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Abstract: The artificial replication of an olfactory system is currently an open problem. The devel-
opment of a portable and low-cost artificial olfactory system, also called electronic nose or eNose,
is usually based on the use of an array of different gas sensors types, sensitive to different target
gases. Low-cost Metal-Oxide semiconductor (MOX) gas sensors are widely used in such arrays.
MOX sensors are based on a thin layer of silicon oxide with embedded heaters that can operate
at different temperature set points, which usually have the disadvantages of different volatile sen-
sitivity in each individual sensor unit and also different crossed sensitivity to different volatiles
(unspecificity). This paper presents and eNose composed by an array of 16 low-cost BME680 digital
miniature sensors embedding a miniature MOX gas sensor proposed to unspecifically evaluate air
quality. In this paper, the inherent variability and unspecificity that must be expected from the 16
embedded MOX gas sensors, combined with signal processing, are exploited to classify two target
volatiles: ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of the 16
embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The
validation results have shown an instantaneous classification success higher than 94% two days after
the calibration and higher than 70% two weeks after, so the majority classification of a sequence of
measures has been always successful in laboratory conditions. These first validation results and the
low-power consumption of the eNose (0.9 W) enables its future improvement and its use in portable
and battery-operated applications.

Keywords: electronic nose; eNose; MOX; principal component analysis; k-nearest neighbor

1. Introduction

Odor management has many practical applications for monitoring and quality supervi-
sion [1,2]. The measurement of the odor or aroma can be done with a panel of trained expert
human operators, with a technical measurement of the individual chemical compounds or
with an artificial olfactory system also called electronic nose, e-nose, or eNose.

Covington et al. [3] defined an eNose as an array of sensors that vary their selectivity
according to the classes of chemical species analyzed. In general, this array is expected to
include different types of sensors, which should have high sensitivity to a specific gas, rapid
response time, a return to baseline levels, and high resistance to variable environmental
conditions. However, the reality is that a sensor designed to have high sensitivity to a
specific gas is also capable of detecting a variety of different gas and volatile compounds [4].
The effect of this cross-sensitivity is that there is no significant specificity in response to
any gas although the appropriate combination of an array of sensors can be employed to
maximize the number of relevant gases that can be incorporated into their response.

According to Wilson [5], an eNose can be used (1) to identify the source (plant, animal,
or derived product) that produced a unique mixture of organic compounds (not the individ-
ual compounds) or (2) to assess one or more chemical, biological or physical characteristics
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for a specific purpose such as determining product consistency, quality, purity, age, or state
of merchantability.

Covington et al. [3] presented a comprehensive recent revision of the state of the art
of the concept of artificial olfaction in the 21st century, analyzing the recent applications
of artificial olfaction based on the use of an eNose and comparing alternative gas sensing
technologies: chemooptical [6], electrochemical [7] and chemoresistive [8]. Chemooptical
devices are expensive and have big size, electrochemical sensors need maintenance, and
chemoresistive technology usually has fast response and does not require maintenance,
although having higher power consumption.

The wide variety of sensor technologies available to implement eNoses has led to the
development of applications [9] tailored for diverse disciplines such as indoor air-quality
monitoring [10,11], real time odor detection [12] and other applications such as environ-
mental monitoring [13,14], food quality control [15,16], disease diagnosis [17,18], wood and
paper processing, forest management, forest health protection, waste management and also
agricultural sectors of agronomy [5] such as biochemical processing, botany, cell culture,
plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant
physiology and pathology.

This paper is specifically focused on the use and application of low-cost chemoresistive
Metal-Oxide semiconductor (MOX) gas sensors, which is a technology widely used in arrays
for gas sensing [19]. MOX gas sensors are based on a thin layer of silicon oxide with an
embedded heater resistor that heats up the sensing material where the chemical interactions
between the target gas and the metal oxide take place. The operating principle of MOX
sensors is based on a reduction-oxidation (redox) reaction that affects the conductance of the
metal-oxide layer. This reaction can be performed at different temperature set points that
can affect the sensitivity of the sensor. The measurement of the presence and concentration
of a gas is deduced form the measurement of the conductance of the metal oxide layer.
MOX gas sensors usually have the disadvantage of crossed sensitivity to different gases
and different sensitivities (variability) in each individual sensor unit.

