0
]k, encodes the unfolding of the transition relation

of the abstract model M̂ to the depth k in the following way:

[M̂tr(ϕ),s0
]k :=

∨
s∈s0 Is(w0) ∧

∨k
l=0 B=l (u)

∧
(∧k−1

j=0

(
Tτ(wj, τ, wj+1) ∨ TAct(wj, aj, wj+1))

)
,

where wi, ai and u are, respectively, symbolic states, symbolic actions and the symbolic
number for 0 ≤ i ≤ k.

Sensors 2022, 22, 9552 14 of 26

The next step of the method is the translation of the LTLq formula tr(ϕ) into the
propositional formula [tr(ϕ)]k := [tr(ϕ)]0

[k,0]. To translate the formula tr(ϕ) to SAT problem,
we use the auxiliary propositional formulae defined in [53] and the propositional formula
Gtd,m

I (π). The formula Gtd,m
I (π) encodes the condition that says that the difference of the

symbolic global time at the depth d and in the starting point m on the symbolic path π
belongs to the interval I.

Definition 12 (The translation from ELTLq to SAT). Let M̂ be the abstract model, tr(ϕ) an
LTLq formula, and k ≥ 0 a bound. The translation of the formula tr(ϕ) on the path starting at
point m at the depth d is defined inductively:

[true]d[k,m] := true,

[false]d[k,m] := false,

[p]d[k,m] := p(wd),

[¬p]d[k,m] := ¬p(wd),

[qI]
d
[k,m] :=



∨k−1
l=0

(
Gtd,m

I (π) ∧ ¬H(wk, wl)
)
∨∨k−1

l=0

(
Gtd,m

I (π) ∧ H(wk, wl)
)
, if d ≥ m∨k−1

l=0

(
Gtd,m

I (π) ∧ ¬H(wk, wl)
)
∨∨k−1

l=0

(
Gtd+k−l,m

I (π) ∧ H(wk, wl)
)
, if d < m

[¬qI]
d
[k,m] := ¬[qI]

d
[k,m],

[α ∧ β]d[k,m] := [α]d[k,m] ∧ [β]d[k,m],

[α ∨ β]d[k,m] := [α]d[k,m] ∨ [β]d[k,m],

[αUβ]d[k,m] :=
k∨

j=d

(
[β]

j
[k,m]
∧

j−1∧
i=d

[α]i[k,m]

)
∨
(d−1∨

l=0

(
Ll

k,m(π)
)
∧

d−1∨
j=0

(
B>j (u)

∧ [β]
j
[k,m]
∧

j−1∨
i=0

(B>i (u)→ [α]i[k,m]) ∧
k∧

i=d

[α]i[k,m]

))
,

[Gα]d[k,m] :=
k−1∨
l=0

(
Ll

k,m(π)
)
∧

d−1∧
j=0

(
B>j (u)→ [α]

j
[k,m]

)
∧

k∧
j=d

[α]
j
[k,m]

.

Theorem 4. Let M̂ be the abstract model. Then for every k ∈ N, at the depth d ≤ k, M̂ |=d
k

Etr(ϕ) if, and only if, the propositional formula [M̂tr(ϕ),s0
]k ∧ [tr(ϕ)]k is satisfiable.

The proof of the above theorem is analogous to the proofs presented in [26,53].

5. Experimental Results

In this section, we experimentally evaluate the performance of our new translation
(We performed our experimental results on a computer equipped with I7-3770 processor,
32 GB of RAM, and the operating system Arch Linux. All the benchmarks together with
instructions on how to reproduce our experimental results can be found at the web page
https://tinyurl.com/satbmc4dtta-emtl, accessed on 3 November 2022). Our SAT-based
BMC algorithm is implemented as a standalone program written in the programming
language C++. We compared the new method with the corresponding one from [26].
For both methods, we used the state-of-the-art Kissat SAT solver [54]. We conducted the

https://tinyurl.com/satbmc4dtta-emtl

Sensors 2022, 22, 9552 15 of 26

experiments using the slightly modified TGPP [26], the TTCS [26], and TDPP, and we
compared our result with the results generated using the implementation from [26].

5.1. Timed Dining Philosophers

As the first benchmark, we used the well-known dining philosophers problem [55],
and we extended it using clocks. The system consists of n discrete timed automata, each
of which models a philosopher, together with n automata, each of which models a fork,
together with one automaton which models the lackey. The latter automaton is used to
coordinate the philosophers’ access to the dining room. In fact, this automaton ensures that
no deadlock is possible. The global system is obtained as the parallel composition of the
components, which are shown in Figure 4.

We assume that one unit of time represents 30 min. A philosopher has to think at least
30 min (1 time unit, xj ≥ T2) and at most 2 h and 30 min (5 time units xj ≤ T1). He also
has to eat for, at most, one hour (2 time units, xj ≤ E1), but he also can finish eating earlier
(xj ≥ E2).

Figure 4. The TDPP system.

