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Abstract: The localization of sensors in wireless sensor networks has recently gained considerable
attention. The existing location methods are based on a one-spot measurement model. It is difficult
to further improve the positioning accuracy of existing location methods based on single-spot
measurements. This paper proposes two location methods based on multi-spot measurements to
reduce location errors. Because the multi-spot measurements model has more measurement equations
than the single-spot measurements model, the proposed methods provide better performance than
the traditional location methods using one-spot measurement in terms of the root mean square
error (RMSE) and Cramer–Rao lower bound (CRLB). Both closed-form and iterative algorithms
are proposed in this paper. The former performs suboptimally with less computational burden,
whereas the latter has the highest positioning accuracy in attaining the CRLB. Moreover, a novel
CRLB for the proposed multi-spot measurements model is also derived in this paper. A theoretical
proof shows that the traditional CRLB in the case of single-spot measurements performs worse than
the proposed CRLB in the case of multi-spot measurements. The simulation results show that the
proposed methods have a lower RMSE than the traditional location methods.

Keywords: Cramer–Rao lower bound (CRLB); multi-spot measurements model; sensor localization;
time of arrival (TOA)

1. Introduction

Wireless sensor networks (WSNs) have wide applications in the military, health, and
environmental fields [1–3]. Because node positions support information for many WSN
applications, sensor localization has become a hot research issue. A new preventive routing
method was proposed in [4] to improve energy consumption and increase throughput
using location information. In [5], the location information of a mobile sensor is used for
collaborative sleep scheduling in WSNs integrated with mobile cloud computing. The
authors of [6] utilized the location information of a mobile robot to collect the sensed data
from the partitioned/islanded WSNs. The authors of [6] collected sensed data from a WSN
base station and improved their efficiency using the location information.

Many localization methods are presented in the literature [7–32]. There are two ways
to locate a sensor in WSNs: (1) range-based and (2) range-free methods. The former utilizes
time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), received
signal strength (RSS), or hybrid measurements to solve the nodes’ position. Since these
algorithms use accurate measurement information, they usually obtain a high positioning
accuracy. Compared with the range-based location method, the latter only uses connectivity
information to locate a blindfolded node (BN), which reduces the hardware complexity at
the cost of performance degradation.

Regarding range-based techniques, location methods were first proposed for Line-
of-sight (LOS) situations. Several solutions [7–10], including closed-form algorithms
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based on least-squares (LS), weighted least-squares (WLS), maximum likelihood estimator
(MLE), and the minimum mean square error estimator (MMSEE) criteria and iterative algo-
rithms [11–14] based on Newton–Raphson and convex optimization criteria, are applied
in range-based location techniques. The LS method [7] provides a suboptimal solution
with the minimum amount of computation. Subsequently, the MLE method [8] based on
two-step WLS solutions was proposed to attain the Cramer–Rao lower bound (CRLB).
The MLE method based on a closed-form solution performs optimally with an acceptable
computation complexity. Using the statistical characteristics of BN position as prior infor-
mation, the MMSEE method [9] can further improve mobile location accuracy. In addition,
more complicated cases, such as those considering the positioning errors of reference nodes
(RNs) [14] and clock drift [15] among nodes, are studied in LOS localization algorithms.
Due to the severe nonlinearity existing in some location techniques, such as RSS and hybrid
methods, an MLE estimator may not lead to a closed-form solution. Various iterative algo-
rithms, including Newton–Raphson and convex optimization methods [11–14], have been
developed to obtain optimal performance. Besides LOS location methods, performance
analysis in terms of CRLBs is also provided in the literature [16–18]. Non-line-of-sight
(NLOS) presents a major problem in determining accurate location in WSNs, prompt-
ing the development of many positioning methods [19–22] and CRLBs [23–25] for NLOS
propagation in the literature.

Compared with those on range-based techniques, relatively fewer studies [26–32] have
been reported for range-free location techniques. Among range-free methods, Centroid-
based localization (CL) is the most famous; it functions by determining the BN’s position
as the centroid of RNs. To obtain a relative position estimate, a multidimensional scaling
(MDS) algorithm based on the connectivity matrix was developed for range-free localization
in a WSN [29]. Both References [26,27] analyzed the performance of range-free techniques.
The former focused on the uniform distribution of RNs and derived a theoretical variance
for the CL method. The latter assumed that the RNs’ position follows a Poisson point
process, and the spatially averaged area of location region and localization error probability
was derived based on this assumption.

Although many studies are reported for both range-based and range-free location
methods [7–32], they are all based on a one-spot measurement model, as shown in Figure 1.
Since the existing location methods have been widely studied, it is difficult to improve
their positioning accuracy further. Using a short-term motion model as prior information,
this paper proposes two novel location methods with higher positioning accuracy than the
existing location algorithms based on one-spot measurements. The two main contributions
of this paper are listed as follows:

• This paper proposes two location methods, including closed-form and iterative solu-
tions, to improve mobile location accuracy based on multi-spot measurements. Due to
the increased number of measurement equations used in this paper, the performance
of the proposed methods is better than that of traditional location methods using one-
spot measurements. Simulations show that both proposed methods have a lower root
mean square error (RMSE) than the traditional methods, and the proposed iterative
method can attain the CRLB.

