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Abstract: In recent years, the development of interface debonding defect detection methods for
concrete-filled steel tubes (CFSTs) using stress wave measurement with piezoelectric-lead-zirconate-
titanate (PZT) actuator and sensor has received significant attention. Because the concrete core
in CFSTs is a heterogeneous material with randomness at the mesoscale, the size, position and
distribution of aggregates unavoidably affect the stress wave propagation and the PZT sensor
response. In this study, to efficiently investigate the influence of the mesoscale structure of the
concrete core of CFSTs on the response of embedded PZT sensors, a multi-physics substructure model
of CFST members coupled with a PZT actuator and a PZT sensor, where a single circular aggregate
with different size and position and randomly distributed circular aggregates are considered, are
established first. Then, multi-physics simulations on the effect of the local mesoscale structure
of the concrete core on the response of the embedded PZT sensor excited by both a sinusoidal
signal and sweep frequency signal are carried out. Moreover, corresponding multi-physics and
mesoscale simulations on the embedded PZT sensor response of substructures with different interface
debonding defects are also carried out for comparison. The amplitude and the wavelet packet
energy of the embedded PZT sensor response of each mesoscale substructure are employed to
distinguish the influence of the concrete core mesoscale structure and interface debonding defect on
sensor measurement. The findings from the results with the multi-physics coupling substructure
models are compared with those of the full CFST-PZT coupling models and the tested members
of the previous studies to verify the rationality of the embedded PZT sensors measurement of the
established substructure models. Results from this study show that the effect of interface debonding
defect on the amplitude and the wavelet packet energy of the embedded PZT sensor measurement of
the CFST members is dominant compared with the mesoscale heterogeneity and randomness of the
concrete core.

Keywords: interface debonding detection; mesoscale concrete; multi-physics coupling models; embedded
piezoelectric-lead-zirconate-titanate (PZT) sensor; concrete-filled steel tube (CFST); substructure

1. Introduction
1.1. Problem Statement

As a typical concrete-steel composite structure, concrete-filled steel tube (CFST) mem-
bers have been widely used as significant vertical and axial load-carrying members in

Sensors 2022, 22, 1039. https://doi.org/10.3390/s22031039 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031039
https://doi.org/10.3390/s22031039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8336-3306
https://orcid.org/0000-0003-2220-0487
https://doi.org/10.3390/s22031039
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031039?type=check_update&version=1


Sensors 2022, 22, 1039 2 of 19

long-span bridges and super high-rise buildings due to their advanced mechanical behav-
ior under strong dynamic loadings, such as earthquakes, where the confinement effect
of the steel tube on the concrete core plays a key role. However, the possible interface
debonding defect between the concrete core and the steel tube has been a common concern
due to shrinkage or apparent hydration heat. This is because the interface debonding
defect weakens the confinement effect of the steel tube on the concrete core and finally
leads to a negative effect on the load-carrying capacity, the stiffness and the ductility of
CFST members. Therefore, it is particularly critical to develop effective interface debonding
defect detection approaches for CFSTs [1].

In recent years, non-destructive testing (NDT) techniques, including the acoustic echo
method, electromagnetic method, infrared thermal imaging method, ultrasonic method
and the X-ray method have been proposed to detect different defects, including cracks
and debonding between concrete and rebars in reinforced concrete (RC) structures [2–6].
Unfortunately, most existing methods do not work effectively for the interface debonding
defect and voids detection for CFST members due to the electromagnetic shielding effect of
the steel tube and the complexity of the internal structure of CFST members. Because the
propagation of stress wave in steel tube and concrete core of CFST members is not affected
by the electromagnetic shielding effect of steel tube, the detection approach for the interface
debonding defect of CFST members with stress wave measurement using piezoelectric lead
zirconate titanate (PZT) materials has received significant attention in recent years. With
the advantages of the availability of different shapes, broad band response frequency, low
price, and the ability of being employed as both an actuator and a sensor simultaneously,
PZT patches have been widely employed in defect detection for concrete and RC structures
and composite materials.

Investigation of the mechanism of defect detection for complex structures, including
CFST members using PZT patch actuation and sensing technologies, is desired. Recently,
numerical simulations on the stress wave propagation and the response of the PZT sensor
embedded in or bonded on different structural members have been carried out to investigate
the defect detection mechanism using stress wave measurements. The concrete core in most
of the CFST numerical studies on stress wave propagation is usually modeled as a kind of
homogeneous material [7,8]. In fact, concrete is a typical multi-phase and heterogeneous
composite material, and the macroscale mechanical properties of concrete, including its
Young’s modulus and strength, are closely related to its mesoscale compositions in terms
of aggregates, mortar and the interfacial transition zone (ITZ) between them [9]. Therefore,
it is desirable to further study the effect of the mesoscale structure of the concrete core
in CFST members on the stress wave measurement of the PZT sensor to demonstrate the
feasibility of defect detection for CFST members using stress wave measurement [10].

