
Citation: Nguyen, H.-V.; Bae, J.-H.;

Lee, Y.-E.; Lee, H.-S.; Kwon, K.-R.

Comparison of Pre-Trained YOLO

Models on Steel Surface Defects

Detector Based on Transfer Learning

with GPU-Based Embedded Devices.

Sensors 2022, 22, 9926. https://

doi.org/10.3390/s22249926

Academic Editors: Pedro Melo-Pinto,

João L. Monteiro, Duarte Fernandes

and Antonio Silva

Received: 10 November 2022

Accepted: 12 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Comparison of Pre-Trained YOLO Models on Steel Surface
Defects Detector Based on Transfer Learning with GPU-Based
Embedded Devices
Hoan-Viet Nguyen 1,2, Jun-Hee Bae 1, Yong-Eun Lee 1, Han-Sung Lee 1 and Ki-Ryong Kwon 2,*

1 Intown Co., Ltd., No. 401, 21, Centum 6-ro, Haeundae-gu, Busan 08592, Republic of Korea
2 Department of Artificial Intelligence Convergence, Pukyong National University,

Busan 48513, Republic of Korea
* Correspondence: krkwon@pknu.ac.kr or kiryongkwon@gmail.com; Tel.: +82-51-629-6257

Abstract: Steel is one of the most basic ingredients, which plays an important role in the machinery
industry. However, the steel surface defects heavily affect its quality. The demand for surface defect
detectors draws much attention from researchers all over the world. However, there are still some
drawbacks, e.g., the dataset is limited accessible or small-scale public, and related works focus on
developing models but do not deeply take into account real-time applications. In this paper, we
investigate the feasibility of applying stage-of-the-art deep learning methods based on YOLO models
as real-time steel surface defect detectors. Particularly, we compare the performance of YOLOv5,
YOLOX, and YOLOv7 while training them with a small-scale open-source NEU-DET dataset on
GPU RTX 2080. From the experiment results, YOLOX-s achieves the best accuracy of 89.6% mAP on
the NEU-DET dataset. Then, we deploy the weights of trained YOLO models on Nvidia devices to
evaluate their real-time performance. Our experiments devices consist of Nvidia Jetson Nano and
Jetson Xavier AGX. We also apply some real-time optimization techniques (i.e., exporting to TensorRT,
lowering the precision to FP16 or INT8 and reducing the input image size to 320 × 320) to reduce
detection speed (fps), thus also reducing the mAP accuracy.

Keywords: steel surface defect detection; YOLOv5; YOLOX; YOLOv7; Nvidia Jetson Devices

1. Introduction

In the workflow of producing industrial products, there are many factors, such as
equipment, human, atmosphere, environment and processing technology, that causes
defects on the surface of the product. Besides, surface defects lead to many side effects,
for example, reducing the products’ quality and price and also increasing the chances of
harmful and unstable effects on the following steps in the process workflow [1]. As a result,
surface defects detector plays an important role in the production line. Nowadays, most
inspections of defects are carried out by humans, whose efficiency varies from person to
person. Also, the long duration working of eye observation often results in missing or
wrong detection. The most significant drawback of manual detection is that the speed of
detection is slower than that of the production line, which leads to operating the production
line in low-speed mode, and reduces the efficiency of the whole workflow. Therefore,
there are huge demands to find alternative solutions for manual inspection or replace
human eyes with automated inspection systems. With the booming of computer vision
and particularly deep learning, following object detection tasks, defects on the surface of a
product can be considered as a specific object, which was applied in many industrial fields,
e.g., wood, tiles, fabric, and steel. Defect detection has become a hot application that has
drawn much attention from researchers and companies from all over the works. Among
many industrial fields, steel production line plays an important role in heavy industry.
Thus, many scholars have proposed methods for the detection and classification of steel
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surface defects with satisfying results. However, there are some fundamental problems
of surface defects detection in general or particularly steel surface defect, namely real-
time performance, small-scale dataset sample, small size target problem and unbalanced
sample identification problem [2]. In addition, realscenarios in industrial production lines
require real-time performance and an end-to-end system ranging from camera setup for
image acquisition to devices for edge computing with deep learning models and screens
to display detection and classification results for supervision. According to this problem,
there is huge potential for improvement to meet demands from industrial production line
perspectives. In this paper, we investigate the feasibility of using state-of-the-art one-state
(SOTA) detector algorithms of the YOLO family to solve these problems mentioned above.
Particularly, the contribution of this paper is as follows:

• Firstly, we compare the accuracy and speed of YOLOv5, YOLOX and YOLOv7 for
real-time steel surface defects detectors. In detail, we conduct training experiments on
these pre-trained models of the YOLO family with the transfer learning method on
the NEU-DET dataset.

• Secondly, we deploy trained models on 3 devices to verify the feasibility of these
models for real-time application, including the advanced high-computing PC GPU
server with four RTX 2080, NVIDIA Jetson Xavier, and Jetson Nano to evaluate their
real-time performance for steel surface defects detector.

The remainder of this essay is structured as follows. In Section 2, the literature review
of steel surface defects detection based on deep learning is presented, which shows some
limitations of previous works. In Section 3, we discuss the architecture of SOTA YOLO
models, their specifics strong points and weaknesses. In Section 4, evaluation metrics
are listed, followed by experiment setup. The training results and comparison will be
introduced in Section 5. Then, we conclude the paper in Section 6.

2. Related Work

In the scope of our study, we focus on real-time steel surfaces detector and study liter-
ature reviews according to this criterion as shown in Table 1. From literature reviews [2,3],
there are two main approaches to object detection following deep learning methods accord-
ing to detection accuracy and speed, including a two-stage and one-stage detector. The most
popular method of a two-stage detector is Faster R-CNN (Faster Recurrent-Convolution
Neural Network) [4], which utilizes a region proposal network (RPN) to generate regions
of interest (ROIs) and then process classification and position regression on these ROIs.
For example, ref. [5] proposed a lightweight version of Faster R-CNN by replacing feature
extraction’s conventional convolution layer with depthwise separable convolution to boost
the speed of detection by fours time and adding center loss to improve the model’s ability
to classify different types of defects. This proposed network was trained on 4655 images
of 6 types of defects, which attained an accuracy of 98.32% and an average inference time
of 0.05 s per image (or 20 fps). In contrast, the representative methods of the one-stage
detector are SSD [6] and YOLO [7], which utilizes a single network without RPN to detect
ROIs to increase inference speed. Ref. [8] improved the YOLO network with 27 convolution
layers, then evaluated on 1200 images of 6 types of steel strip surface defect, which achieved
mean average precision (mAP) accuracy of 97.55% and detection speed of 83 FPS on GTX
1080Ti GPUs. Note that the dataset in [5,8] is not publicly available. At the same time, the
following studies evaluated the same open-source steel surface defect, namely NEU-DET.
Ref. [9] proposed CP-YOLOv3-dense, which is improved from the YOLOv3 baseline by
implementing priority classification on the images, and replacing the two residual network
modules with two dense network ones. Evaluation on NEU-DET, this method achieved
mAP accuracy of 82.73 and the inference speed of 9.68 ms per image on GPU PG102 TitanX.
Ref. [10] contributed a novel large-scale steel surface defect dataset, namely GC10-DET,
and also proposed improved SSD with hard negative mining to encounter the problem
of different scales and data imbalance of defects. The evaluation results on NEU-DET
achieved an mAP accuracy of 72.4% and a detection speed of 27 ms on GPU RTX 2080Ti.
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Ref. [11] proposed IMN-YOLOv3 by replacing the conventional YOLOv3 backbone with
MobileNetV2, introducing EFPN and FFM to detect multi-size defects, and adding IoU loss
to encounter the difference between classification and bounding box-regression. The results
on NEU-DET achieved an accuracy of 86.96% and a detection speed of 80.98 fps on the
Tesla V100 GPU. Ref. [12] introduced a two-stage defects detector based on the proposed
YOLOv5 and Inception-ResnetV2 models. This two-state framework achieved an accuracy
of 83.3%, while improved YOLOv5 only got 78.1%. From the literature review, there are
still potential improvements. For example, the YOLOv3 model is quite out of date, which
was first published in 2018, and the real-time analysis was only carried out on advanced
high-computing GPU servers, which did not take into account SoC devices or lightweight
devices for application in real industrial scenarios. Also, there is a peer-reviewed compari-
son of YOLOv3 and modified YOLOv3, improved YOLOv5 (version 5.0), SSD, and Faster
R-CNN. However, pre-trained YOLOv5 (version 6.0), YOLOv7 and YOLOX are yet to be
compared for real-time application in steel surface defect detection. These YOLO models
will be investigated and discussed in Section 3.