• A novel CRLB for the proposed multi-spot measurements model is also derived in this
paper. This paper provides theoretical proof that the proposed CRLB is lower than
the traditional CRLB. This implies that the multi-spot measurement model has higher
positioning accuracy than the single-spot measurement model.

This paper is organized as follows. Section 2 briefly introduces the system model.
A novel CRLB for the proposed multi-spot model is derived in Section 3. A closed-form
solution based on a two-step WLS estimator is proposed in Section 4. To further improve
the positioning accuracy, an iterative method is proposed in Section 5. In Section 6, the
performance of the proposed algorithm is simulated in terms of the RMSE. The conclusions
of this paper are given in Section 7.
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Figure 1. The traditional location technique using one-spot TOA measurements. 
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2. System Model

The proposed methods are based on a TOA model introduced in this section. The
position of a BN (x, y) is an unknown parameter. The known coordinate of the ith RN is
set to be (xi, yi), and the number of RNs is N. Without a loss of generality, (x1, y1) = (0, 0).
Although the TOA model is used in the proposed methods, a similar idea can also be
applied to other location techniques. The measurement with the noise of {∗} is denoted as{
_∗
}

. The true distance between the ith RN and BN can be modeled as:

r2
i = (xi − x)2 + (yi − y)2 = ki − 2xix− 2yiy + k (1)

where ki = x2
i + y2

i and k = x2 + y2.
Traditional TOA location algorithms are based on one-spot TOA measurements col-

lected from N-RNs, as shown in Figure 1.
With the TOA noise, the error vector derived from (1) is

e = Y−GZ (2)

where
e =

[
e1 · · · eN

]T , ei =
_
r

2
i − r2

i ,

G =

−2x1 −2y1 1
...

. . .
...

−2xN −2yN 1

, Y =


_
r

2
1 − k1

...
_
r

2
N − kN

, Z =

Z1
Z2
Z3

 =

x
y
k

.

Several estimators, such as MMSEE and MLE, are used in the traditional TOA-based
location algorithms to solve (2). Compared with the existing location algorithms based
on one-spot TOA measurements, multi-spot measurements are utilized in the proposed
method to obtain a higher positioning accuracy, as presented in Figure 2. Based on the
information theory, the more information there is on measurements, the greater the system
gain, which is proved in the theoretical analysis detailed in Section 3.

In the case of multi-spot measurements, range data collected from multiple time
moments and N-RNs can be modeled as follows:

r2
ji =

(
xi − x

′
j

)2
+
(

yi − y
′
j

)2
= ki − 2xix

′
j − 2yiy

′
j + k

′
j (3)

where rji is the true distance between the ith RN and BN in the jth moment, i = 1, · · · , N,

and j = 1, · · · , M. (x
′
j, y
′
j) is the position of a BN for the jth moment and k

′
j =

(
x
′
j

)2
+
(

y
′
j

)2
.
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The range measurement
_
r ji can be modeled as:

_
r ji = rji + nji (4)

where nji is the measurement noise, which is subject to a zero-mean Gaussian random
process with a variance σ2

ji.
Considering the case in which multiple range data rji are collected within a short time

period, such as several seconds, (x
′
j, y
′
j) can be modeled as a uniform linear motion. Thus,

(x
′
j, y
′
j) can be calculated as:

x
′
j = x + vx(j− 1)T

y
′
j = y + vy(j− 1)T

(5)

where (x, y) is the position of a BN at the first moment, and vx and vy are the BN speeds
for the x and y axis, respectively. T is the measurement interval between two moments.

3. Cramer–Rao Lower Bound

It is well-known that the CRLB sets a lower limit for the variance or covariance matrix
of any unbiased estimate of unknown parameters [33].

Although many CRLBs for various location techniques considering one-spot measure-
ments have been presented in the literature [16–18,23–25], to the best of our knowledge,
performance analysis for localization has not been carried out on a multi-spot measure-
ment model in WSNs. This section provides performance analysis for localization using
multi-spot measurements in terms of CRLB.

Let
_
R =

[
_
R

T

1 · · ·
_
R

T

M

]T
be a range measurement vector and θ be a parameter

vector to be estimated, where
_
R j =

[
_
r j1 · · · _

r jN

]T
and θ is

[
x y vx vy

]T .
The CRLB is calculated based on the assumption that the probability density function

(PDF) f
(
_
R;θ

)
satisfies the “regularity” conditions, which are:

E

∂ ln f
(
_
R;θ

)
∂θ

 = 0 for all θ (6)

The CRLB matrix is defined as the inverse of the Fisher information matrix (FIM) Jθ:

E

((
_
θ − θ

)(
_
θ − θ

)T
)
≥ J−1

θ (7)
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where
_
θ is an estimate of θ.