Even though a variety of mesoscale modeling methods for the purpose of numeri-
cally investigating the effect of the mesoscale structure of concrete on both local and global
behavior of concrete materials and structures have been proposed [11–18], another challeng-
ing task for the high-frequency stress wave propagation simulation of a mesoscale CFST
member model is the high computation cost and low computation efficiency as the very
fine finite element model (FEM) and short integration time step are required. Therefore, it
is necessary to develop an effective numerical method, such as a mesoscale substructure
model for CFST members to efficiently explore the influence of the mesoscale structure
of concrete, including the size, the position and the distribution of a single aggregate
or aggregates between the PZT actuator and the embedded PZT sensor to demonstrate
the feasibility of the defect detection approach for CFST members using a stress wave
measurement where the concrete core should be considered as a heterogeneous material.

1.2. Literature Review on PZT Based Defect Detection for Engineering Structures

PZT materials have been used as either actuators or sensors for defect detection of
different engineering structures. A low frequency bending piezoelectric actuator with
integrated ultrasonic non-destructive evaluation (NDE) functionality was embedded in a
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composite laminate to detect damage using ultrasonic pulse excitation qualitatively [19].
In order to check the integrity of concrete structures, a PZT sensor was bonded to the
concrete sample to evaluate the compactness of the concrete [20]. Considering the fragility
of PZT materials, Ai et al. [21] developed PZT patches with impact resistance capability
and used the developed PZT sensors to access the damage of concrete beams under
an impact load. A new portable real-time Wireless impedance/Admittance Monitoring
System (WiAMS) was developed for damage detection of shear-critical RC beams [22]. PZT
sensors were arranged sequentially along a carbon fiber reinforced polymer (CFRP) to
detect the initiation and propagation of cracks between the CFRP and concrete under static
load [23]. For CFST members, a PZT-based interface debonding defect detection method
was firstly proposed by Xu et al. [24], and the effectiveness of the proposed approach
was demonstrated experimentally and numerically. Yan et al. [25] proposed a debonding
detection method for a CFST column specimen using ultrasonic guided wave technology.

Perera et al. [26,27] used the frequency spectrum method to establish a finite element
numerical model of FRP-reinforced RC beams and evaluated the damage of the models
with varying degrees of damage with several PZT sensors. The FEM of the FRP-reinforced
concrete beam was also established to verify the effectiveness of the electromechanical
impedance (EMI) technology in monitoring FRP debonding [28]. Actually, the coupling
effect between PZT and the host structures and the direct and inverse piezoelectric ef-
fects of PZT materials should be considered as a multi-physics problem when the mech-
anism of defect detection approaches for different engineering structures is investigated.
Xu et al. [29–34] and Chen et al. [35] established multi-physics coupling FEMs for rectan-
gular and circular CFST columns and numerically studied the stress wave propagation in
the CFST members through transient dynamic analysis. The effect of different influencing
parameters, including frequencies and amplitudes of excitation signals, the distance be-
tween the PZT actuator and the PZT sensor and different defect dimensions on stress wave
propagation and the linear relationship between the PZT input signal and the output signal
are discussed.

Most recently, in order to consider the mesoscale structure of the concrete core of CFST
members, Xu et al. [36] first performed mesoscale simulations on the influence of circular
aggregates distribution and the existence of ITZ on the stress wave propagation within a
cross-section of CFST members where the concrete core has randomly distributed circular
aggregates. The mesoscale simulation results show that, compared with the randomly
distributed circular aggregates in the concrete core, the influence of the interface debonding
defect on the embedded PZT sensor measurement is dominant. This study preliminarily
confirmed the feasibility of the interface debonding defect detection method using the stress
wave propagation measurement for rectangular CFST members where the concrete core
has different distributed circular aggregates. In order to enhance the mesoscale simulation
efficiency on stress wave propagation, Wang et al. [37] proposed a mesoscale homogeniza-
tion method to improve the simulation efficiency of the stress wave field of mesoscale CFST
models with differently distributed aggregates with different shapes. The results show that
different mesoscale structures of the concrete core of healthy CFST models may lead to
a certain difference in the output voltage signal of the embedded PZT sensor at a certain
distance from the surface-mounted PZT actuator. However, the influence of the mesoscale
structure between the PZT actuator and the embedded sensor on the measurement result
was only investigated for the interface debonding defect detection on whole CFST members
in the above study. Considering the fact that the stress wave propagation between the PZT
actuator and sensor is affected by the local mesoscale structure of concrete, it is reasonable
to investigate the influence of the mesoscale structure between the PZT actuator and sensor
in a CFST substructure on the measurement result of an embedded PZT sensor using a
substructure model.
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1.3. Aim of This Study

In this paper, in order to efficiently investigate the influence of the mesoscale structure
of the concrete core of CFST members on the output voltage response of the embedded
PZT sensor and to compare it with that of the interface debonding defect, the multi-
physics mesoscale simulation on the stress wave propagation of a substructure of CFST-PZT
coupling models, considering different circular aggregate size, position, distribution and
interface debonding defect, are carried out. The proposed mesoscale CFST-PZT coupling
substructure model can not only study the influence of the mesoscale component, including
aggregate dimension, position and distribution between the PZT actuator and embedded
sensor on the response of the embedded sensor, but can also significantly improve the
simulation efficiency.