Chiu et al. [9] and Liu et al. [19] summarized the advantages and disadvantages of
MOX sensors. The main advantages are high sensitivity, quick response to gas detection,
short recovery times, limited sensing ranges, long lifetime and low cost. The main draw-
backs include high temperature operation, high power consumption, poor precision and
selectivity, drift in performance and limited sensor coatings. Moreover, the sensitivity of
the sensing film is influenced by the temperature stability, humidity and background gas.

In the scientific literature there are some exhaustive papers focused on the description
of the MOX gas sensors [20], on the analysis of the sensitivity and factors influencing MOX
gas sensors [21], on the analysis of the gas-sensing properties of different metal-oxides [22],
on the analysis of the individual performances of miniaturized MOX sensors according to
their sensitizer material, target gas, metal oxide morphology, deposition process and type
of heater [19], and on its application in environmental monitoring [13].

Finally, there are arising new promising gas sensor proposals. Ali et al. [23] reviewed
the recent advances in the area of electrical mode sensors using organic small molecule
n-type semiconductors based on perylene by highlighting its high sensing performance
towards various volatile analytes. Choi et al. [24] have reported a process that addresses
the main problems of chemical vapor deposition (CVD) graphene-based gas sensors by
achieving high sensitivity and minimal variability as a gas sensor.

New Contribution

According to Covington et al. [3], the production of miniaturized silicon MOX gas sen-
sors has been the most remarkable improvement of MOX gas sensors over the last 10 years
because this miniaturization reduces the power consumption and the response time.

The new contribution of this paper is the development of a new compact, low-cost and
low-power eNose based on the use of 16 units of a single-type miniature silicon MOX gas
sensor embedded in the commercial BME680 sensor device. In general, the most common
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disadvantage of any MOX gas sensor is its different volatile sensitivity and its different
crossed sensitivity. These differences can become a very big problem for an application
using only one MOX gas sensor. However, in this paper, the inherent variability and
unspecificity of single-type MOX gas sensors, combined with signal processing, have
been applied to create an eNose optimized to classify two target volatiles: ethanol and
acetone. The proposed eNose reads the resistance of the sensing layer of the 16 embedded
MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The
validation results have shown successful volatile classification of the two target volatiles in
laboratory conditions.

2. Background

Table 1 presents a short reference list of scientific papers firstly presenting a specific
eNose design based on an array of MOX gas sensors. As a summary, the majority of the
papers listed in Table 1 propose the conventional development of an eNose based on an
array of different sensor-types in which each type is sensitive to a specific gas: the number
of MOX gas-sensors reported is between 2 and 96 with an average value of 15.6 and the
sensor-types between 1 and 16 with an average value of 5.5.

As far as we now, Persaud et al. [25] presented in 1982 the first eNose using three MOX
gas sensors with different sensitivities. The device analyzed odor quality and classified
the types of odorants, including mixtures of odorous volatile compounds and single gases.
This paper demonstrated that odor discrimination can be achieved without using highly
specific receptors. The next paper highlighted in Table 1 was proposed in 1998 by Marco
et al. [26] that proposed gas classification based on a self-organized map (SOM) [27] to
identify different gases using an array of 6 MOX gas sensors. In close relationship with the
objectives of this paper, in 2002 Arnold et al. [28] developed an array of 38 identical custom
MOX gas sensors operating at different heating temperatures for air quality monitoring
and early fire detection. This proposal was probably the first that demonstrated that an
eNose created with a matrix of single-type MOX gas sensors can detect different volatiles.
However, this proposal was based on custom MOX gas sensors that required a considerable
amount of power to operate.