The FIM is determined by [33]:

Jθ = E


∂ ln f

(
_
R;θ

)
∂θ

∂ ln f
(
_
R;θ

)
∂θ


T (8)

Using Bayes’ theorem,

f
(
_
R;θ

)
= f

(
_
R
∣∣∣∣θ) f (θ) (9)

Since θ is a deterministic unknown process, (9) becomes:

f
(
_
R;θ

)
= f

(
_
R
∣∣∣∣θ) (10)

From (4) and (5), the PDF f
(

_
R
∣∣∣∣θ) can be written as:

f
(

_
R
∣∣∣∣θ) =

M

∏
j=1

N

∏
i=1

f
(
_
r ji

∣∣∣θ) (11)

where

f
(
_
r ji

∣∣∣θ) = 1√
2πσji

exp

(
−
(
_
r ji−rji

)2

2σ2
ji

)
rji =

√
(xi − (x + vx(j− 1)T))2 +

(
yi −

(
y + vy(j− 1)T

))2

(12)

The log of f
(

_
R
∣∣∣∣θ) is:

ln f
(

_
R
∣∣∣∣θ) =

M
∑

j=1

N
∑

i=1
ln f

(
_
r ji

∣∣∣θ)
=

M
∑

j=1

N
∑

i=1
ln 1√

2πσji
−

M
∑

j=1

N
∑

i=1

(
_
r ji−rji

)2

2σ2
ji

(13)

Substituting (13) into ∂ ln f
(

_
R
∣∣∣∣θ)/∂θk gives:

∂ ln f
(

_
R
∣∣∣∣θ)

∂θk
=

M

∑
j=1

N

∑
i=1

(
_
r ji − rji

)
σ2

ji

∂rji

∂θk
=

M

∑
j=1

N

∑
i=1

nji

σ2
ji

∂rji

∂θk
(14)

where
∂rji
∂x = (x+vx(j−1)T)−xi

rji
,

∂rji
∂y =

(y+vy(j−1)T)−yi
rji

,
∂rji
∂vx

= ((x+vx(j−1)T)−xi)(j−1)T
rji

,
∂rji
∂vy

=
((y+vy(j−1)T)−yi)(j−1)T

rji

(15)

Since E
[
nji
]
= 0, the expectation of ∂ ln f

(
_
R
∣∣∣∣θ)/∂θk is:

E
[

∂ ln f
(

_
R
∣∣∣∣θ)/∂θk

]
= 0 (16)
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Compared with (6) and (16), it is observed that f
(
_
R;θ

)
satisfies the “regularity”

conditions, indicating the CRLB exists in the case of multi-spot measurements.
Substituting (14) and (15) into (8) gives:

Jθ = HQ−1HT (17)

where
H =

[
H1 · · · HM

]
, Q = diag

{[
Q1 · · · QM

]}

Hj =


∂rj1
∂x · · · ∂rjN

∂x
∂rj1
∂y · · · ∂rjN

∂y
∂rj1
∂vx

· · · ∂rjN
∂vx

∂rj1
∂vy

· · · ∂rjN
∂vy

, Qj = diag
{[

σ2
j1 · · · σ2

jN

]}
.

(18)

Considering a general case in which σji = σ, (17) can be rewritten as:

Jθ =
1
σ2 HHT =

1
σ2

M

∑
j=1

HjHT
j (19)

The relationship between the prosed CRLB for the case of multi-spot measurements
and the traditional CRLB for the case of single-spot measurements is provided in the
following proposition.

Proposition 1. In the TOA localization technique, the traditional CRLB for the case of single-spot
measurements is higher than the prosed CRLB for the case of multi-spot measurements.

tr
{(

J−1
p

)
2×2

}
= tr






M
∑

j=1
HjHT

j

σ2


−1

2×2

 ≤ tr
{

J−1
t

}
= tr

{(
MMT

σ2

)−1}
(20)

where Jp and Jt are the FIMs for the proposed and traditional CRLBs, respectively. From [34], it
can be found that

M =

[
x

r11
· · · x

r1Ny
r11

· · · y
r1N

]
(21)

Proof of Proposition 1. For a positive semi-definite matrix B, it is proved in [24] that:

tr
{
(A + B)−1

}
≤ tr

{
A−1

}
(22)

Obviously,
M
∑

j=2
HjHT

j is a positive semi-definite matrix. Thus, the following inequation

holds:

tr






M
∑

j=1
HjHT

j

σ2


−1

2×2

 ≤ tr


(H1HT

1
σ2

)−1


2×2

 (23)

Let j = 1, so H1 in (18) becomes:
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H1 =


x

r11
· · · x

r1Ny
r11

· · · y
r1N

0 · · · 0
0 · · · 0

 =

[
M

02×N

]
(24)

where 02×N is the zero matrix with two rows and N columns.
Substituting (24) into H1HT

1 gives:

H1HT
1 =

[
MMT 02×2
02×2 02×2

]
(25)

From (25),

tr


(H1HT

1
σ2

)−1


2×2

 = tr

{(
MMT

σ2

)−1}
(26)

Substituting (26) into (23), Proposition 1 holds. �
The CRLB is a popular tool for performance analysis since it determines the physical

impossibility of the variance of an unbiased estimator being less than the bound. Unfor-
tunately, the CRLB cannot be used for arbitrary noise distribution. For a CRLB, the PDF

f
(
_
R;θ

)
must satisfy the “regularity” conditions. This limitation determines that a CRLB

usually exists under Gaussian noise conditions. For other noise distributions, such as
uniformly distributed noise, a CRLB may not exist.