Table 1. Related work of steel surface defect detection algorithms.

Reference Dataset Algorithms Results

Ref. [12]
2022

Enriched-NEU-DET
2224 images

Train/Test/Validation Set:
6/2/2

Image Size: 576 × 576

Improved YOLOv5 78.1%

Ref. [11]
2022

Conventional
NEU-DET

Train:
Testing:

Resolution:416 × 416

IMN-YOLOv3-Pytorch
86.96%

80.959 fps
(GPU Tesla V100)

Ref. [10]
2020

Conventional
NEU-DET

Improved SSD with negative
hard mining

72.4%
27 ms

(GPU RTX 2080Ti)

Ref. [9]
2020

Relabeled Crazing defects
Of Conventional NEU-DET CP-YOLOv3-DarkNet

82.73%
9.68 ms

(GPU GP102 TITAN X)

Ref. [8]
2018 Private Dataset Improved YOLO

97.55%
83 fps

(GPU RTX 1080Ti)

Ref [5]
2018 Private Dataset Slighter

Faster R-CNN
98.32%
20 fps

3. YOLO Models Architecture

Figure 1 presents the overview architecture of the YOLO algorithm. Following the
different approach of conventional anchor-based models (e.g., Faster R-CNN [4] and
SSD [6]), YOLO [7] performs the task of object detection as a regression task without ROIs
detection. Instead, YOLO split the image into SxS grids to detect objects. If the object’s
centroid appears in a grid, the grid is appointed to detect the object. In detail, YOLO predicts
many bounding boxes with a different confidence score for each box. The confidence score
indicates how likely the bounding box contains an object. Also, the YOLO predicts class
probabilities per grid (regardless of the number of bounding boxes). Combining this
information, YOLO makes final detections of corresponding bounding boxes. In summary,
YOLOv1 is a fast single-stage object detector that is feasible for real-time application.
However, there are several drawbacks of YOLOv1. For example, each grid can only have
a class. If the small objects are very close to each other or two objects appear in the same
grid, this architecture falls for small object detection. Also, the generalization performance
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of YOLO when training with a custom small-scale dataset encounters some problems. For
example, the shapes of the bounding boxes are learned only through the training data, then
YOLO is unable to accurately predict new and unique shapes of bounding boxes in the
custom dataset.
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In the next three versions of YOLO, from v2 to v4, each update encounters the limi-
tation of the previous one by improving different parts of the model [13–15], mainly the
backbone, the most important part of the YOLO structure.

When YOLOv5 [16] was first released (YOLOv5 1.0), it can be considered as the
PyTorch [17] implementation of YOLOv4 [15] instead of Darknet framework [18] and has
a focus on exportability that can be deployed on various of environments. In 2022, the
latest updated version of YOLOv5 is 6.1 (or YOLOv5 6.1), with many improvements; we
will name them shortly as YOLOv5 in the following sections. For example, YOLOv5 nano
is first released in version 6. The YOLOv5n model contained approximately 75% fewer
parameters and also reduced size from 7.5 M to 1.9 M, which is ideal for lightweight
devices (i.e., mobiles) and CPU solutions [16]. In YOLOv5 6 version, the model backbone
architecture was significantly updated, e.g., the replacement of the Focus layer in version
1.0 with an equivalent Conv layer for improving exportability, replacement of the SPP layer
with new SPPF layer, and reorder places of SPPF at the end of backbone [16]. Although
YOLOv5 did not publish a peer-reviewed paper, through many updates, YOLOv5 has
proved to be the most popular YOLO model in the YOLO family, which become the baseline
of various improvements [12,19].