In the following decades different authors proposed a wide number of implementa-
tions combining different number and types of MOX gas sensors and applying different
classification strategies. As far as we know, the next eNose reference paper using the
same-type of MOX gas sensor was proposed in 2012 by Bennets [29], who used a matrix
of 6 MOX gas sensors to detect and identify two gases. Lately, in 2014 Marco et al. [30]
proposed the biggest eNose application combining 96 MOX gas sensors of 12 model types
(with 8 units per sensor type) with 4 huge arrays of 4096 non-MOX resistive chemical gas
sensors, that can be increased up to 65,536 gas sensors (16 arrays). Lately, in 2018 Burgués
et al. [31,32] proposed two eNoses based on 12 and 7 MOX gas sensors of the same type for
evaluating odor concentration.

Table 1 also presents the power spent by the eNose proposals. In general, this in-
formation is not described in the related papers as it was not considered relevant. This
information was provided by Rossi et al. [33], but for the case of using a minimum array
with 2 MOX gas sensors; by Palacín et al. [34], who used an eNose with 16 MOX gas sensors
of 4 different sensor types with a total power consumption of 12.0 W, which was assumable
for a medium size mobile robot application; and by Burgués [35], who proposed a portable
eNose with 16 MOX gas sensors of 4 different types carried in an unmanned aerial vehicle
(UAV) operating as a drone and using an operation strategy that reduced the average power
consumption to 1.0 W. Finally, the power consumption of the custom eNose proposed in
this current paper is 0.9 W in continuous gas sampling operation because of the low-power
requirements of the commercial MOX gas sensors used.
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Table 1. List of papers firstly presenting an eNose using MOX gas sensors.

Year Reference V (V) I (A) P (W)
MOX Other non-MOX Classification

Method
Volatiles
DetectedNumber Types Number Types

This paper 5 0.18 0.9 16 1 0 0 PCA [36]-kNN 2
2021 Burgués [35] - - 1.0 16 4 5 2 PLSR [37] 1 A

2020 Arroyo [38] 5 0.19 0.9 4 4 0 0 NN [39] 2C

2020 Burgués [40] - - - 27 5 0 0 None 1 C

2020 Tiele [41] 12 - - 10 10 G 1 1 PCA [36] 3 C

2019 Palacín [34] 12 1.0 12.0 16 4 0 0 PLS-DA [42] 2
2019 Fan [43] - - - 2 2 3 3 OCGM-OCNN 3 C

2018 Burgués [31] - - - 7 1 0 0 None 1 C

2018 Burgués [32] - - - 6 + 3+3 D 1 0 0 PLS [44] 1 C

2018 Gongora [45] - - - 6 5 1 1 DNN 10
2017 Monroy [46] - - - 10 8 0 0 PCA-SVM 2

2016 Rossi [33] - - 2 ×
0.76 2 2 0 0 Threshold 1 A,C

2016 Schleif [47] - - - 5 5 0 0 SGTM-TT 4
2016 Fonollosa [48] - - - 5 × 8 4 0 0 SVM [49]-SVR 4 C

2015 Vries [50] - - - 5 × 4 - 0 0 PCA-ANOVA 4
2015 Westenbrink [4] - - - 8 G - 3 2 LDA [51]-kNN 3
2015 Fonollosa [52] - - - 16 4 0 0 RC [53] 2 A,E

2014 Marco [30] - - - 96 12 4 × 4096 31 PCA [36]-PLS 2
2014 Rossi [54] - - 0.130 8 G - - - - -
2014 Sanchez [55] - - - 8 4 0 0 None 1 A