4. The Proposed Method with a Closed-Form Solution

The proposed method uses multi-spot measurements (3) and a BN motion model (5) to
improve positioning accuracy. It can be seen from (3) and (5) that the unknown parameters
to be estimated are

(
x, y, vx, vy

)
, and the number of measurement equation (3) is N ∗M.

For a 2D localization problem, N must be equal to or greater than 3. Thus, the measurement
equation (3) can obtain a solution for M ≥ 2. This indicates that the proposed method can
be applied in most situations.

Substituting (5) into k
′
j gives:

k
′
j = (x + vx(j− 1)T)2 +

(
y + vy(j− 1)T

)2

= x2 + 2xvx(j− 1)T + (vx(j− 1)T)2

+y2 + 2yvy(j− 1)T +
(
vy(j− 1)T

)2

= u1 + ((j− 1)T)2u2 + 2(j− 1)Tu3

(27)

where u1 = x2 + y2, u2 = v2
x + v2

y, and u3 = xvx + yvy.
Substituting (5) into (3) gives:

r2
ji = ki − 2xi(x + vx(j− 1)T)− 2yi

(
y + vy(j− 1)T

)
+ k

′
j (28)

Substituting (27) into (28) gives:

r2
ji − ki = −2xix− 2yiy− 2xi(j− 1)Tvx − 2yi(j− 1)T

u1 + ((j− 1)T)2u2 + 2(j− 1)Tu3
(29)

It can be seen that Equation (29) becomes a linear equation when three new unknown
variables (u1, u2, u3) are introduced. Although the linearization method may need more
range measurements to obtain a unique solution, it permits the proposed method to be
applied for real-time implementation with the closed-form solution.
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The matrix form of (29) can be rewritten as:

e = Y−GZ (30)

where
e =

[
eT

1 · · · eT
M
]T , ej =

[
r̂2

j1 − r2
j1 · · · r̂2

jN − r2
jN

]T
,

Z =
[

Z1 Z2 Z3 Z4 Z5 Z6 Z7
]T

=
[

x y vx vy u1 u2 u3
]T , Y =

[
YT

1 · · · YT
M
]T ,

Yj =
[

_
r

2
j1 − k1 · · · _

r
2
jN − kN

]T
, G =

[
GT

1 · · · GT
M
]T ,

Gj =


−2x1 −2y1 −2x1(j− 1)T −2y1(j− 1)T 1 ((j− 1)T)2 2(j− 1)T

...
...

...
...

...
...

...
−2xN −2yN −2xN(j− 1)T −2yN(j− 1)T 1 ((j− 1)T)2 2(j− 1)T

 , j = 1, · · · , M (31)

Both LS and WLS can be used to solve (30). For an LS estimator, the unknown vector
Z is calculated as:

Z =
(

GTG
)−1

GTY

Since the error vector e contains different error variances, higher positioning accuracy
of (30) can be obtained using the WLS estimator.

The WLS estimator of Z can be obtained from (30):

Z = argmin
{
(Y−GZ)TΨ−1(Y−GZ)

}
=
(

GTΨ−1G
)−1

GTΨ−1Y
(32)

where ψ is the covariance matrix of e:

ψ = cov(e) = E
(

eeT
)

(33)

Ignoring the square error term and being derived from (30), the element eji of e can be
expressed as:

eji = r̂2
ji − r2

ji =
(
rji + nji

)2 − r2
ji

= r2
ji + 2rjinji + n2

ji − r2
ji

≈ 2rjinji

(34)

From (34), the expectations of e2
ji can be obtained as follows:

E
(

e2
ji

)
= E

[(
2rjinji

)2
]
=
(
2rji
)2E
[
n2

ji

]
=
(
2rji
)2

σ2
ji (35)

The expectations of ejiemn(m 6= j or n 6= i) are:

E
(
ejiemn

)
= E

[
2rjinji2rmnnmn

]
= 4rjirmnE

[
njinmn

]
= 4rjirmnE

[
nji
]
E[nmn] = 0

(36)

Substituting (35) and (36) into (33) gives:

ψ = cov(e) = E
(

eeT
)
= BQB (37)

where
B = diag

{[
B1 · · · BM

]}
, Bj = diag

{[
2rj1 · · · 2rjN

]}
Q = diag

{[
Q1 · · · QM

]}
, Qj = diag

{[
σ2

j1 · · · σ2
jN

]} (38)
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The above equation shows that the covariance matrix ψ depends on the unknown rji.
A further approximation is necessary to make the problem solvable. A common method is
to replace the true range rji with the range measurement r̂ji in ψ.