YOLOX [19] is another popular version of the YOLO family, which won the Streaming
Perception Challenge CVPR 2021. YOLOX is a single-stage object detector that develops
from the baseline of YOLOv3 with a DarkNet53 backbone and modified YOLOv5 backbone.
Particularly, the head of the conventional YOLO baseline is replaced by a decoupled one
in YOLOX. For each level of the feature map, a 1 × 1 Conv layer was used to reduce the
feature to 256. Then, two parallel branches were added with two 3 × 3 Conv layers, which
explains the name of the decoupled head. Each layer performs the task of classification
and regression tasks respectively, which reduces the time convergence of training and
the accuracy of the model. As opposed to conventional anchor-based YOLO algorithms,
YOLOX removes the anchor boxes and follows an anchor-free mechanism, which broadens
the deployment of YOLOX in SPC devices.

YOLOv7 [20] is the latest SOTA object detector in the YOLO family, which will be
released on June 2022 with a variety of structural reforms. The architecture is developed
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from the baseline of YOLOv4, Scaled YOLOv4, and YOLO-R. Also, the authors of these
models were co-authors of YOLOv7. Particularly, YOLOv7 introduced E-ELAN (Extended
Efficient Layer Aggregation Network) in the computational block of YOLOv7’s backbone
and Model Scaling for Concatenation (MSC) based on different models, which helps to
match these model requirements and make YOLOv7 more accessible in a variety of devices.
As in [20], till June 2022, YOLOv7 proved to be the fastest and most accurate real-time
object detector, which achieved AP accuracy of 56.8% and the inference speed from 5 to 160
FPS on various YOLOv7 models on the COCO dataset.

Although there are other update variations in the YOLO family (e.g., YOLOv6 [21],
PP-YOLO [22]), from deployment and exportability perspectives, we choose these three
variations, YOLOv5 (6.1), YOLOX (3.0) and YOLOv7 (1.0) as pre-trained models. Firstly,
these models support cache images before training, so it boosts the speed of training.
Secondly, these models share the same native Pytorch training platform and support
conversion from native training to another platform, such as ONNX or TensorRT, on their
GitHub link, which means easy to customize the setup for install requirements and deploy
applications on different devices, such as mobile and SoPC devices. In this work, we
focus on the deployment of SoPC devices for verifying the feasibility of real-time steel
surface detectors.

4. Experiments Setup
4.1. Training Environment

We conduct experiments on the NEU-DET dataset [23] that consists of 6 defects
categories on the surface of hot rolled steel strip, namely Rolled-in Scale (Rs), Patches (Pa),
Crazing (Cr), Pitted Surface (Ps), Inclusion (In), and Scratches (Sc). There are 200 images for
each type of defect, along with annotations files (or XML files), which contain information
on bounding boxes and classes of defects in each image. Some parts of the dataset are
shown in Figure 2, which indicates the complexity of the dataset and also the higher
requirements for the detector for the classification task.
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For evaluation, we utilize the average precision (AP) of each defect and the mean
average precision (mAP), precision (P) and recall (R) as the main accuracy evaluation
metrics [24–26]. For example, the higher the mAP, the more accurate, and the smaller
the mAP, the less accurate. In addition, to analyze real-time performance, we calculate
the processing time per image as milliseconds in terms of frame-per-second (fps). The
processing time per image includes pre-processing, inference and post-preprocessing time,
which indicates the time of acquiring input image, time of detection, and time of non-
maximum suppression (NMS), respectively.