2014 Monroy [56] - - - 7 7 0 0 Kernel DM+V 1 A

2014 Bennetts [57] - - - 3 3 0 0 PCA [36] 2
2013 Savarese [58] - - - 10 - 0 0 PCA [36] 2 F

2013 Monroy [59] - - - 11 9 0 0 Regression 1 A

2012 Vergara [60] - - - 16 4 0 0 SVM 6 C

2012 Bennetts [29] - - - 6 1 0 0 MV RV M [61] 2

2012 Aguilera [62] - - - 16 16 G 0 0 ICA
[63]-PLS-ANN 15 F

2012 Brudzewski [64] - - - 2 B × 12 8 0 0 PCA-SVM [49] 5, 11 F

2011 Haddi [65] - - - 6 6 0 0 PCA-SVM [49] 5 F

2011 Gonzalez [66] - - - 4 B × 7 7 0 0 None 1 A

2010 Brudzewski [67] - - - 2 B × 12 8 0 0 2D convolution 6 F

2010 Guo [68] - - - 12 12 0 0 PCA [36]-kNN 4 F

2010 Mildner [69] - - - 3 × 6 - 0 0 2 × PCA
[36]-PLS 3 F

2009 Lilienthal [70] - - - 6 5 0 0 Kernel DM + V 1 C

. . .
2002 Arnold [28] - - - 38 1 G 0 0 PCA-LDA [51] 2 E, 1 A

. . .

1998 Marco [26] - - - 6 3 + 3
G 0 0 SOM [27] 6

. . .
1982 Persaud [25] - - - 3 3 0 0 - E, F

A Detecting the overall odor concentration or the overall concentration of volatile substances. B Using arrays oper-
ating differentially. C Estimating gas concentration. D Using different power management strategies. E Detecting
a mixture of volatiles. F Estimating the mixture of volatile compounds. G Customized sensor.

3. Materials and Methods

The materials used in this this paper are the BME680 MOX gas sensor, a custom array
of 16 MOX gas sensors based on the BME680, and two target gases: ethanol and acetone.
The methods used in this paper to classify the readout of the array of gas sensors are the
principal component analysis (PCA) and the k-nearest neighbor algorithm (k-NN).

3.1. BME680 Sensor

Figure 1 shows the BME680 sensor used in this paper, manufactured by Bosh Sensortec
(Reutlingen, Germany). The BME680 is a digital miniature sensor able to measure air quality,
temperature, humidity and pressure. The BME680 includes an internal miniature MOX gas
sensor to externally estimate the air quality. This eNose proposal is based on reading the
resistance of the sensing layer of the embedded MOX gas sensor, so the BME680 is used
as a kind of digital MOX gas sensor. This paper then exploits the inherent variability and
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unspecificity that must be expected from this embedded MOX gas sensor to implement an
eNose tailored to classify two target volatiles.
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Figure 1. The BME680 sensor.

The BME680 digital miniature sensor is encapsulated on a small and compact metallic
LGA package with a footprint of 3.0 × 3.0 mm and a height of 1.00 mm (Figure 1). The
BME680 is a low-power digital 4-in-1 micro-electromechanical system (MEMS) sensor,
which is able to simultaneously measure temperature, pressure, humidity and indoor air
quality. The BME680 includes integrated circuits for signal conditioning and bus serial
communication, and can be externally accessed by using the I2C and the SPI serial bus.
The BME680 operating as a gas sensor is proposed and optimized to unspecifically detect
volatile organic compounds (VOCs) in indoor air quality management applications. The
MOX gas sensor embedded in the BME680 measures the conductance change of the metal-
oxide layer caused by the adsorption of total volatile organic compounds (TVOC) polluting
the air (except CO2). The MOX gas sensor of the BME680 is not selective or specific, so
the effect of a specific gas is not distinguished from the others. Finally, the information
gathered by the BME680 can be externally processed in order to estimate an indoor air
quality (IAQ) index in a scale range from 0 (clean air) to 500 (heavily polluted air).

3.1.1. Operation of the BME680 Sensor

The BME680 sensor supports two operation modes: Sleep and Forced mode. The
sensor automatically operates in Sleep mode after a power-up sequence. In Sleep mode no
measurements are performed and the power consumption is minimum. When the device
operates in Forced mode the sensor starts a measurement sequence to get the temperature
(T), pressure (P), humidity (H) and gas resistance (G) and then operates automatically
in Sleep mode (see Figure 2). The BME680 has internal registers to control the effective
measurement of the TPHG values and it can be configured, for example, to measure only
temperature (T) or only temperature and humidity (TH) or only gas (G). This paper is only
focused on the gas sensor readout (G) obtained from the sensor. The real duration of this
TPHG measurement sequence depends on the configuration of the oversampling values
of the temperature, pressure, humidity sensor and the duration of the heat up defined to
complete a gas sensor measurement.
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3.1.2. Configuration of the BME680