The covariance matrix of Z can be calculated using the perturbation approach. ∆ is
denoted as the error perturbation. Obviously, neither G or ψ contain noise, whereas the
range measurement r̂2

j1 exists in the Y. Thus,

∆Z =
(

GTΨ−1G
)−1

GTΨ−1∆Y

=
(

GTΨ−1G
)−1

GTΨ−1e
(39)

Substituting (39) into cov(Z), the covariance matrix of Z can be obtained:

cov(Z) = E
[
∆Z∆ZT]

=
(

GTΨ−1G
)−1

GTΨ−1E
[
eeT]Ψ−1G

(
GTΨ−1G

)−1

=
(

GTΨ−1G
)−1

GTΨ−1ΨΨ−1G
(

GTΨ−1G
)−1

=
(

GTΨ−1G
)−1

(40)

Based on the assumption that the unknown parameters to be estimated, Zi, are in-
dependent, the WLS estimator (32) is an MLE and can attain the optimal performance.
Unfortunately, those parameters are correlated since the linearization method is used for
(29) to allow (30) to have a closed-form solution. The estimation accuracy can be further
improved using the relationship among Zi. The results can be revised as follows using the
relations u1 = x2 + y2 and u2 = v2

x + v2
y:

e′ = Y′ −G′Z′ (41)

where

Y′ =



Z2
1

Z2
2

Z2
3

Z2
4

Z5
Z6

, G′ =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1

, Z′ =


x2

y2

v2
x

v2
y

. (42)

assuming that the estimation errors of x, y, vx, vy, u1 and u2 are η1, η2, η3, η4, η5 and η6,
respectively.

Then, the elements of Z become:

Z1 = x + η1, Z2 = y + η2, Z3 = vx + η3
Z4 = vy + η4, Z5 = u1 + η5, Z6 = u2 + η6

(43)

Substituting (43) into (41) and ignoring the square error term, the entries of e′ can be
expressed as:

e′1 = 2xµ1, e′2 = 2yµ2, e′3 = 2vxη3
e′4 = 2vyη4, e′5 = η5, e′3 = η6

(44)

Subsequently, the covariance matrix of e’ is:

Ψ′ = E
(

e’e’T
)
= B′{cov(Z)}(1:6)×(1:6)B

′ (45)

where B′ = diag
{[

2x, 2y, 2vx, 2vy, 1, 1
]}

. In fact, B′ is unknown as B′ contains the true BN
position x and y. B′ can be approximated as B′ = diag{[2Z1, 2Z2, 2Z3, 2Z4, 1, 1]}. cov(Z) is
the covariance matrix of Z and can be calculated using (40).
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The second step of the WLS solution is:

Z′ =
(

G′TΨ′−1G′
)−1

G′TΨ′−1Y′ (46)

Similarly, the covariance matrix of Z′ can be obtained using the perturbation approach:

cov
(
Z′
)
=
(

G′TΨ′−1G′
)−1

(47)

The position estimation of Z′′ is obtained as follows:

Z′′ = sign(Z)
√

Z′ (48)

In summary, the steps of the proposed method are as follows:

(1) Estimate ψ through substituting (38) into (37).
(2) The first weight solution of BN can be obtained by substituting (37) into (32).
(3) The final solution of BN can be obtained from (48).

From the definition of Z′ in (42) and ignoring the square error term, Z′ can be rewritten as:

Z′1 − x2 = 2xex, Z′2 − y2 = 2yey
Z′3 − v2

x = 2vxevx, Z′4 − v2
y = 2vyevy

(49)

where ex, ey, evx and evy are the estimation errors of x, y, vx and vy in (44), respectively. The
covariance matrix of Z′′ can be obtained from (48):

cov
(
Z′′
)
= B’’−1cov(Z′)B’’−1 (50)

where B’’ = 2diag
{[

x y vx vy
]}

.
From (40), (45), (47), and (48), the covariance matrix of Z′′ can finally be obtained:

cov(Z′′) =
(

B’’cov(Z′)−1B’’
)−1

=
(

B’’G′TΨ′−1G′B’’
)−1

=

(
B’’G′TB′−1

{
cov(Z)(1:6)×(1:6)

}−1
B′−1G′B’’

)−1
(51)

5. The Proposed Method with Iterative Solution

The proposed closed-form solution in Section 4 attempts to provide an optimal perfor-
mance using a two-step WLS estimator. Due to the severe nonlinearity, the relationship
u3 = xvx + yvy is not used in the second WLS solution (41), which may lead to suboptimal
performance. In this section, an iterative Newton–Raphson method based on an MLE is
developed to obtain a higher positioning accuracy.

The MLE is found by maximizing the PDF (11) or, equivalently, by maximizing the
likelihood function.

J(θ) = ln f
(

_
R
∣∣∣∣θ) =

M

∑
j=1

N

∑
i=1

ln
1√

2πσji
−

M

∑
j=1

N

∑
i=1

(
_
r ji − rji

)2

2σ2
ji

(52)

The iterative method attempts to maximize the likelihood function (52) by finding a
zero of the derivative function. Using ∂J(θ)/∂θ = 0,
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g1(θ) =
M
∑

j=1

N
∑

i=1

γ(θ)

σ2
jirji

= 0, g2(θ) =
M
∑

j=1

N
∑

i=1

κ(θ)

σ2
jirji

= 0,

g3(θ) =
M
∑

j=1

N
∑

i=1

(j−1)Tγ(θ)

σ2
jirji

= 0,

g4(θ) =
M
∑

j=1

N
∑

i=1

(j−1)Tκ(θ)

σ2
jirji

= 0.