Let us consider the following formulae:

• ϕ1 = F[0,T2+E2+1)(
∨n

j=1 L f realeasedj). At least one philosopher will eventually eat
and put down both forks.

• ϕ2 = F[0,T2+1)(
∧n−1

j={1,3,5,...} Eatingj). Eventually, every second philosopher (starting
with the first one) eats.

• ϕ3 = G(F[0,T2+1)(
∨n

j=1 L f realeasedj). Every second philosopher (starting with the
first one) always eats in the end.

All these formulae are existentially valid in the model of TDPP.
Figure 5 shows experimental results for ϕ1 and ϕ2. For the simple eventually formula

ϕ1 we can observe that time usage for the method based on the old translation is better
than for the method based on the new one. However there is a noticeable difference in
memory usage. In this case, the new method is better. For the formulae ϕ2 and ϕ3, we can
see the advantages of the new method.

Sensors 2022, 22, 9552 16 of 26

25 10 20 30 40 50 60 70 80 90 100
Number of philosophers

0.0 MB.

50.0 MB.

100.0 MB.

150.0 MB.

200.0 MB.

250.0 MB.

300.0 MB.

350.0 MB.

M
em

or
y

us
ag

e
(M

B)

New translation total memory usage
Old translation total memory usage

0.0 s.

100.0 s.

200.0 s.

300.0 s.

400.0 s.

500.0 s.

600.0 s.

Ti
m

e
(s

)

Timed Dining Philosophers Problem 1

Old translation total time usage
New translation total time usage

2 3 4 5 6 7 8 9 10 11 12 13
Number of philosophers

0.0 MB.

10.0 MB.

20.0 MB.

30.0 MB.

40.0 MB.

50.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

200.0 s.

400.0 s.

600.0 s.

800.0 s.

1000.0 s.

1200.0 s.

Ti
m

e
(s

)

Timed Dining Philosophers Problem 2

Old translation total time usage
New translation total time usage

Figure 5. TDPP with n philosophers: ϕ1 and ϕ2.

Figure 6 shows experimental results for ϕ3.

2345 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of philosophers

0.0 MB.

100.0 MB.

200.0 MB.

300.0 MB.

400.0 MB.

M
em

or
y

us
ag

e
(M

B)

New translation total memory usage
Old translation total memory usage

0.0 s.

500.0 s.

1000.0 s.

1500.0 s.

2000.0 s.

2500.0 s.

3000.0 s.

3500.0 s.

Ti
m

e
(s

)

Timed Dining Philosophers Problem 3

Old translation total time usage
New translation total time usage

Figure 6. The TDPP with n philosophers: ϕ3.

Sensors 2022, 22, 9552 17 of 26

Figure 7 shows generated clauses and variables for ϕ1 and ϕ3.

2 5 10 20 30 40 50 60 70 80 90 100
Number of trains

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Nu
m

be
r o

f v
ar

ia
bl

es

Old translation variables
New translation variables

0

1,000,000

2,000,000

3,000,000

4,000,000

Cl
au

se
s

Timed Dining Philosophers Problem 1 variables and clauses

Old translation clauses
New translation clauses

2345 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of trains

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

Nu
m

be
r o

f v
ar

ia
bl

es

Old translation variables
New translation variables

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

Cl
au

se
s

Timed Dining Philosophers Problem 3 variables and clauses

Old translation clauses
New translation clauses

Figure 7. The TDPP with n philosophers clauses and variables: ϕ1 and ϕ3.

5.2. Timed Generic Pipeline Paradigm

The TGPP (Figure 8) discrete timed automata model [26] consists of a producer pro-
ducing data within the time interval ([a, b]) or being inactive, a consumer receiving data
within the time interval ([c, d]) or being inactive within the time interval ([g, h]), and a chain
of n intermediate nodes which can be ready for receiving data within the time interval
([c, d]), processing data within the time interval ([e, f]) or sending data. We assume that
a = c = e = g = 1 and b = d = f = h = 2 · n + 2, where n represents number of nodes in
the TGPP.

Figure 8. The TGPP system.

To compare our experimental results with [26], we tested the TGPP discrete timed
automata model on the following MTL formulae that existentially hold in the model of
TGPP (n is the number of nodes). In the below formulae, we use prod0, prod1, cons0,
and cons1 for ProdReady, ProdSend, ConsReady, and ConsFree respectively. Moreover, we
write G for G[0,∞). Let us consider the following formulae:

Sensors 2022, 22, 9552 18 of 26

• ϕ1 = G(prod0 ∨ cons0). It states that always either the producer has sent the data or
the consumer has received the data.

• ϕ2 = F[0,2·n+3)(G(prod1 ∨ cons1)). It states that eventually in time less then 2 · n + 3,
it is always the case that the producer is ready to send the data or the consumer has
received the data.

• ϕ3 = G(F[0,2·n+3)(cons1)). It states that the Consumer infinitely often eventually
receives the data in time less than 2 · n + 3 units.