The BME680 has a set of control registers that must be used to configure the main
parameters of the sensor: Config, Ctrl_meas, Ctrl_hum, Ctrl_gas_1, Ctrl_gas_0, Gas_wait_x,
Res_heat_x. The operation mode (Sleep or Forced) is defined in the two least significant
bits of the control register Ctrl_meas<1:0>. The values of the configuration parameters
that define the behavior of the BME680 are summarized in Table 2. These parameters
allow: (1) skipping or defining a sampling time for the measurement of temperature (T),
pressure (P) and humidity (H) and setting the oversampling value; (2) configuring the
length of the IIR filter coefficient used to filter and remove short-term fluctuations on
the temperature and pressure measurements; (3) configuring the gas (G) measurement
procedure by defining four parameters: enable heater, enable gas conversion, setting the
heat up duration (a value that codes a range from 1 to 4032 ms) and setting the target heater
temperature (a value that codes a range from 200 to 400 ◦C).

Table 2. BME680 main configuration parameters.

Parameters Register Name<bit> Register Values and/or Range

(1)
Oversampling (T) Ctrl_meas<7:5> 0: Skipped

1: OSx1
2: OSx2

3: OSx4
4: OSx8

5: OSx16
Oversampling (P) Ctrl_hum<4:2>
Oversampling (H) Ctrl_hum<2:0>

(2) IIR filter coefficient (T-P) Config<4:2>

0: coefficient = 0
1: coefficient = 1
2: coefficient = 3
3: coefficient = 7

4: coefficient = 15
5: coefficient = 31
6: coefficient = 63
7: coefficient = 127

(3)

Heater off (G) Ctrl_gas_0<3> 1: Off–0: On
Enable gas conversion (G) Ctrl_1<4> 1: On–0: Off

Heat up duration (G) Gas_wait_x<7:0> Value representing from 1 ms to 4032 ms
Target heater temperature (G) Res_heat_x<7:0> Value representing from 200 ◦C to 400 ◦C

3.1.3. Measurement of the Resistance of the Sensing Layer of the MOX Gas Sensor

The use of the MOX gas sensor embedded in the BME680 requires three steps: heating
the gas sensor hot plate at a defined target heater temperature (the typical values are
between 200 ◦C and 400 ◦C); maintaining this temperature during the defined heat up
duration (the typical value is 100 ms); and finally measuring the resistance of the gas
sensitive layer of the MOX gas sensor.

The final determination of the value of the resistance of the gas sensing layer re-
quires the readout of the ADC values stored on two internal registers: gas_r_lsb<7:6> and
gas_r_msb<7:0>. The resolution of the gas ADC value is 10 bit. The conversion of the ADC
value into a resistance expressed in ohms is determined by the following equation provided
by the manufacturer:

var1 = (1340.0 + 5.0 · range_sw_err) · const_array1[gasRange] (1)

gas_res = var1 · const_array2[gasRange]/(gas_adc − 512.0 + var1) (2)

where range_sw_err is an internal configuration parameter that must be read from the
register address 0x04 <7:4> (signed 4 bit). The gasRange is another internal configuration
parameter that must be read from the register gas_r_lsb<3:0> in order to determine the
constants required to compute the resistance. The gas_adc is the ADC value read from
the gas_r_lsb<7:6> and gas_r_msb<7:0> registers. The list of possible values of the register
gasRange and the corresponding array values of const_array1 and const_array2 arrays are
provided in the datasheet of the sensor and summarized on Table 3.
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Table 3. List of the combinations of the values of the parameter gasRange, and values of const_array1
and const_array2 that must be used during the computation of the resistance of the sensing layer of
the MOX gas senor (gas_res, Equation (2)), values provided by the manufacturer.

gasRange const_array1 Value const_array2 Value

0 1 8,000,000
1 1 4,000,000
2 1 2,000,000
3 1 1,000,000
4 1 499,500.4995
5 0.99 248,262.1648
6 1 125,000
7 0.992 63,004.03226
8 1 31,281.28128
9 1 15,625
10 0.998 7812.5
11 0.995 3906.25
12 1 1953.125
13 0.99 976.5625
14 1 488.28125
15 1 244.140625

As a summary, the determination of the value of the resistance of the sensing layer of
the MOX gas sensor (gas_res) requires the reading of: range_sw_err, gasRange, gas_adc, and
the use of the vector of constants defined in const_array1 and const_array2.