(53)

where
γ(θ) =

(
_
r ji − rji

)
((x + vx(j− 1)T)− xi)

κ(θ) =
(
_
r ji − rji

)((
y + vy(j− 1)T

)
− yi

) (54)

assuming that there is an initial guess for the solution to (53). Using the first-order approxi-
mation of the Taylor expansion, (53) becomes:

gi(θ) ≈ gi(θ0) +
∂gi(θ)

∂x

∣∣
θ=θ0(x− x0) +

∂gi(θ)
∂y

∣∣
θ=θ0(y− y0)

+ ∂gi(θ)
∂vx

∣∣
θ=θ0(vx − vx0) +

∂gi(θ)
∂vy

∣∣
θ=θ0

(
vy − vy0

)
≈ 0

i = 1, 2, 3, 4

(55)

where
∂g1(θ)

∂θi
=

M
∑

j=1

N
∑

i=1

1
σ2

ji

∂γ(θ)/∂θirji−γ(θ)∂rji/∂θi

r2
ji

∂g2(θ)
∂θi

=
M
∑

j=1

N
∑

i=1

1
σ2

ji

∂κ(θ)/∂θirji−κ(θ)∂rji/∂θi

r2
ji

∂g3(θ)
∂θi

=
M
∑

j=1

N
∑

i=1

(j−1)T
σ2

ji

∂γ(θ)/∂θirji−γ(θ)∂rji/∂θi

r2
ji

∂g4(θ)
∂θi

=
M
∑

j=1

N
∑

i=1

(j−1)T
σ2

ji

∂κ(θ)/∂θirji−κ(θ)∂rji/∂θi

r2
ji

(56)

with
∂γ(θ)

∂x =
_
r ji −

(
∂rji
∂x x + rji

)
− vx(j− 1)T

∂rji
∂x

∂γ(θ)
∂y = − ∂rji

∂y x− vx(j− 1)T
∂rji
∂y

∂γ(θ)
∂vx

=
_
r ji(j− 1)T − x

∂rji
∂vx
− (j− 1)T

(
∂rji
∂vx

vx + rji

)
∂γ(θ)

∂vy
= − ∂rji

∂vy
x− vx(j− 1)T

∂rji
∂vy

∂κ(θ)
∂x = − ∂rji

∂x y− vy(j− 1)T
∂rji
∂x

∂κ(θ)
∂y =

_
r ji −

(
∂rji
∂y y + rji

)
− vy(j− 1)T

∂rji
∂y

∂κ(θ)
∂vx

= − ∂rji
∂vx

y− vy(j− 1)T
∂rji
∂vx

∂κ(θ)
∂vy

=
_
r ji(j− 1)T − y

∂rji
∂vy
− (j− 1)T

(
∂rji
∂vy

vy + rji

)

(57)

θ0 =
[
x0 y0 vx0 vy0

]T is the initial guess, which can be calculated from the closed-
form solution (48), and ∂rji/∂θi can be computed using (15).

Expressing (55) in matrix form gives:

F(θk+1 − θk) = −P (58)

where θk is the kth iterative estimate of θ.
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F =


∂g1(θ)

∂x
∂g1(θ)

∂y
∂g1(θ)

∂vx

∂g1(θ)
∂vy

∂g2(θ)
∂x

∂g2(θ)
∂y

∂g2(θ)
∂vx

∂g2(θ)
∂vy

∂g3(θ)
∂x

∂g3(θ)
∂y

∂g3(θ)
∂vx

∂g3(θ)
∂vy

∂g4(θ)
∂x

∂g4(θ)
∂y

∂g4(θ)
∂vx

∂g4(θ)
∂vx


∣∣
θ=θk

P =
[
g1(θk) · · · g4(θk)

]T

(59)

Since P is the derivate of the log-likelihood function, we find the MLE as follows:

θk+1 = θk −
(

FTF
)−1

FTP (60)

Note that, at the convergence of θk+1 = θk, and from (55) g1(θk) = g2(θk) = g3(θk) =
g4(θk) = 0, as desired. To avoid the divergency of the proposed iterative method, the
closed-form solution (48) obtained from the two-step WLS is used as the initial value for
the iterative method.

6. Simulation Results

The simulations considered a square 40 m × 40 m region. Both the position and
speed of BN were assumed to follow the uniformly distributed random processes with
−20 ≤ x, y ≤ 20 m and −5 ≤ vx, vy ≤ 5 m/s. (0, 0) m, (−20, 20) m, (20, 20) m, (20, −20)
m, and (−20, 20) m were the coordinates of the RNs. A topology diagram of the RN
distribution is shown in Figure 3. The measurement interval T was set to be 0.5 s in
the simulation.
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The RMSEs are defined as

√
E
[(

x−_
x
)2

+
(

y−_
y
)2
]

in the units of m and were

obtained from the average of 5000 independent runs.
Figures 4 and 5 compare the positioning accuracy between the traditional location

algorithm for the case of one-spot TOA measurements and the proposed method for the case
of multi-spot measurements. Both the traditional WLS estimator [8,34] with a closed-form
solution and the CRLB [34] are compared in Figures 4 and 5 with the proposed closed-form
solution (48) and CRLB (19).