All these formulae are existentially valid in the model of TGPP.
Charts in Figure 9 show the total time usage and total memory usage for TGPP needed

for verification ϕ1 and ϕ2. In both cases, the new method outperforms the old one. For ϕ2,
the LTLq-based method was able to verify the system with 19 nodes, and the HLTL-based
method was able to verify the system only with 9 nodes. For ϕ3, the memory usage is
similar in both cases. However, the time usage for the old method exponentially grows.
The second plot shows the number of generated clauses and variables.

1 2 3 4 5 6 7 8 9
Number of nodes

0.0 MB.

5.0 MB.

10.0 MB.

15.0 MB.

20.0 MB.

25.0 MB.

30.0 MB.

35.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

250.0 s.

500.0 s.

750.0 s.

1000.0 s.

1250.0 s.

1500.0 s.

1750.0 s.

Ti
m

e
(s

)

Timed Generic Pipeline Paradigm System 1

Old translation total time usage
New translation total time usage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of nodes

0.0 MB.

10.0 MB.

20.0 MB.

30.0 MB.

40.0 MB.

50.0 MB.

60.0 MB.

70.0 MB.

80.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

500.0 s.

1000.0 s.

1500.0 s.

2000.0 s.

2500.0 s.

3000.0 s.

Ti
m

e
(s

)

Timed Generic Pipeline Paradigm System 2

Old translation total time usage
New translation total time usage

Figure 9. ϕ1 and ϕ2: TGPP with n nodes.

Charts in Figure 10 shows the total time usage and total memory usage for TGPP
needed for verification ϕ3. The second plot shows the number of generated clauses
and variables.

Sensors 2022, 22, 9552 19 of 26

1 2 3 4 5 6 7 8 9 10
Number of nodes

0.0 MB.

10.0 MB.

20.0 MB.

30.0 MB.

40.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

250.0 s.

500.0 s.

750.0 s.

1000.0 s.

1250.0 s.

1500.0 s.

1750.0 s.

2000.0 s.

Ti
m

e
(s

)

Timed Generic Pipeline Paradigm System 3

Old translation total time usage
New translation total time usage

1 2 3 4 5 6 7 8 9 10
Number of nodes

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Nu
m

be
r o

f v
ar

ia
bl

es

Old translation variables
New translation variables

0

100,000

200,000

300,000

400,000

500,000

Cl
au

se
s

Timed Generic Pipeline Paradigm System 3 variables and clauses

Old translation clauses
New translation clauses

Figure 10. Results for ϕ3: TGPP with n nodes. Number of variables and clauses for ϕ3.

5.3. Timed Train Controller System

The TTCS (Figure 11) consists of n (for n ≥ 2) trains T1, . . . , Tn, each one using its own
circular track for traveling in one direction and containing its own clock xi, together with
controller C used to coordinate the access of trains to the tunnel through which all trains
have to pass at a certain point. There is only one track in the tunnel, so trains arriving from
each direction cannot use it in the same time. There are signals on both sides of the tunnel,
which can be either red or green. All trains notify the controller when they request entry to
the tunnel or when they leave the tunnel. The controller controls the color of the displayed
signal, and the behavior of the scenario depends on the values δ and ∆ (∆ > δ + 1 makes it
incorrect—the mutual exclusion does not hold).

Controller C has n + 1 locations, with the location 0 being the initial one. The action
Starti of train Ti denotes the passage from the location away to the location where the train
wishes to obtain access to the tunnel. This is allowed only if controller C is in location
0. Similarly, train Ti synchronizes with controller C on action approachi, which denotes
setting C to location i > 0, as well as outi, which denotes setting C to location 0. Finally,
action ini denotes the entering of train Ti into the tunnel.

Moreover, we assume the following set of propositional variables: AP = {tunnel1, . . . ,
tunneln}.

Let us consider the following formulae:

• ϕ1 = F[0,2·δ+4)(
∨n−1

i=1
∨n

j=i+1)(tunneli ∧ tunnelj). It expresses that the system violates
the mutual exclusion property.

• ϕ2 = G(F[0,2·δ+1)tunnel1). It expresses that the first train can infinitely often and from
any state enter the tunnel in time less than 2 · δ + 1.

• ϕ3 = G(F[0,2·δ+7)tunnel1 ∧ F[0,2·δ+7)¬tunnel1). It expresses that the first train is in-
finitely often in the tunnel and outside the tunnel in time less than 2 · δ + 7.

All these formulae are existentially valid in the model of TTCS.

Sensors 2022, 22, 9552 20 of 26

Figure 11. The TTCS system.

As we can see in Figures 12, 13 and 14, the new method surpasses the old one. As we
expected, the difference between the two methods is smaller for the simple formula that
expresses reachability problem (ϕ1). However, a significant difference can be seen for
the formulae ϕ2 and ϕ3. Figure 14 also shows the number of clauses and variables for
the new and the old method. As we can see, the numbers of variables and clauses grow
exponentially for the old method.

2 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Number of trains

0.0 MB.

50.0 MB.

100.0 MB.

150.0 MB.

200.0 MB.

250.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

200.0 s.