For training, the YOLO models are trained with the NEU-DET dataset, which is
divided into 80/20 percent for training and validation, respectively, as shown in Table 2. In
order to evaluate those models’ accuracy performance fairly, we utilize the default settings
of each model without changing any hyper-parameters and keep the same initialization
parameters such as input image size, batchsize, and epochs. The epochs are initially set up
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to 100; the input image size is set as 640 × 640, and the batchsize is selected as 16. After
each epoch, the evaluation metrics are calculated, including the Average Precise (AP) for
each class, precision, recall, and the mean Average Precise (mAP). For future evaluation,
the weights of each model are saved, and the best weight shall be used for deployment.
For qualitative testing, the testing configurations are set up with an IoU threshold of 0.45, a
confidence threshold of 0.25, and an image size of 640 × 640 as same as training. YOLO
models are built, trained and tested by using 2 NVIDIA Graphics Processing Units (GPU)
with 10 GB of memory and a 2.20 GHz Intel® Xeon(R) Silver 4210 CPU. Other computer
settings were described in Table 3.

Table 2. Training/Testing Configuration.

Dataset Number Training/Testing Set Defect Name Defects

1800 images

Training set (1440 images)

Crazing
Inclusion
Patches

Pitted Surface
Rolled-in Scale

Scratches

Testing set (360 images)
845 labels

Crazing 137
Inclusion 190
Patches 189

Pitted Surface 79
Rolled-in Scale 137

Scratches 113

Table 3. Training/Testing setup environment on GPU server.

Device Configuration

Operating System Ubuntu 20.04

Processor Intel® Xeon(R) Silver 4210 CPU @ 2.20 GHz × 40

GPU RTX 2080 10 G × 2

GPU accelerator CUDA 11.2, Cudnn 8.1

Framework PyTorch 1.9.1

Complier IDE Pycharm

Scripting language Python 3.6

4.2. Deployment Devices Configuration

In order to test our model’s real-time performance, we deploy these YOLO-trained
models into two Nvidia Jetson devices, including high-end GPU-based Nvidia Jetson
Xavier AGX and low-end GPU-based Nvidia Jetson Nano. Deep learning and computer
vision are supported by Nvidia Jetson devices, which are embedded AI computing systems
with high performance and low power consumption. With the use of the NVidia JetPack
SDK, which includes the TensorRT, OpenCV, CUDA Toolkit, cuDNN, and L4T with the LTS
Linux Kernel, Jetson modules may be flashed [27]. The capabilities of Jetson AGX Xavier
have significantly surpassed those of earlier Jetson modules, especially Jetson Nano. The
detailed configuration of these two devices is listed in Table 4.

In addition, we conduct some real-time optimization techniques to reduce detection
time. For example, we convert these YOLO models from native Pytorch training weights to
TensorRT to deploy on NVIDIA devices. NVIDIA TensorRT is a high-performance inference
optimizer and runtime that can be utilized to perform inference in lower precision (FP16
and INT8) on GPUs. Besides, while converting to TensorRT, we were able to select lower
settings of precision (i.e., from FP32 to FP16 or INT8) and input image size (i.e., 640 × 640
to 320 × 320) to reduce inference time but lower the mAP accuracy.
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Table 4. Deployment devises configuration.

Devices/
Configurations

NVIDIA
Jetson Xavier AGX

NVIDIA
Jetson Nano

AI Performance 5.5–11 TFLOPS (FP16)
20–32 TOPS (INT8) 0.5 TFLOPS (FP16)