The RMSEs versus the standard deviations (STDs) σ of range measurement errors
are plotted in Figure 4. The number of multi-spot measurements was M = 6 in this
simulation. It was observed that both the proposed location algorithm and the proposed
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CRLB performed better than the traditional location and CRLB. With the increasing range
of measurement error, the proposed method had more obvious advantages.
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Figure 4. Comparison between the traditional method and the proposed method under different
TOA noises.
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Figure 5. Comparison between the traditional method and the proposed method under different Ms.

Performance comparisons with different Ms are recorded in Figure 5. The measure-
ment error range σ was set to 2 m in this simulation. The proposed method using multi-spot
measurements considerably outperformed the traditional method in the case of single-spot
measurements. As M increased, the performance of the proposed method and CRLB im-
proved. In contrast, the traditional method and CRLB remained unchanged since multi-spot
measurements were used to improve positioning accuracy.

The RMSE curve of the traditional method was more volatile than that of the proposed
method, as presented in Figure 5. This indicates that a greater number of measurements
collected from multi-spot measurements can help to maintain system stability.

Figures 4 and 5 show that the proposed CRLB was smaller than the traditional CRLB.
This finding is in agreement with Proposition 1, which proves its effectiveness.

The following simulations were performed to observe how the proposed methods
would perform with different estimators. Those estimators included the LS solution (32),
the two-step WLS solution (48), and the iterative solution (60). The former two have a
closed-form solution, whereas the final one needs an iterative search process.

Figure 6 shows the RMSEs’ versus the STDs σ of the range measurement errors when
M = 6. It can be seen from the figure that both the proposed methods with WLS and
iterative estimators performed better than the LS estimator. Among those estimators, the
iterative method of Newton–Raphson had the best performance and could attain the CRLB.
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Although the proposed WLS method attempted to achieve optimal performance with the
closed-form solution, there was a slight gap between the proposed WLS method and the
CRLB under the condition of large measurement noise. This is because only two relations,
u1 = x2 + y2 and u2 = v2

x + v2
y, are used in the proposed WLS method (41) to improve

positioning accuracy. The relation u3 = xvx + yvy is not considered in (41) due to its severe
nonlinearity. It is difficult to obtain a closed-form solution with u3 = xvx + yvy.
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Figure 6. Comparison of the proposed methods under different TOA noises.

Performance comparisons with different Ms and σ = 2m are recorded in Figure 7. This
simulation also proved the effectiveness of the proposed methods with closed-form and
iterative estimators.
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Figure 7. Comparison of the proposed methods under different Ms.

An inappropriate choice of the initial value will lead to divergence in the iterative
method. Figure 8 shows the effects of the initial value on the iterative solution. Both kinds
of initial values were used in the simulations. The first kind of initial value was calculated
from a WLS closed-form solution (48), whereas the other was generated by a uniform
random number. It can be seen from Figure 8 that a random initial value will result in
a large positioning error and a good initial guess from the WLS estimator (48) to always
keep the iterative method convergent to the global minimum. This implies that hybrid
architecture containing the proposed WLS estimator and iterative method may obtain a
higher positioning accuracy and more stable localization.
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7. Conclusions

This paper proposes two novel TOA localization methods with closed-form and
iterative solutions for a multi-spot measurement model. Compared with the existing
location method based on one-spot measurements, multi-spot measurements and motion
information are utilized in the proposed method to reduce location errors. The CRLB for
the proposed method was derived. The relationship between the proposed CRLB and
traditional CRLB was also investigated. The simulation results show that the proposed
algorithms have a higher positioning accuracy than the traditional methods. In addition,
the proposed iterative method achieved optimal performance since it could attain the
corresponding CRLB. A summary table comparing the proposed and traditional methods
is provided in Table 1.

Table 1. Comparison between the traditional and proposed location methods.

Traditional Location
Methods Proposed Location Methods

Model Single-spot measurement
model

Multi-spot measurement
model

CRLB tr

{((
H1HT

1
σ2

)−1
)

2×2

}
tr





M
∑

j=1
HjHT

j

σ2


−1


2×2


The unknown parameters to

be estimated (x, y)
(

x, y, vx, vy
)

The number of measurement
equations N N*M

Positioning accuracy Low High
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18. Guerra, A.; Guidi, F.; Dardari, D.; Djurić, P.M. Near-Field Tracking with Large Antenna Arrays: Fundamental Limits and Practical

Algorithms. IEEE Trans. Signal Process. 2021, 69, 5723–5738. [CrossRef]
19. Asif, H.M.; Affan, A.; Tarhuni, N.; Raahemifar, K. Deep Learning-Based Next-Generation Waveform for Multiuser VLC Systems.