In the mesoscale and multi-physics simulation on the stress wave propagation of
the substructure, both sinusoidal excitation signals with different frequencies and sweep
excitation signals are considered. The effect of the size, position of a single circular aggregate
and the distribution of circular aggregates on the embedded PZT sensor response and
the corresponding wavelet packet energy of healthy CFST members are investigated in
detail. Then, the effect of the size, position of a circular aggregate and the distribution of
circular aggregates on the embedded PZT sensor response and the corresponding wavelet
packet energy of the corresponding CFST members with interface debonding defects
are demonstrated and compared. Finally, the effect of the mesoscale structure of the
substructure on the response of embedded PZT sensors is compared with the interface
debonding defect and the finding from the numerical results with the substructure proposed
in this study is compared with that of the previous experimental study by the authors. The
rationality of the proposed mesoscale substructure model for stress wave propagation is
demonstrated. Mesoscale substructure simulation results show that the mesoscale structure
of the concrete core has a certain effect on the embedded PZT sensor response, but the
effect of the interface debonding defect on the embedded PZT sensor measurement is
dominant. The results imply that the interface debonding detection approach with stress
wave measurement for CFST members is reasonable even though the concrete core is a
heterogeneous material.

2. Control Equations for Multi-Physics Stress Wave Propagation of a Substructure of
CFST-PZT Coupling Systems
2.1. Control Equations for Stress Wave Propagation

The control equations for elastic stress wave propagation simulation in a solid medium
excited by a PZT actuator are shown in Equations (1)–(5) [29,38–40].

ρ
∂2u
∂t2 = ∇·S + FV (1)

S = Sa + C : εe (2)

εe = ε− ε0 (3)

ε =
1
2

[
(∇u)

T + (∇u)
]

(4)

∇ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)T
(5)

where ρ is the density of material, u represents the displacement vector, t is the time variable,
∇ is the gradient operator, S represents the stress tensor, FV stands for the external load
vector, Sa is the initial stress, C denotes elastic matrix, and εe is the difference between
strain ε and initial strain ε0.
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2.2. Control Equations of PZT Material in Solid and Static Electricity

The direct and inverse piezoelectric effects of the PZT sensor and actuator are consid-
ered in the coupling model composed of PZT patches and CFST members. The mechanical
balance equation of PZT patches is consistent with the force balance equation of conven-
tional solid materials except for the stress tensor shown in Equation (6).

SP = SPa + CPE : εPe − eT
PEP (6)

where SP represents the stress tensor, SPa is the initial stress, CPE stands for the inverse of
the flexible matrix, εPe is the difference between the strain and initial strain, eP represents
the piezoelectric stress constant matrix, and EP is the electric field strength.

The charge conservation equations of the PZT material in the electrostatic effect are
shown in Equations (7)–(11) [29,38–40].

∇·D = ρv (7)

D = Dr + ePεPe + ε0, vaεrsEP (8)

eP = dCPE (9)

εrs = εrT − CPEdT/ε0, va (10)

EP = −∇v (11)

where D stands for the electric displacement, ρv denotes the charge density, Dr is the
residual electric displacement, ε0, va and εrs stands for dielectric constant in a vacuum and
is the relative dielectric constant, d. refers to the coupling matrix, εrT represents relative
dielectric constant and V is the voltage.

2.3. Boundary Conditions Setting for a Substructure of the CFST-PZT Coupling Models

Different from the previous multi-physics mesoscale simulation studies by Xu et al. [35,36],
in this study, a substructure between the PZT actuator and sensor coupled with the PZT
actuator and sensor is investigated. The mechanical and electrical boundary for both the
PZT actuator and sensor is identical to that described in the previous studies performed by
Xu et al. In addition, the low reflection boundary along the three sides of the substructure
is used.

The low reflection boundary condition used for the substructure of the CFST member
coupled with the PZT actuator and sensor meets the following Equations (12) and (13) [29–31].

σ·n = −dim
∂u
∂t

(12)

dim = dim
(
K, cs, cp

)
(13)

where σ is the stress matrix and n is the normal vectors of boundary, dim stands for a
function where K denotes density, cs represents the shear wave velocity and cp is the
longitudinal wave velocity.

3. Multi-Physics Mesoscale Modeling for a Substructure of Coupling CFST-PZT
Systems
3.1. Multi-Physics Mesoscale Substructure Coupling Model

In this study, a mesoscale substructure, including a PZT actuator and a PZT sensor as
shown in Figure 1b from a mesoscale rectangular CFST-PZT coupling model as shown in
Figure 1a is considered and the output voltage response of the embedded PZT sensor in
the mesoscale substructures is numerically simulated.
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Figure 1. Cross-section and the FEM mesh of a CFST member with PZT patches as actuator and
sensor: (a) whole model; (b) substructure model.