CPU

8-core NVIDIA Carmel
Arm®v8.2
64-bit CPU

8 MB L2 + 4 MB L3

Quad-Core Arm Cortex-A57
MPCore

GPU
512-core NVIDIA Volta™

GPU with
64 Tensor Cores

128-core NVIDIA Maxwel
GPU

DL accelerator 2x NVDLA v1 N/A

Memory 64 GB 256-bit LPDDR4x
136.5 GB/s

4 GB 64-bit LPDDR4
25.6 GB/s

Price $99 $699

Figure 3 shows the UML of the demo application, which is deployed on a server
with GPU RTX 2080. This application is customized using YOLOv5 source code as a
backend and programmed GUI front-end by PyQT5 and designer using Python language.
The configurations of our developed application include Python 3.6 and PyQt5 version
5. We develop demo software using YOLOv5 source code because YOLOv5 has the 6th
updated version over the last two years and is a well-supported platform. This demo
application is also successfully deployed on Nvidia Jetson devices with some YOLOv5
source code customization based on our requirements. We set constraint types of image or
video that which user can select, for example, "*.jpg" and "*.png” for image and “*.mp4”,
while YOLOv5 can support other types of input data. YOLOv5 also supports loading
livestream data by accessing to webcam’s camera. In backend detector, there are three
important features, such as "loadModel”, “loadDataset” and “detect”, which are customized
from YOLOv5 source code. YOLOv5 fully supports TensorRT “loadModel” and “detect”
functions by their source code, it boost the time of deploying application. While the recently
3rd update version of YOLOX also support for TensorRT deployment, and YOLOv7 is
recently released without fully support TensorRT deployment.
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Figure 4 shows the GUI of our demo application with YOLOv5 as the backend. As
can be seen from Figure 4, the user can click the button "Load Data" to select an image, the
video then click "Start Processing Data" to detect using Steel Surface Defects Detector then
display on the window screen. In the future work, we will develop our demo application by
customizing YOLOX instead of YOLOv5 source code as backend and deploy our software
on NVIDIA Jetson devices.
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5. Experimental Results and Discussion
5.1. Training Models Results

In the training phase, these two smallest network size of each those three variations
are built using pre-trained models weight of YOLOv5-n, YOLOv5-s, YOLOX-n, YOLOX-
s, and YOLOv7-Tiny and YOLOv7 with transfer learning. The results of the AP and
mAP@0.5 values in each model at an IoU threshold of 0.5 with a confidence threshold of
0.45 are shown in Table 5. It is noted that, several evaluation metrics (i.e., P and R in case
of YOLOX) are not calculated by their released source code, which are stated as “-/-” in
Table 5. From the pre-trained model weights property, including layers, parameters, GLOPs
and size, it can be clearly seen that the most lightweight model are YOLOX-n with 0.9 M
parameters only, while the YOLOv7 is the most computational complexity model with
37.2 M parameters. This pre-trained model weights information of these two models also
reflex the reverted trend of inference time (fps) RTX 2080 as 240 fps and 119 fps respectively.
Note that, the inference time in fps are calculated by using the best saving weights of
these model with native Pytorch training platform on their public github link without
any conversion.
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Table 5. Performance of six models on NEU-DET validation set on RTX 2080.