Sensors 2022, 22, 2771. [CrossRef]
20. Mizeraczyk, J.; Studanski, R.; Zak, A.; Czapiewska, A. A Method for Underwater Wireless Data Transmission in a Hydroacoustic

Channel under NLOS Conditions. Sensors 2021, 21, 7825. [CrossRef]
21. Sun, M.; Wang, Y.; Huang, L.; Xu, S.; Cao, H.; Joseph, W.; Plets, D. Simultaneous WiFi Ranging Compensation and Localization

for Indoor NLoS Environments. IEEE Commun. Lett. 2022, 26, 2052–2056. [CrossRef]
22. Pandey, A.; Tiwary, P.; Kumar, S.; Das, S.K. FadeLoc: Smart Device Localization for Generalized κ−µ Faded IoT Environment.

IEEE Trans. Signal Process. 2022, 70, 3206–3220. [CrossRef]
23. Qi, Y.; Kobayashi, H.; Suda, H. Analysis of Wireless Geolocation in a Non-Line-of-Sight Environment. IEEE Trans. Wirel. Commun.

2006, 5, 672–681.
24. Huang, J.; Wan, Q. Analysis of TDOA and TDOA/SS based geolocation techniques in a non-line-of-sight environment. J. Commun.

Netw. 2012, 14, 533–539. [CrossRef]
25. Miao, H.; Yu, K.; Juntti, M. Positioning for NLOS propagation: Algorithm derivations and Cramer–Rao bounds. IEEE Trans. Veh.

Technol. 2007, 56, 2568–2580. [CrossRef]
26. Behnad, A.; Wang, X.; Hanzo, L.; Willink, T.J. Connectivity-based centroid localization using distributed dense reference nodes.

IEEE Trans. Veh. Technol. 2018, 67, 6685–6689. [CrossRef]

http://doi.org/10.1109/MSP.2005.1458287
http://doi.org/10.1109/TST.2016.7488736
http://doi.org/10.1186/1687-1499-2012-157
http://doi.org/10.1109/JIOT.2021.3049631
http://doi.org/10.1109/TC.2014.2349524
http://doi.org/10.1109/TSMCA.2011.2157132
http://doi.org/10.1109/TSP.2011.2152400
http://doi.org/10.1109/78.301830
http://doi.org/10.1049/iet-rsn.2010.0061
http://doi.org/10.3390/s16091452
http://doi.org/10.1109/25.933304
http://doi.org/10.1109/25.669079
http://doi.org/10.1109/25.554738
http://doi.org/10.1109/TSP.2008.2007916
http://doi.org/10.1109/TVT.2021.3092255
http://doi.org/10.3390/s16122115
http://doi.org/10.1109/ACCESS.2022.3173806
http://doi.org/10.1109/TSP.2021.3101696
http://doi.org/10.3390/s22072771
http://doi.org/10.3390/s21237825
http://doi.org/10.1109/LCOMM.2022.3187208
http://doi.org/10.1109/TSP.2022.3183527
http://doi.org/10.1109/JCN.2012.00011
http://doi.org/10.1109/TVT.2007.899948
http://doi.org/10.1109/TVT.2018.2806198


Sensors 2022, 22, 9559 17 of 17

27. Elsawy, H.; Dai, W.; Alouini, M.-S.; Win, M.Z. Base station ordering for emergency call localization in ultra-dense cellular
networks. IEEE Access 2018, 6, 301–315. [CrossRef]

28. Bulusu, N.; Heidemann, J.; Estrin, D. GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. Mag.
2000, 7, 28–34. [CrossRef]

29. Shang, Y.; Ruml, W.; Zhang, Y.; Fromherz, M.P.J. Localization from mere connectivity. In Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking & Computing, Annapolis, MD, USA, 1–3 June 2003; pp. 201–212.

30. He, T.; Huang, C.; Blum, B.; Stankovic, J.; Abdelzaher, T. Range-free Localization Schemes in Large Scale Sensor Networks. In
Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, Annapolis, MD, USA, 14–19
September 2003; pp. 81–95.

31. Chen, H.Y.; Shi, Q.J.; Tan, R.; Poor, H.V.; Sezaki, K. Mobile Element Assisted Cooperative Localization for Wireless Sensor
Networks with Obstacles. IEEE Trans. Wirel. Commun. 2010, 9, 956–963. [CrossRef]

32. Huang, J.; Gu, K.; Wang, Y.; Zhang, T.; Liang, J.; Luo, S. Connectivity-Based Localization in Ultra-Dense Networks: CRLB,
Theoretical Variance, and MLE. IEEE Access 2020, 8, 35136–35149. [CrossRef]

33. Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993.
34. Huang, J. Calculation of mobile location based on TOA/SS Measurements. KSII Trans. Internet Inf. Syst. 2012, 6, 3166–3181.

[CrossRef]

http://doi.org/10.1109/ACCESS.2017.2759260
http://doi.org/10.1109/98.878533
http://doi.org/10.1109/TWC.2010.03.090706
http://doi.org/10.1109/ACCESS.2020.2974320
http://doi.org/10.3837/tiis.2012.12.008

	Introduction 
	System Model 
	Cramer–Rao Lower Bound 
	The Proposed Method with a Closed-Form Solution 
	The Proposed Method with Iterative Solution 
	Simulation Results 
	Conclusions 
	References