In order to consider the influence of the size and the position of circular aggregates on
the stress wave propagation in the mesoscale substructure, a single circular aggregate with
different dimensions and at different locations is considered in the mesoscale model. For
comparison, an interface debonding defect is also considered in each mesoscale substructure
model. Three surrounding boundaries of each mesoscale substructure are modeled with
a low reflection boundary to limit the stress wave reflection on the boundaries for the
purpose of mimicking the stress wave propagation within the whole cross-section of the
CFST member.

The dimension of the whole rectangular CFST member is 410 mm × 410 mm, and the
thickness of the steel tube is 5 mm. The dimension of the concrete core is 400 mm × 400 mm.
The dimension of the mesoscale substructure is 150 mm × 100 mm. The length and the
thickness of the employed PZT actuator and sensor are 10 mm and 0.3 mm, respectively.
The PZT actuator is attached to the outer surface of the steel tube, and the PZT sensor is
embedded in the concrete core to measure the stress wave. The distance between the PZT
actuator and the PZT sensor is 80 mm, as shown in Figure 1b.

In order to investigate the influence of the mesoscale substructure of the concrete core
of CFST members on the output voltage signal and compare it with that of the interface
debonding defect, the following parameters, including the size, the lateral and longitudinal
position of a single circular aggregate shown in Table 1 are considered, where the origin of
the lateral and longitudinal position of the circular aggregate is defined as the midpoint
of the line connecting the center points of the PZT actuator and sensor. Finally, three
substructure models with different distributions of the circular aggregates taken from
three mesoscale CFST models are also established to further investigate the effect of the
heterogeneity and randomness of the mesoscale substructure of CFST members on PZT
sensor measurement in the following section.

Table 1. Definition of mesoscale parameters of substructures of CFST-PZT.

No. Aggregate Size (mm) Lateral Position (mm) Longitudinal Position (mm)

1 60 −30 −20
2 50 −15 0
3 40 0 20
4 30 / /
5 20 / /

3.2. Material Properties of the Mesoscale Substructure Model

The mesoscale CFST-PZT coupling substructure models are composed of circular
aggregates, mortar, and a steel tube, and their material parameters are shown in Table 2 [36].
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Table 2. Material properties.

Material Elastic Modulus (GPa) Poisson’s Ratio Density (kg/m3)

Steel 200 0.33 7850
Aggregate 55.5 0.16 2700

Mortar 26 0.22 2400

3.3. Meshing of the Mesoscale Coupling Substructure

In order to accurately simulate the response of an embedded PZT sensor in the
mesoscale substructure of each CFST-PZT coupling model, meshing with a suitable ele-
ment dimension is critical. The maximum dimension of the elements should satisfy the
following equation.

hmax ≤
v

5 f
(14)

where hmax is the maximum dimension of the element, v represents the wave speed and f
is the frequency of excitation signal.

Here, three sinusoidal signals with different frequencies including 10 kHz, 20 kHz and
30 kHz are considered. The input voltage amplitude of the excitation signal is 10 V. The
equation of the employed excitation signal is shown as follows.

Vt = V0 sin(2π f t) (15)

where Vt and V0 refer to the excitation voltage signal and its amplitude, t is the time instant.
The element number of each mesoscale coupling substructure model shown in Figure 1b

corresponding to different excitation frequencies is shown in Table 3.

Table 3. Number of elements corresponding to different frequencies for the mesoscale coupling
substructure model shown in Figure 1b.

Frequency Number of Elements

10 kHz 1376
20 kHz 1417
30 kHz 1860

4. Aggregate Effect on Steady Output Voltage Signal of the Embedded PZT Sensor of
the Substructure without Debonding under Sinusoidal Signal

The response of the embedded PZT sensor of each mesoscale coupling substructure is
numerically simulated when the size, lateral and position of a single circular aggregate and
the distribution of circular aggregates in the substructure are considered.

4.1. Effect of the Size of a Single Circular Aggregate

In order to investigate the effect of the size of a single circular aggregate on the
response of the embedded PZT sensor in mesoscale coupling substructures, five mesoscale
substructure coupling models with different circular aggregate sizes, as shown in Figure 2,
are established. The center of the aggregate is identical and located at the midpoint of the
line connecting the center points of the PZT actuator and sensor.
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Figure 2. Mesoscale coupling substrucures with different size of a single circular aggregate: (a) 60 mm;
(b) 50 mm; (c) 40 mm; (d) 30 mm; (e) 20 mm.