400.0 s.

600.0 s.

800.0 s.

Ti
m

e
(s

)

Timed Train Controller System 1

Old translation total time usage
New translation total time usage

Figure 12. ϕ1: TTCS with n trains.

Sensors 2022, 22, 9552 21 of 26

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of trains

0.0 MB.

100.0 MB.

200.0 MB.

300.0 MB.

400.0 MB.

500.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

200.0 s.

400.0 s.

600.0 s.

800.0 s.

1000.0 s.

1200.0 s.

1400.0 s.

Ti
m

e
(s

)

Timed Train Controller System 3

Old translation total time usage
New translation total time usage

Figure 13. ϕ3: TTCS with n trains.

2 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of trains

0.0 MB.

200.0 MB.

400.0 MB.

600.0 MB.

800.0 MB.

1000.0 MB.

1200.0 MB.

1400.0 MB.

M
em

or
y

us
ag

e
(M

B)

Old translation total memory usage
New translation total memory usage

0.0 s.

250.0 s.

500.0 s.

750.0 s.

1000.0 s.

1250.0 s.

1500.0 s.

1750.0 s.

Ti
m

e
(s

)

Timed Train Controller System 2

Old translation total time usage
New translation total time usage

2 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of trains

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

Nu
m

be
r o

f v
ar

ia
bl

es

Old translation variables
New translation variables

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

Cl
au

se
s

Timed Train Controller System 2 variables and clauses

Old translation clauses
New translation clauses

Figure 14. Results for ϕ2. Number of variables and clauses for ϕ2 and TTCS with n trains.

Sensors 2022, 22, 9552 22 of 26

6. Statistics

We performed one- and two-sided Wicoxon tests for DPTT (Figure 15). Tests showed
that the new method outperforms the old one: the new method used less time (p = 0.36),
and used less memory (p = 0.99).

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

4

Pairs

0.04 0.02 0.00 0.02 0.04

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

-1.6

0.0

1.6

-0.7

-1.1

0.0

1.8

-0.5

1.4

-0.8

-1.7

0.3

-0.8

0.6

0.8

-0.1

0.7

-0.5

1.5

-1.0

t-test

0 (Intercept)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Pairs

0.04 0.02 0.00 0.02 0.04
1.0

0.5

0.0

0.5

1.0

1.5

0.3

-0.4

0.3

-0.8

1.8

-0.1

0.2

-0.2

0.1

-0.4

-0.2

1.2

0.8

-0.9

-0.4

-0.2

0.9

-0.3

0.8

0.6

t-test

0 (Intercept)

Figure 15. TDPP: Pairs Wilcoxon plots for total time usage and total memory usage for ϕ1, ϕ2, and ϕ3.

We performed the two-sided and one-sided Wilcoxon tests for all the experiments.
As a dataset, we took the whole set of the experimental results (note that we deleted some
results in the figures in Section 5 to make them clear—whole data can be found in the
.tar.xz file we delivered).

7. Conclusions

In this work, we proposed a new SAT-based BMC for soft real-time systems modeled
by discrete time automata with digital clocks and for properties expressible in metric
temporal logic with semantics over discrete time automata with digital clocks.

The first step of this method is translating the existential model-checking problem for
MTL into the existential model-checking problem for LTLq logic by replacing temporal
operators with intervals (MTL) with temporal operators and new propositional variables
corresponding to these intervals (LTLq). The second step is translating the existential
model-checking problem for LTLq into the satisfiability problem for the propositional
formulae. The efficiency of the new method is due to the fact that only one additional clock
for measuring global time is needed, unlike the earlier method [26], which translates the
existential model-checking problem for MTL into the existential model-checking problem
translation to HLTL.

The earlier method [26] needs to add to a timed automaton one extra clock, one extra
path, and an extra transition for each occurrence of the temporal operator in the formula.

Sensors 2022, 22, 9552 23 of 26

We implemented our method as a standalone program written in the programming
language C++. This implementation allowed us to experimentally evaluate and compare
the new approach with the old one.

The experimental results show that our approach is significantly better than the ap-
proach based on translation to HLTL. The new method substantially reduces the conjunction
normal form (CNF) formula’s size, an input formula for the SAT solver. The reduced size
of the CNF formula causes the SAT solver to use much less time and memory to determine
the satisfiability of the input formula.

In future work, we plan to extend our method by adding discrete data [56]. We also
would like to improve and develop and prove the method presented in [49].