Pytorch
Models
Weights

Pre-Trained
Model

Parameters

AP@0.5 mAP@0.5 P R fps

Cr In Pa Pi Ri Sc

YOLOv5-n

280 layer,
3M paras,

4.3 GFLOPs
6.7 MB

40.1 87.3 90.4 82.7 64.0 91.4 76.0 77.3 70.7 159

YOLOv5-s

280 layers,
12.3M paras,
16.2 GLOPs

25.2 MB

46.1 82.2 91.1 87.8 64.9 91.8 77.3 76.6 73.0 133

YOLOX-n

–
0.91M paras,
1.08 GLOPs

7.6 MB

60.6 86.8 90.1 82.2 76.1 98.3 82.4 -/- -/- 243

YOLOX-s

–
9M paras,

26.8 GFLOPs
71.8 MB

72.8 90.2 99.3 89.3 87.7 98.3 89.6 -/- -/- 169

YOLOv7-Tiny

263 layers,
6M paras,

13.2 GLOPs
12.3 MB

37.0 82.8 87.8 82.3 55.5 89.0 72.4 65.8 72.8 167

YOLOv7

415 layers,
37.2M paras,
104.8 GLOPs

74.9 MB

36.8 85.6 88.1 80.7 58.7 90.4 73.4 68.3 73.7 119

As in [20], YOLOv7 has the best mAP results on COCO dataset with 80 classes.
However, when these pre-trained models are trained on the custom dataset, particularly in
this work steel surface defects NEU-DET dataset of 6 classes, YOLOv7 falls behind both
YOLOv5 and YOLOX. In NEU-DET dataset, the most difficult classes for classification
are crazing (Cr) and rolled-in-scale (Ro) ones. As can be seen in Table 5, the AP@0.5 of
these two Cr and Ro classes are very low, e.g., YOLOv5-n only get AP of Cr and Ro as
40.1% and 64%. These two low AP of two class Cr and Ro leads to the mAP@0.5 of all
6 defects reduces significantly. In contrast, patches and scratches are much more easier to
classify. For example, YOLOv5-n achieve AP for these two Pa and Sc classes as 90.5% and
91.4% respectively. YOLOX-s achieves the best mAP@0.5 on custom dataset NEU-DET
with accuracy of 89.6%, which achieved by successful classification of Cr, Ro, Pa and Sc as
72.79%, 87.65%, 99.25% and 98.3% respectively. YOLOX family (YOLOX-n and YOLOX-
s) proves to be the best NEU-DET steel surface defects classifier with mAP@0.5 of 82.4
and 89.6 respectively. In case of YOLOv5 family, YOLOv5s leads the accuracy of 1.3%
compared to YOLOv5-n but YOLOv5-s parameters are four times higher than YOLOv5-n.
By compensation between 1.3 % accuracy and 20 fps of inference times versus YOLOv5-n,
YOLOv5-n is quite promising on deploying on devices and proves to be a good model on
the release 6th update of YOLOv5. In case of YOLOv7 family, YOLOv7-Tiny fells behind
with only 1% less than YOLOv7 at 72.4 % accuracy but much more faster than YOLOv7
with nearly 50 fps.

Figure 5 shows the qualitative comparison training results of six pre-trained YOLO
models on NEU-DET dataset in term of accuracy mAP@0.5 and processing tim fps on
GPU RTX 2080. As can be seen in Figure 5, the fastest YOLO model is YOLOX-n while the
slowest one is YOLOv7. The model achieves the best accuracy of mAP@0.5 is YOLOX-s
while YOLOv7-Tiny get the lowest accuracy.
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Figure 6 shows the qualitative results of three pre-trained YOLO models, namely
YOLOv7-Tiny, YOLOv5-Nano and YOLOX-Nano. As can be seen from Figure 6, in some
test images, YOLOv7-Tiny cannot detect the Crazing and Rolled-in-Scale defects, wrongly
classifies Pitted Surface defect as Scratches, and miss detection some Inclusion and Scratches
defects. In comparison between YOLOv5-Nano and YOLOX-Nano, YOLOX-Nano proves
to be better detection of Crazing and Scratches than YOLOv5-Nano, which helps YOLOX-
Nano have better accuracy of mAP@0.5 than that of YOLOv5-Nano.
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Nano, and YOLOX-Nano.

5.2. Deployment on Devices Results

As mentioned before, while deploying on two NVIDIA Jetson devices, namely Xavier
AGX and Nano, we convert these models best weights from native Pytorch training plat-
form to TensorRT. Table 6 shows the comparison of these YOLO models TensorRT weights
in terms of model size storage and inference time on two NVIDIA devices. As can be shown
in Table 6, the smallest model size is YOLOX-n at 4.7 MB, that follows by YOLOv7-Tiny
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and YOLOv5-n at 15 and 19.6 MB respectively. The two version nano and small of YOLOX
models, namely YOLOX-n and YOLOX-s are the smallest model size compared to their
corresponding versions of YOLOv5. While the largest model size belongs to YOLOv7
at 135 MB.

Table 6. Comparison of different YOLO-TensorRT models in term of size storage and inference time
on NVIDIA Jetson devices.