Figure 3a–c shows the comparison of the time histories of the response of the embed-
ded PZT sensor under different sinusoidal excitation signals when the size of the single
circular aggregate is different. It can be seen from Figure 3a–c that the time history of the
response of the embedded PZT sensor of each substructure with different circular aggregate
sizes does not have an obvious difference under an identical continuous sinusoidal signal
excitation. The comparison of steady output voltage amplitudes of the embedded PZT
sensor in each substructure is shown in Figure 3d under the excitation of different frequen-
cies. It can be found that when the frequency of the sinusoidal signal is 10 kHz, the output
voltage amplitude of the PZT sensor increases slightly with the increase of aggregate size.
When the sinusoidal signal frequency is less than or close to 20 kHz, the difference between
the voltage amplitudes is minimal even though the aggregate has different diameters within
the range of 20 mm–60 mm. For the five mesoscale substructure coupling models shown in
Figure 2, the centers of the PZT actuator, the aggregate, and the PZT sensor are in a straight
line. The response of the embedded PZT sensor of the model with a larger aggregate size is
greater than that of others because the stress wave attenuates less in the aggregates than in
the mortar.
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4.2. Effect of the Lateral Position of a Single Circular Aggregate

In this section, the influence of the lateral position of a single circular aggregate
between the PZT actuator and sensor on the response of the embedded PZT sensor is
studied. Here, the size of the single circular aggregate is 50 mm. Figure 4 shows the
mesoscale substructure coupling model with a circular aggregate relative to the PZT
patches at different lateral positions. The response amplitude of the embedded PZT sensor
under the continuous sinusoidal excitation signal at different frequencies is also shown
in Figure 5.
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Figure 5. The comparison of the response amplitudes of embedded PZT sensors in substructures
with different lateral positions under continuous sinusoidal signals with different frequencies.

Figure 5 shows the comparison of the steady amplitudes of the embedded PZT sensors
in each substructure with a single circular aggregate at different lateral positions under
sinusoidal excitation signals with different frequencies. It can be seen from Figure 5 that
when the lateral position of the single circular aggregate is 0 mm, the steady amplitude of
the response of the embedded PZT sensor is the largest. This result can also be explained
from the difference in the stress wave attenuation in the aggregate and mortar. For the
specimen shown in Figure 4a, more stress wave attenuates in mortar when it propagates
from the actuator to the sensor. However, for the specimen shown in Figure 4c, less
attenuation occurs when stress wave propagates from the actuator to the sensor due to the
existence of the aggregate at the center between the actuator and the sensor.

When the frequency of the excitation signal is less than or close to 20 kHz, the steady
amplitude of the response of the embedded PZT sensor does not obviously change with the
circular aggregate lateral position. When the frequency of the excitation signal is close to
10 kHz, the steady amplitude of the embedded PZT sensor response has a certain variation
due to the circular aggregate lateral position change. Since the lateral position of the single
aggregate leads to differences in the output voltage response of the embedded PZT sensor
when the frequency is close to 10 kHz, the frequency greater than or equal to 20 kHz is a
better choice to limit the effect of the lateral position of the signal aggregate on the response
of the embedded PZT sensor.
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4.3. Effect of the Longitudinal Position of a Single Circular Aggregate

In order to investigate the effect of the longitudinal position of a single circular aggre-
gate on the embedded PZT sensor response, three mesoscale coupling models considering
different longitudinal positions of the single circular aggregate, as shown in Figure 6, are
considered. The circular aggregate shown in Figure 6b is located in the middle of the PZT
actuator and sensor, and the circular aggregate shown in Figure 6a,c is 100 mm below and
above the middle point between the PZT actuator and sensor, respectively.
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Figure 6. The samples of substructure models with different aggregate longitudinal positions:
(a) −100 mm; (b) 0 mm; (c) 100 mm.

Figure 7 shows the comparison of steady amplitudes of the response of the embedded
PZT sensors in three mesoscale substructure coupling models under different frequencies.
It can be seen from Figure 7 that the steady amplitude of the embedded PZT sensor response
becomes smaller when the aggregate is closer to the PZT sensor, no matter which frequency
is used. This observation can also be explained by the different stress wave attenuation
in the aggregate and mortar and the wave field from the PZT actuator as a point source.
When comparing the stress wave propagation in Figure 6a,c, more stress attenuation occurs
in the mortar close to the PZT actuator in Figure 6c and less stress wave attenuation occurs
in the aggregate close to the PZT actuator in Figure 6a. Therefore, the response of the PZT
sensor in Figure 6c is less than that in Figure 6a. Moreover, the stress wave attenuation
in the region close to the PZT actuator is dominant because the PZT actuator is a point
source. Therefore, the steady amplitude of the embedded PZT sensors at a certain frequency
changes obviously due to different longitudinal positions of the circular aggregate.
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Figure 7. The comparison of steady amplitudes of the responses of the embedded PZT sensors in
the mesoscale substructure coupling models with different longitudinal positions of the circular
aggregate at different excitation frequencies.

Comparing the results shown in Figure 7 with those shown in Figure 5, it can be
concluded that the longitudinal position of the circular aggregate has a greater influence
on the steady amplitude of the embedded PZT sensor than that of the lateral position of
the circular aggregate in the healthy mesoscale CFST-PZT coupling substructure.
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4.4. Effect of Circular Aggregates Distribution of the Substructure

In order to consider the influence of the randomness and heterogeneity of the mesoscale
CFST-PZT substructure coupling model on the response of the embedded PZT sensor, three
substructure models taken from three CFST-PZT coupling systems with different three-
grade circular aggregates distributions are investigated. The three mesoscale substructure
models with their FEM mesh are shown in Figure 8. It should be mentioned here that
each mesoscale substructure coupling model is taken from a global mesoscale model with
different three-grade circular aggregates distribution, but the numbers of the aggregates of
the three grades of each global mesoscale are identical, which ensures that the macroscale
mechanical parameters of each global mesoscale model are identical. The response of
the embedded PZT sensor in the three mesoscale substructure coupling models under a
sinusoidal excitation signal with different frequencies is simulated.
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Figure 8. The samples of substructure models with different circular aggregates distribution for
substructures: (a) sample 1; (b) sample 2; (c) sample 3.