3.2. eNose as an Array of 16 Single-Type BME680 Gas Sensors

Figure 3 shows the eNose presented in this paper, which is based on a single Printed
Circuit Board (PCB) (80.87 mm × 40.01 mm) designed with Autodesk Eagle software. The
PCB includes holes to facilitate air circulation around the gas sensors. This electronic board
has been designed to be powered from two redundant sources: the main USB connector,
which provides 5.0 V, and an additional power connector designed to plug a redundant or
backup power to maintain the eNose activated after powering off the main USB connector.
The 5.0 V are converted to the internal 3.3 V used by the electronic devices through a voltage
regulator (LD3985M33R). The board also includes different LEDs for status information
and a Serial Wire Debug (SWD) interface to program the microcontroller.
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The main Micro Controller Unit (MCU) is the STM32F070CBT6 from STMicroelectron-
ics, which is a low-power version of the high-performance ARM Cortex-M0 32-bit RISC
(Reduced Instruction Set Computing) core operating internally at 48 MHz by using an
external 8 MHz crystal oscillator. This MCU incorporates 128 Kbytes of Flash memory and
16 Kbytes of SRAM in a small surface mount LQFP48 package. This MCU offers standard
serial communication interfaces (I2Cs, SPIs, and USARTs), one USB 2.0 Full-speed interface,
one 12-bit ADC and several general-purpose 16-bit timers. This MCU was selected because
it was the smallest low-power STM32 microcontroller capable to handle the USB and SPI
communication interfaces simultaneously.

The communication with the array of BME680 is performed using the SPI serial bus.
The MCU operates as a SPI master and the 16 BME680 sensors operate as slaves through a
multi-slave SPI topology where the SCLK, MOSI and MISO lines of the SPI communication
are shared between all the sensors. The SPI communication with a specific BME680 chip
is controlled with the chip select line (CSB line). This configuration allows to obtain the
data from an array of BME680 sensors by using a single SPI peripheral bus (using the SCK,
SDI and SDO lines) from the MCU but requires the use of 16 dedicated digital lines to
individually select the CSB line of a specific sensor BME680 sensor.

As stated in the background section, the average number of MOX gas sensors used in
the arrays listed in Table 1 is 15.6, but the decision to use 16 sensors in the eNose does not
have a scientific motivation. In this case, the small MCU selected was not able to handle
25 sensors using a wire selection, so this number was practically limited to 16.

The USB connection of the electronic board of the eNose has been designed to operate
as a slave USB device controlled by an external master USB device such as a Personal
Computer, an Arduino, a RaspberryPI, an additional control board, etc. The USB communi-
cation is a USB-CDC software-based serial port (software compatible with the old RS-232
protocol) operating as a Virtual Com port. This configuration simplifies the integration of
the eNose in a general measurement framework.

Finally, the maximum power consumption of the complete eNose device is 0.9 W
(5.0 V and 180 mA) when continuously measuring the gas sensor readout with the BME680
sensors operating in Force mode at the maximum heating temperature, and only 0.05 W
(5.0 V and 10 mA) whit the BEM680 sensors in Sleep mode.

3.2.1. Individual Configuration of the Array of 16 BME680 Gas Sensors

Table 4 details the configuration of the individual parameters that must be set or
defined in order to perform a gas measurement with a BME680 sensor. The main parameters
that define a gas measurement are the Heat up duration and the Target heater temperature.
Table 5 shows the individual values assigned in this paper to the array of 16 BME680
sensors: a common value of 150 ms for the Heat up duration and a lineal range from
200 ◦C to 400 ◦C for the Target heater temperature. This array configuration is proposed
just as an initial (trial) selection with the expectation that the different heater temperatures
combined with the inherent MOX gas sensors variability will provide different sensitivities
to individual gases. The number of possible combinations is huge but this proposal is in
concordance with the linear range of power or PWM applied to the same type of MOX
gas sensors used in other conventional eNoses [34]. A detailed analysis focused in the
determination of an optimal configuration of the array of gas sensors will be performed in
future analysis.