Author Contributions: Conceptualisation, A.M.Z. and A.Z.; methodology, A.M.Z. and A.Z.; soft-
ware, A.Z.; validation, A.M.Z.; formal analysis, A.M.Z.; proving, A.M.Z.; investigation, A.M.Z. and
A.Z.; writing—original draft preparation, A.M.Z.; writing—review and editing, A.M.Z and A.Z.;
visualisations, A.M.Z.; supervision, A.Z.; All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MTL Metric Temporal Logic
HLTL Hard Reset LTL
LTL Linear Temporal Logic
TA Timed Automata
DTA Discrete Timed Automaton
BMC Bounded Model Checking
LTLq Linear Temporal Logic with Additional Propositional Variables qI
TGPP Timed Generic Pipeline Paradigm
TTCS Timed Train Controller System
TDPP Timed Dining Philosophers Problem

Appendix A. Improvements and Extensions Compared to the Workshop Paper

1. We improved it and proved the main theorem. The workshop paper presented only
the idea of the method;

2. We improved definitions;
3. We changed the semantics: the weakly monotonic semantics seems to be more natural

in the case of discrete time. In [1], we used strongly monotonic semantics;
4. We redefined the concrete model. The process of creating the concrete model presented

in [26] was unnecessarily complicated;
5. We redefined the semantics of MTL;
6. We showed the translation to SAT for the LTLq formula on the path starting at point

m at the depth d;
7. We extended the experimental section by adding the timed dining philosophers

problem (to the best of our knowledge, we modeled TDP for the first time as a
network of discrete timed automata—we could find only the modeling using timed
Petri nets in the literature).

Sensors 2022, 22, 9552 24 of 26

Appendix B. Code Reproducibility

Appendix B.1. Preliminary

This code was successfully tested on the Linux operating system. Requirements for
running the benchmarks: a reasonably modern 64-bit Linux environment with Python 3
installed. As all the programs in our package are statically linked, they do not rely on the
particular version of libraries available on the final system.

In order to run the code of the experiments, one needs to download the supplementary
material (.tar.xz file attached from https://tinyurl.com/bmc4dtta-mtl, accessed on 3
November 2022) and unpack it:

$ tar -xvf bmc4dtta-emtl.tar.gz

Once unpacked, one should go to the directory named bmc4dtta-emtl that contains
the code necessary to replicate all the experiments:

$ cd bmc4dtta-emtl

Appendix B.2. Running Experiments

To launch a SAT-based BMC for DTTA and LTLq experiment, go to the
newbmc\{SYSTEM_ACRONYM-f{FORMULA_NR}}\ directory, where {FORMULA_NR} is a natural

number n ∈ {1, 2, 3}, and {SYSTEM_ACRONYM} is either ‘ttcs’, ‘tgpp’ or ‘tdpl’, and run the
bash file all-new-{SYSTEM_ACRONYM}-f{FORMULA_NR}.sh. We report a few usage exam-
ples below.

Appendix B.3. Example-TTCS

Let us suppose that we want to verify TTCS system with 25 trains and formula
ϕ1 = F[0,2·δ+7)(

∨n−1
i=1

∨n
j=i+1)(tunneli ∧ tunnelj)). We have to navigate to the directory

ttcs-f1

$ cd ttcs-f1

and then execute the BMC algorithm

$ nohup nice ./bmcalg-new-ttcs-f1-cms.sh 25 0 &

The first argument sets the number of trains in the system to 25, and the second
argument sets the initial k-path k to 0.

One can also perform all the experiments for the formula ϕ1 using the proper script:

$ nohup nice ./all-new-ttcs-f1-cms.sh &

It will perform all the experiments for n ∈ {2 . . . 100}.

References
1. Zbrzezny, A.M.; Zbrzezny, A. Simple Bounded MTL Model Checking for Discrete Timed Automata (Extended abstract). In

Proceedings of the 23th International Workshop on Concurrency, Specification and Programming (CS&P 2016), Rostock, Germany,
28–30 September, 2016; Volume 1698, CEUR Workshop Proceedings, pp. 37–48.

2. Bourke, T.; Sowmya, A. Analyzing an Embedded Sensor with Timed Automata in Uppaal. ACM Trans. Embed. Comput. Syst.
(TECS) 2013, 13, 44-1–44-26. [CrossRef]

3. Chen, G.; Jiang, T.; Wang, M.; Tang, X.; Ji, W. Design and model checking of timed automata oriented architecture for Internet of
thing. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720911008. [CrossRef]

4. Iversen, T.K.; Kristoffersen, K.J.; Larsen, K.G.; Laursen, M.; Madsen, R.G.; Mortensen, S.K.; Pettersson, P.; Thomasen, C.B.
Model-checking real-time control programs: Verifying Lego(R) MindstormsTM systems using UPPAAL. In Proceedings of the
12th Euromicro Conference on Real-Time Systems (ECRTS 2000), Stockholm, Sweden, 19–21 June 2000; IEEE Computer Society:
Washington, DC, USA, 2000; pp. 147–155. [CrossRef]

5. Lahtinen, J. Model Checking Timed Safety Instrumented Systems; Research Report TKK-ICS-R3; Helsinki University of Technology,
Department of Information and Computer Science: Espoo, Finland, 2008.

https://tinyurl.com/bmc4dtta-mtl
http://doi.org/10.1145/2539036.2539040
http://dx.doi.org/10.1177/1550147720911008
http://dx.doi.org/10.1109/EMRTS.2000.854002

Sensors 2022, 22, 9552 25 of 26

6. Hammal, Y.; Monnet, Q.; Mokdad, L.; Ben-Othman, J.; Abdelli, A. Timed automata based modeling and verification of denial of
service attacks in wireless sensor networks. Stud. Inform. Universalis 2014, 12, 1–46.