Figure 9 shows the comparison of the steady amplitude of the response of the embed-
ded PZT sensors in the three mesoscale substructure coupling models when the randomness
and heterogeneity of the concrete with three-grade circular aggregates are considered under
different excitation frequencies. From Figure 9, a certain difference between the steady
amplitudes of the embedded PZT sensor of the three samples under identical excitation fre-
quency can be found. It means that the randomness and heterogeneity of the concrete core
of the CFST member have a certain influence on the PZT sensor response of the mesoscale
healthy substructure coupling models. Because the stress wave propagation from the PZT
actuator to the PZT sensor is affected by the mechanical parameters of the aggregates and
the mortar, the random distribution of the aggregates should lead to a certain difference in
the PZT sensor response. However, for the studied three specimens with identical global
mechanical performance, the response of the embedded PZT sensor is limited.
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sensors in substructure models considering different aggregates distribution under different
excitation frequencies.
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5. Wavelet Packet Energy of the Embedded PZT Sensor Measurement Considering
Debonding under Sweep Frequency Excitation Signal

In this section, in order to distinguish the effect of the interface debonding defect of
CFST members and that of the heterogeneity and randomness of the mesoscale substruc-
tures coupling models on the embedded PZT sensor measurement, the response of the
embedded PZT sensor and its wavelet packet energy under a sweep frequency excitation
signal is discussed in detail.

The sweep excitation signal employed to excite the surface-mounted PZT actuator is
described in the following equations. The input voltage amplitude of the excitation signal
is 10 V.

Vt = V0 sin
(

2π( f0 +
f1 − f0

T
t
)

t) (16)

where Vt, V0 refer to excitation voltage signal and its amplitude, f (t), f0, f1 are the frequency
of signal at the time instant of t, initial frequency 10 kHz and final frequency 30 kHz in this
study, and T is the time duration of the sweep frequency signal and takes the value of 1 ms
in this study.

5.1. Effect of Interface Debonding Defect Compared with a Single Circular Aggregate Size

In order to investigate the effect of the interface debonding defect on the response
of embedded PZT sensors in the mesoscale substructure coupling models with different
single circular aggregate sizes, five mesoscale substructures with an identical interface
debonding defect, as shown in Figure 10, are established. The lateral position of the center
of the PZT actuator and sensor, the aggregate and interface debonding defect are identical.
The size of the interface debonding defect is 50 mm × 3 mm, and the diameters of the
circular aggregate are identical to those shown in Figure 2.
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Figure 10. Mesoscale substructure with identical interface debonding defect and different circular
aggregate sizes: (a) 60 mm; (b) 50 mm; (c) 40 mm; (d) 30 mm; (e) 20 mm.

Figure 11a shows the comparison of the response of the embedded PZT sensor in the
mesoscale substructure coupling models without the interface debonding defect under
a sweep frequency excitation signal. It can be found that the difference between the
embedded PZT responses is very limited, although the size of the single circular aggregate
is different. Figure 11b shows the comparison of the responses of the embedded PZT
sensor in the mesoscale substructure coupling models with the interface debonding defect
under a sweep frequency excitation signal. Comparing the results shown in Figure 11a,b,
it is clear that the response of the embedded PZT sensor in the healthy mesoscale CFST-
PZT substructure coupling models is higher than that of the corresponding mesoscale
substructure coupling models with the interface debonding defect. Figure 11c shows the
comparison of the wavelet packet energies of the embedded PZT sensor response in the
mesoscale substructure coupling models without and with the interface debonding defect.
It is clear that the existence of the interface debonding defect leads to an obvious wavelet
packet energy decrease even though the circular aggregate size is different. This result
indicates that the interface debonding defect of the substructure of a CFST member leads
to an obvious decrease in the response of the embedded PZT sensor, no matter what the
circular aggregate size in the mesoscale substructure is. The circular aggregate size between
the PZT actuator and sensor in the mesoscale substructure has less effect on the embedded
PZT sensor measurement than its interface debonding defect.
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Figure 11. The PZT sensor measurement and the corresponding wavelet packet energy of substruc-
tures with different circular aggregate sizes: (a) health; (b) with debonding; (c) the comparison of
wavelet packet energy value.

5.2. Effect of Circular Aggregate Lateral Position Compared with Interface Debonding Defect

In order to further investigate the effect of interface debonding defect on the response
of embedded PZT sensors in the mesoscale substructure coupling models with different lat-
eral positions of a single circular aggregate, three mesoscale substructure coupling models
with an identical interface debonding defect and an identical circular aggregate at different
lateral positions, as shown in Figure 12, are established. The diameter of the circular
aggregate is 50 mm, and the size of the interface debonding defect is 50 mm × 3 mm.
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Figure 12. Mesoscale substructures with interface debonding defect and different aggregate lateral
positions: (a) −30 mm; (b) −15 mm; (c) 0 mm.