TensorRT
Models
Weight

Model Size
(MB)

NVIDIA
Jetson

Devices

Inference Time
(ms) FPS

YOLOv5-n 19.6
Xavier AGX 20 48

Nano 54.7 18

YOLOv5-s 66.2
Xavier AGX 44 23

Nano 99.9 10

YOLOX-n 4.7
Xavier AGX 24.87 40

Nano 78.13 13

YOLOX-s 21.5
Xavier AGX 31.64 32

Nano 128.87 8

YOLOv7-Tiny 15
Xavier AGX 25.1 40

Nano 63 16

YOLOv7 135
Xavier AGX 58.6 17

Nano 319 3

Note that the inference time is calculated in millisecond from these models default
Github source code, which we convert to fps for easier real-time evaluation. NVIDIA Jetson
Xavier AGX is a very powerful device, which YOLOX and YOLOv5 family can achieve
real-time performance with highest fps of 48 and lowest fps of 23. In the case of YOLOv7,
the authors report that YOLOv7 is not suitable for mobile device deployments. It can
be seen from Table 6 YOLOv7 requires very high computation resources. Also, YOLOv7
proves to be not feasible for real-time detectors when deploying on NVIDIA Jetson devices,
Xavier and Nano, with very low average fps of 17 and 3 respectively. At the same time, the
real-time performance of YOLOv7-Tiny on Jetson Xavier is very promising, with an fps of
40, which is similar to YOLOX-n.

In this work, we also take into account low-cost devices like Jetson Nano for real-time
performance evaluation. The nano weights size of YOLOv5 and YOLOX and the tiny
weight of YOLOv7 achieves 18, 13, and 16 fps, respectively. For low-cost devices like Nano,
these fps are feasible for nearly real-time object detectors. As for small weight size, both
YOLOv5 and YOLOX achieve around 9 fps, while YOLOv7 falls behind at 3 fps, which is
not suitable for the real-time detector.

Figure 7 presents the combination performance of accuracy mAP@0.5 and inference
time fps on the Jetson Nano device. To compensate for these two factors, YOLOX-s proves
to be the best detector with the highest points of 97.6, then YOLOX-n and YOLOv5-n fall
behind shortly with 95 and 94, respectively.

In real industrial scenarios, considering the distance between the camera and the
production line from 50–100 cm and the typical maximum speed of the running line at
about 30 m per second (m/s), the inference speed of the device should be at least from 30
to 60 fps [8]. From the results of the experiments, it can be seen that the high computing
device (i.e., Jetson Xavier) can achieve real-time performance (i.e., more than 30 fps) with
several YOLO-TensorRT models (i.e., YOLOX-s, YOLOv5-n, YOLOv7-Tiny). While the low
computing device (i.e., Jetson Nano) fails to fulfill the real-time performance, the detection
speed at 18 fps of YOLOv5-n and 16 fps of YOLOv7-Tiny are quite impressive compared
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with the affordable price of Jetson Nano. It is noted that, in this work, we only export
the YOLO weight from native Pytorch to TensorRT while keeping the precision at FP32
and input image size of 640 × 640 similar as training configurations, to keep the mAP
accuracy. In the case of reducing the precision from FP32 to FP16 or INT8 and input image
size from 640 × 640 to 320 × 320, we can boost the detection speed but lower the mAP
accuracy. In summary, the cost of hardware is very important for factory applications.
Besides, not only the hardware but also the model is a crucial factor as well. As the model
complexity increase, higher computing power is necessary to maintain or reduce inference
time. However, there is a constraint of upgrading hardware to increase computing power
under the cost limitations (funding). Thus it is necessary to choose the model and hardware
according to computing power, cost and inference time depending on the defined problem
or analysis purpose with data (i.e., the steel surface defect detection scenarios in this work).
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6. Conclusions

In this work, we verify the performance of stage-of-the-art YOLO family models for
the task of real-time steel surface defect detection and classification in terms of accuracy
and real-time analysis. The motivation of this work is also to testify to the feasibility
of deploying YOLO models on devices for smart-factory applications. We conduct a
comprehensive experiment from YOLO models comparison and deployment application
for real-time steel surface defect detector, which boosts the time of further research and
bridges the gap between research and factory. Apart from these fundamental features, we
customize the application with other options, such as saving detected results in the format
of image or video according to input data and calculating real-time mAP accuracy, which
can be integrated into the smart-factory application.
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