7. Mouradian, A.; Augé-Blum, I. Modeling Local Broadcast Behavior of Wireless Sensor Networks with Timed Automata for Model
Checking of WCTT. In Proceedings of the WCTT’12, San Juan, Puerto Rico, 4 December 2012; pp. 23–30.

8. Alur, R.; Dill, D. A Theory of Timed Automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
9. Bozga, M.; Hou, J.; Maler, O.; Yovine, S. Verification of Asynchronous Circuits using Timed Automata. Electr. Notes Theor. Comput.

Sci. 2002, 65, 47–59. [CrossRef]
10. Dierks, H. PLC-automata: A new class of implementable real-time automata. Theor. Comput. Sci. 2001, 253, 61–93. [CrossRef]
11. Clarke, E.M.; Emerson, E.A. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. In

Proceedings of the Logics of Programs, Yorktown Heights, NY, USA, 4–6 May 1981; Springer: Berlin/Heidelberg, Germany, 1981;
Volume 131, LNCS, pp. 52–71.

12. Emerson, E.A.; Mok, A.K.; Sistla, A.P.; Srinivasan, J. Quantitative Temporal Reasoning. Real-Time Syst. 1992, 4, 331–352. [CrossRef]
13. Pnueli, A. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,

Providence, RI, USA, 20–23 October 1977; pp. 46–57.
14. Koymans, R. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Syst. 1990, 2, 255–299. [CrossRef]
15. Bouyer, P. Model-checking Timed Temporal Logics. Electr. Notes Theor. Comput. Sci. 2009, 231, 323–341. [CrossRef]
16. Furia, C.A.; Spoletini, P. Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers. In Proceedings of the ICTAC,

Istanbul, Turkey, 1–3 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5160, LNCS; pp. 126–140.
17. Ho, H.; Ouaknine, J.; Worrell, J. On the Expressiveness and Monitoring of Metric Temporal Logic. Logical Methods in Comp. Sci.

2019, 15 . [CrossRef]
18. Pradella, M.; Morzenti, A.; Pietro, P.S. Bounded satisfiability checking of metric temporal logic specifications. ACM Trans. Softw.

Eng. Methodol. 2013, 22, 20:1–20:54. [CrossRef]
19. Henzinger, T.; Manna, Z.; Pnueli, A. What good are digital clocks? In Proceedings of the ICALP 92: Automata, Languages, and Pro-

gramming, Wien, Austria, 13–17 July 1992; Kuich, W., Ed.; Lecture Notes in Computer Science 623; Springer: Berlin/Heidelberg,
Germany, 1992; pp. 545–558.

20. Biere, A.; Cimatti, A.; Clarke, E.; Zhu, Y. Symbolic Model Checking without BDDs. In Proceedings of the TACAS’99, Amsterdam,
The Netherlands, 22–28 March 1999; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1579, LNCS, pp. 193–207.

21. Biere, A.; Cimatti, A.; Clarke, E.M.; Strichman, O.; Zhu, Y. Bounded Model Checking. Adv. Comput. 2003, 58, 117–148.
22. Penczek, W.; Woźna, B.; Zbrzezny, A. Bounded Model Checking for the Universal Fragment of CTL. Fundam. Inform. 2002,

51, 135–156.
23. Alur, R.; Henzinger, T.A. Real-time Logics: Complexity and Expressiveness. In Proceedings of the LICS ’90, Philadelphia, PA,

USA, 4–7 June 1990; pp. 390–401.
24. Alur, R.; Feder, T.; Henzinger, T.A. The Benefits of Relaxing Punctuality. J. ACM 1996, 43, 116–146. [CrossRef]
25. Wilke, T. Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In Proceedings of the Formal

Techniques in Real-Time and Fault-Tolerant Systems, Lübeck, Germany, 19–23 September 1994; pp. 694–715.
26. Woźna-Szcześniak, B.; Zbrzezny, A. Checking MTL Properties of Discrete Timed Automata via Bounded Model Checking.

Fundam. Inform. 2014, 135, 553–568. [CrossRef]
27. Alur, R.; Henzinger, T.A. Logics and Models of Real Time: A Survey. In Proceedings of the Real-Time: Theory in Practice, REX

Workshop, Mook, The Netherlands, 3–7 June 1991; de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G., Eds.; Springer:
Berlin/Heidelberg, Germany, 1991; Volume 600, Lecture Notes in Computer Science, pp. 74–106. [CrossRef]

28. Bozga, M.; Maler, O.; Tripakis, S. Efficient Verification of Timed Automata Using Dense and Discrete Time Semantics. In
Proceedings of the Correct Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research Working
Conference, CHARME ’99, Bad Herrenalb, Germany, 27–29 September 1999; Pierre, L., Kropf, T., Eds.; Springer: Berlin/Heidelberg,
Germany, 1999; Volume 1703, Lecture Notes in Computer Science, pp. 125–141. [CrossRef]

29. Ruf, J.; Kropf, T. Symbolic Verification and Analysis of Discrete Timed Systems. Form. Methods Syst. Des. 2003, 23, 67–108.
[CrossRef]

30. Cimatti, A.; Griggio, A.; Magnago, E.; Roveri, M.; Tonetta, S. Extending nuXmv with timed transition systems and timed temporal
properties. In Proceedings of the International Conference on Computer Aided Verification, New York, NY, USA, 15–18 July 2019;
Springer: Cham, Switzerland, 2019; pp. 376–386.