Figure 13a shows the comparison of the response of the embedded PZT sensor in the
mesoscale substructure coupling models without the interface debonding defect under
the sweep frequency excitation signal. It can be found that the difference between the
response of the embedded PZT responses is very limited, even though the aggregate lateral
position is different. Figure 13b shows the comparison of the response of the embedded
PZT sensor in the mesoscale substructure coupling models with an identical interface
debonding defect under the sweep frequency excitation signal. Comparing the results
shown in Figure 13a,b, it is clear that the response of the embedded PZT sensor in the
healthy mesoscale substructure of the CFST-PZT coupling model is obviously higher than
those of the mesoscale substructure coupling models with an interface debonding defect.
Moreover, it can be seen from Figure 13c that the wavelet packet energy values of the
embedded PZT sensor of the mesoscale substructure coupling models are less affected
by the lateral position of aggregate. This finding is consistent with the results under the
sinusoidal excitation signal. It is concluded that the effect of interface debonding defect on
the wavelet packet energy values of the embedded PZT sensor measurement is dominant
compared with that of the different lateral positions of the single circular aggregate.
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5.3. Effect of Circular Aggregate Longitudinal Position Compared with Interface Debonding Defect

Further investigation on the effect of the longitudinal position of the single circular
aggregate on the embedded PZT sensor response compared with that of interface debond-
ing defect is carried out. Figure 14 shows three mesoscale substructure coupling models
with identical interface debonding and a single circular aggregate at different longitudinal
positions, where the diameter of the circular aggregate is 50 mm and the size of the interface
bonding defect is 50 mm × 3 mm. The embedded PZT sensor response and their corre-
sponding wavelet packet energies of the substructure coupling models without and with
the interface debonding defect considering different longitudinal positions of the circular
aggregate are shown in Figure 15.
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It can be seen from Figure 15a that the longitudinal position of the single circular
aggregate in the healthy mesoscale substructure CFST-PZT coupling models has an obvious
influence on the output voltage amplitude under the sweep frequency excitation. When the
longitudinal position of the circular aggregate is closer to the embedded PZT sensor, the
response of the PZT sensor is less than others. This trend is similar to that when sinusoidal
excitation is employed. As shown in Figure 15b, the effect of the longitudinal position
of the circular aggregate on the response of the embedded PZT sensor of the mesoscale
substructure coupling models with interface debonding is very limited. Figure 15c shows
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the comparison of the wavelet packet energy of the embedded PZT sensor measurement
in each healthy mesoscale substructure coupling model without and with the interface
debonding defect. From Figure 15c, it is clear that the wavelet packet energy of the
PZT sensor response of each healthy mesoscale substructure coupling model significantly
decreases as the longitudinal distance between the aggregate and the PZT sensor decreases.
However, the difference in wavelet packet energy values is minimal for the mesoscale
substructure CFST-PZT coupling models with the interface debonding defect even though
the aggregate longitudinal positions are different. Although the longitudinal position of the
circular aggregate affects wavelet packet energy values on healthy substructure obviously,
the effect of the interface debonding defect on the wavelet packet energy of the embedded
PZT sensor response is dominant.

5.4. Effect of Aggregates Distribution of Mesoscale Substructures Compared with Interface
Debonding Defect

Without a loss of generality, the effect of an interface debonding defect on the embed-
ded PZT sensor response in three different aggregates distributed substructure coupling
models is further investigated. The three mesoscale substructures with their FEM mesh are
shown in Figure 16, where the size of the debonding defect is 50 mm × 3 mm.
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Figure 16. The samples of different aggregates distribution for substructures with debonding:
(a) sample 1; (b) sample 2; (c) sample 3.

The response of the embedded PZT sensor of different mesoscale substructures without
and with interface debonding defects is simulated, and the results are shown in Figure 17.
From Figure 17a, it can be seen that the response of the embedded PZT sensor is affected
by the local aggregates distributions in the mesoscale substructures between the PZT
actuator and the PZT sensor when the distance between the PZT sensor and the PZT
actuator is 80 mm. Compared with the healthy mesoscale substructure, it can be seen
from Figure 17b that the aggregates distributions have little effect on the response of the
embedded PZT sensors in the mesoscale substructure coupling models with interface
debonding defects. In addition, from the wavelet packet energy analysis of the embedded
PZT sensor measurement under the sweep excitation signal as shown in Figure 17c, it can
be seen that although the aggregates distributions in the mesoscale substructure coupling
models have a certain effect on the embedded PZT sensor response of the substructures
without interface debonding, the interface debonding defect still plays a dominant role in
affecting the PZT sensor response when the heterogeneity and randomness of concrete in
CFST members is considered.

Compared with the results in the previous work about the response of the embedded
PZT sensor in a whole mesoscale CFST-PZT coupling model with different aggregate
distributions when the different interface debonding defects were considered [37], the
results from the proposed mesoscale substructure coupling model described above can
distinguish the effect of the mesoscale structure of concrete and those of the interface
debonding defect on the response of PZT sensor in the mesoscale CFST-PZT coupling
models. The findings from this study are consistent with those of the previous studies
by the authors. It can be concluded that the stress wave simulation results by using the
proposed mesoscale substructure coupling model are feasible.
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5.5. Effect of Interface Debonding Defect Length When the Aggregates Distribution of Mesoscale
Substructures Is Considered

The effect of the interface debonding defect on the embedded PZT sensor response
in different mesoscale substructures with different interface debonding defect lengths is
further investigated here. Four mesoscale substructures with their FEM mesh are shown in
Figure 18, where the thickness of the interface debonding defect is 50 mm, and the length
of the debonding defect is 100 mm, 75 mm, 50 mm and 25 mm, respectively.
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Figure 18. Substructures of CFST-PZT coupling members corresponding sample 1 with different
debonding defect: (a) 100 mm × 3 mm; (b) 75 mm × 3 mm; (c) 50 mm × 3 mm; (d) 25 mm × 3 mm.

The response of the embedded PZT sensor of each mesoscale substructure coupling
model with the debonding length of 100 mm, 75 mm, and 25 mm is shown in Figure 19. The
output signals of both healthy substructures and those with a debonding length of 50 mm
have been shown in Figure 17a,b and are not shown here. It can be seen from Figure 17a,b
and Figure 19a–c that as the length of the interface debonding defect decreases, the output
voltage signal of the PZT sensor under sweep frequency excitation attenuates obviously. In
Figure 19d, the wavelet packet energy corresponding to the response of the embedded PZT
sensor in mesoscale substructures with different defect lengths are compared. The wavelet
packet energy value of the embedded PZT sensor of the mesoscale substructure coupling
model with debonding attenuates obviously with the increased interface debonding length.
In addition, no matter what the length of the interface debonding defect is, the wavelet
packet energy value of the mesoscale substructures with the interface debonding defect
is always much lower than that of the healthy substructures. The effect of the debonding
defect length on the response of the embedded PZT sensor in the mesoscale substructure
coupling model is consistent with that of previous work about the response of the embedded
PZT sensor in a whole coupling CFST model with different debonding defect lengths [37].
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6. Concluding Remarks

In this study, a multi-physics simulation with mesoscale substructures of CFST-PZT
coupling models composed of a surface-mounted PZT actuator, an embedded PZT sensor,
aggregate, mortar and a steel tube was carried out, and the effect of the size, lateral and
longitudinal positions of a single aggregate, the distribution of aggregates and the interface
debonding defect on the response of the embedded PZT sensor was investigated in detail
with the proposed mesoscale substructure coupling models. The output voltage response
of the embedded PZT sensor of different mesoscale substructure coupling models without
and with debonding under a continuous sinusoidal excitation signal or sweep frequency
excitation signal was discussed. Based on the multi-physics mesoscale simulation results
on each substructure, the following conclusions could be drawn:

(1) The steady output voltage amplitudes of the embedded PZT sensor of the mesoscale
substructure coupling models showed that the size, lateral and longitudinal positions
of a single aggregate and the aggregates distributions differently affected the response
of embedded PZT sensor of the mesoscale substructures without the interface debond-
ing defect under continuous sinusoidal excitation signal. The effect of the size, lateral
position of a single aggregate and the aggregates distributions on the response of
embedded PZT sensor of the mesoscale substructure without interface debonding
was limited, but the aggregate longitudinal position had the most obvious influence.

(2) The effect of the size and position of a single aggregate and the distribution of ag-
gregates on the response of the embedded PZT sensor of the mesoscale substructure
coupling models with interface debonding defect was comparatively limited when
compared with that of the mesoscale substructures without the interface debonding
defect under sweep frequency excitation signal. The existence of interface debonding
defect led to an obvious decrease in the output voltage amplitude of the embedded
PZT sensor no matter what size and position of the single aggregate and distribution
of aggregates were considered.

(3) The wavelet packet energy of the embedded PZT sensors is also dominantly affected
by the interface debonding defect rather than the mesoscale structure of the concrete
core of the substructure coupling models with different single aggregate sizes, posi-
tions and aggregates distribution. Additionally, the length of the interface debonding
defect had an obvious effect on the wavelet packet energy of the embedded PZT
sensor in the mesoscale substructure coupling models and its wavelet packet energy
of the models with the interface debonding defect was always much lower than that
of the healthy substructure.

In this study, the distance between the PZT actuator and the PZT sensor was constant.
In order to demonstrate the effect of the measuring distance between the PZT actuator
and sensor on the embedded PZT sensor of the mesoscale substructures without interface
debonding defect, further investigation on the response of the output voltage signal of the
PZT sensor with different measuring distances could be carried out in future. Moreover,
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the mesoscale structure of concrete with aggregate shapes other than the circular shape can
also be considered further.
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