31. Gao, Y.; Abate, A.; Jiang, F.J.; Giacobbe, M.; Xie, L.; Johansson, K.H. Temporal logic trees for model checking and control synthesis
of uncertain discrete-time systems. IEEE Trans. Autom. Control 2021, 67, 5071–5086. [CrossRef]

32. Laroussinie, F.; Markey, N.; Schnoebelen, P. Efficient timed model checking for discrete-time systems. Theor. Comput. Sci. 2006,
353, 249–271. [CrossRef]

33. Krystosik, A. Embedded Systems Modeling Language. In Proceedings of the 2006 International Conference on Dependability of
Computer Systems (DepCoS-RELCOMEX 2006), Szklarska Poreba, Poland, 24–28 May 2006; IEEE Computer Society: Washington,
DC, USA, 2006; pp. 27–34. [CrossRef]

34. Bruneel, H.; Kim, B.G. Discrete-Time Models for Communication Systems Including ATM; Springer Science & Business Media: New
York, NY, USA, 2012; Volume 205.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/S1571-0661(04)80468-7
http://dx.doi.org/10.1016/S0304-3975(00)00089-X
http://dx.doi.org/10.1007/BF00355298
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1016/j.entcs.2009.02.044
http://dx.doi.org/10.23638/LMCS-15(2:13)2019
http://dx.doi.org/10.1145/2491509.2491514
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.3233/FI-2014-1140
http://dx.doi.org/10.1007/BFb0031988
http://dx.doi.org/10.1007/3-540-48153-2_11
http://dx.doi.org/10.1023/A:1024437214071
http://dx.doi.org/10.1109/TAC.2021.3118335
http://dx.doi.org/10.1016/j.tcs.2005.11.020
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.21

Sensors 2022, 22, 9552 26 of 26

35. Belta, C.; Yordanov, B.; Gol, E.A. Formal Methods for Discrete-Time Dynamical Systems; Springer: Cham, Switzerland, 2017;
Volume 15.

36. Allen, L.; Jones, M.; Martin, C. A discrete-time model with vaccination for a measles epidemic. Math. Biosci. 1991, 105, 111–131.
[CrossRef] [PubMed]

37. Li, S.; Lu, Y.; Garrido, J. A review of discrete-time risk models. RACSAM-Rev. De La Real Acad. De Cienc. Exactas Fis. Y Nat. Ser. A
Mat. 2009, 103, 321–337. [CrossRef]

38. Oli, M.K.; Venkataraman, M.; Klein, P.A.; Wendland, L.D.; Brown, M.B. Population dynamics of infectious diseases: A discrete
time model. Ecol. Model. 2006, 198, 183–194. [CrossRef]

39. Quaas, K. MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable. In Proceedings of the 1st International
Workshop on Synthesis of Continuous Parameters, SynCoP 2014, Grenoble, France, 6 April 2014; André, É., Frehse, G., Eds.; Open
Publishing Association: Waterloo, Australia, 2014; Volume 145, EPTCS, pp. 5–17. [CrossRef]

40. Bae, K.; Lee, J. Bounded model checking of signal temporal logic properties using syntactic separation. Proc. ACM Program. Lang.
2019, 3, 1–30. [CrossRef]

41. Li, J.; Vardi, M.Y.; Rozier, K.Y. Satisfiability checking for mission-time LTL. In Proceedings of the International Conference on
Computer Aided Verification, New York, NY, USA, 15–18 July 2019; Springer: Cham, Switzerland, 2019, pp. 3–22.

42. Jonk, R.; Voeten, J.; Geilen, M.; Basten, T.; Schiffelers, R. SMT-based verification of temporal properties for component-based
software systems. IFAC-PapersOnLine 2020, 53, 493–500. [CrossRef]

43. Smith, R.L.; Bersani, M.M.; Rossi, M.; San Pietro, P. Improved Bounded Model Checking of Timed Automata. In Proceedings of
the 9th IEEE/ACM International Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain,
17–21 May 2021; Bliudze, S., Gnesi, S., Plat, N., Semini, L., Eds.; IEEE: Piscataway, NJ, USA, 2021; pp. 97–110. [CrossRef]

44. Hofmann, T.; Schupp, S. Controlling Timed Automata against MTL Specifications with TACoS. Sci. Comput. Program. 2022,
225, 102898. [CrossRef]

45. Hustadt, U.; Ozaki, A.; Dixon, C. Theorem Proving for Pointwise Metric Temporal Logic Over the Naturals via Translations. J.
Autom. Reason. 2020, 64, 1553–1610. [CrossRef]

46. Ouaknine, J.; Worrell, J. Some Recent Results in Metric Temporal Logic. In Proceedings of the Formal Modeling and Analysis of
Timed Systems, 6th International Conference, FORMATS 2008, Saint Malo, France, 15–17 September 2008; Cassez, F., Jard, C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5215, Lecture Notes in Computer Science, pp. 1–13. [CrossRef]

47. D’Souza, D.; Prabhakar, P. On the expressiveness of MTL in the pointwise and continuous semantics. Int. J. Softw. Tools Technol.
Transf. 2007, 9, 1–4. [CrossRef]

48. Bouyer, P.; Chevalier, F.; Markey, N. On the expressiveness of TPTL and MTL. Inf. Comput. 2010, 208, 97–116. [CrossRef]
49. Zbrzezny, A.M.; Zbrzezny, A. Checking MTL Properties of Timed Automata with Dense Time using Satisfiability Modulo

Theories (Extended Abstract). In Proceedings of the 28th Intl. Workshop on CS&P, Olsztyn, Poland, 24–26 September 2019;
Volume 2571, CEUR Workshop Proc.

50. Bonakdarpour, B.; Prabhakar, P.; Sánchez, C. Model checking timed hyperproperties in discrete-time systems. In Proceedings
of the NASA Formal Methods Symposium, Moffett Field, CA, USA, 11–15 May 2020; Springer: Cham, Switzerland, 2020;
pp. 311–328.

51. Penczek, W.; Półrola, A. Advances in Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach; Studies in
Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; Volume 20.

52. Tripakis, S.; Yovine, S. Analysis of Timed Systems Using Time-Abstracting Bisimulations. Form. Methods Syst. Des. 2001, 18, 25–68.
[CrossRef]

53. Zbrzezny, A. A new translation from ECTL∗ to SAT. Fundam. Informaticae 2012, 120, 377–397. [CrossRef]
54. Biere, A.; Fazekas, K.; Fleury, M.; Heisinger, M. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling Entering the SAT

Competition 2020. In Proceedings of the SAT Competition 2020–Solver and Benchmark Descriptions, virtual event affiliated with
the 23rd International Conference on Theory and Applications of Satisfiability Testing, Alghero, Italy, 5–9 July 2020; Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M., Eds.; University of Helsinki: Helsinki, Finland, 2020; Volume B-2020-1,
Department of Computer Science Report Series B, pp. 51–53.

55. Probst, D.K.; Li, H.F. Verifying Timed Behavior Automata with Nonbinary Delay Constraints. In Proceedings of the Computer
Aided Verification, Fourth International Workshop, CAV ’92, Montreal, QC, Canada, 29 June–1 July 1992; von Bochmann, G.,
Probst, D.K., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 663, Lecture Notes in Computer Science, pp. 123–136.
[CrossRef]

56. Zbrzezny, A.; Pólrola, A. SAT-Based Reachability Checking for Timed Automata with Discrete Data. Fundam. Informaticae 2007,
79, 579–593.

http://dx.doi.org/10.1016/0025-5564(91)90051-J
http://www.ncbi.nlm.nih.gov/pubmed/1806092
http://dx.doi.org/10.1007/BF03191910
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.007
http://dx.doi.org/10.4204/EPTCS.145.3
http://dx.doi.org/10.1145/3290364
http://dx.doi.org/10.1016/j.ifacol.2021.04.045
http://dx.doi.org/10.1109/FormaliSE52586.2021.00016
http://dx.doi.org/10.1016/j.scico.2022.102898
http://dx.doi.org/10.1007/s10817-020-09541-4
http://dx.doi.org/10.1007/978-3-540-85778-5_1
http://dx.doi.org/10.1007/s10009-005-0214-9
http://dx.doi.org/10.1016/j.ic.2009.10.004
http://dx.doi.org/10.1023/A:1008734703554
http://dx.doi.org/10.3233/FI-2012-768
http://dx.doi.org/10.1007/3-540-56496-9_11

	Introduction
	Discrete Timed Automata and MTL
	Discrete Timed Automata
	Product of a Network of Discrete Timed Automata
	Concrete Model
	MTL Logic
	Syntax
	Semantics

	Bounded Model Checking
	The Translation
	Abstract Model
	MTL Semantics in the Abstract Model
	LTLq Logic
	The Translation from MTL to LTLq

	Proof of the Theorem 2
	Bounded Semantics
	Translation to SAT

	Experimental Results
	Timed Dining Philosophers
	Timed Generic Pipeline Paradigm
	Timed Train Controller System

	Statistics
	Conclusions
	Improvements and Extensions Compared to the Workshop Paper
	Code Reproducibility
	Preliminary
	Running Experiments
	Example-TTCS

	References