Table 4. Configuration of the individual parameters of a BME680 used as a gas sensor.

Parameters Register Values

Heater off (G) 0: Heater On
Enable gas conversion (G) 1: Run Gas

Heat up duration (G) Value from 1 ms to 4032 ms
Target heater temperature (G) Value from 200 ◦C to 400 ◦C
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Table 5. Configuration of the parameters of the 16 BME680 gas sensors used in the eNose.

Sensor ID Target Heater Temperature (◦C) Heat Up Duration (ms)

1 200 150

2 212 150

3 224 150

4 240 150

5 250 150

6 260 150

7 280 150

8 300 150

9 320 150

10 330 150

11 340 150

12 350 150

13 360 150

14 370 150

15 380 150

16 400 150

3.2.2. eNose Normal Measurement Operation

The eNose is in a normal measurement mode after power up. Figure 4 shows the
three main tasks developed by the MCU in a normal measurement operation. The first
task consists on a non-blocking continuous measurement procedure that sequentially reads
the temperature, pressure, humidity and gas resistance of the sixteen BME680 sensors at
the maximum velocity provided by the SPI serial bus and allowed by the sensors. The
data gathered are stored internally on a SRAM buffer in order to provide fast response
upon external demand. The second task receives the USB-CDC commands from the host
device and provides specific answers if needed. The commands allow the configuration
of all eNose parameters and can be used to request the current gas sensor measurements
internally stored. The third task is activated by a specific host command and is in charge
of continuously submitting the gas sensor measurements to the USB host at a requested
interval. This feature is very interesting in order to simplify the automatic analysis of the
data gathered by the eNose, which can be automatically implemented in the host USB as
an isolated procedure activated upon receiving this periodic submission [34].
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3.3. Target Gases Used to Train and Test the eNose

The target gases used in this paper to validate the array of single-type miniature MOX
sensors are ethanol and acetone. These two gases have been widely used in the scientific
literature [34,43,46]. Both gases are liquid in their standard state, which is used in many
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industrial and academic activities, but they evaporate quickly and thus can appear as
volatiles in a human workspace as a consequence of an accidental leakage.

3.4. Reference Measurements of Volatile Concentration

In this paper, the measurement of the real concentration of the volatiles analyzed is
performed with a compact photo ionization detector (PID) ppbRAE 3000, manufactured by
RAE Systems. This PID provides a fast and true concentration measurement of a known gas
or chemical compound. However, the target chemical compound (up to 200 compounds)
must be correctly configured in the device because a PID has no classification capabilities
as it only provides a concentration value corresponding to the mixture of all present gases
with an ionization energy below what its ionization unit delivers [59]. Therefore, the
concentration measured with a PID is not useful when the gas or chemical compound
measured is unknown.

3.5. Principal Component Analysis (PCA)

The principal component analysis (PCA) proposed by Pearson [71] is the process of
computing the principal components of a collection of points and using them to change the
basis of the data [36]. The result of the PCA are the eigenvectors of the covariance matrix
of a collection of points. In this paper, PCA is used to reduce the dimension of the data
gathered from the eNose while preserving as much of the variation of the data as possible.

3.6. k-Nearest Neighbors (k-NN)

The k-nearest neighbors algorithm (k-NN) proposed by Fix and Hodges [72] is a
non-parametric classification method that finds the k-closest data samples in a data set
describing different classes and determines a classification membership according to the
plurality vote of the classes of the k-closest nearest neighbors. The class membership is
the most common class among its k-nearest neighbors. If k = 1, then the object is simply
assigned to the class of that single nearest neighbor. In this paper, k-NN is used to classify
the PCA projection of the current eNose data sample using as a reference data set the PCA
projection of the results of the calibration experiments. The final objective of k-NN will be
the classification of the current eNose data sample into ethanol or acetone.

4. Calibration of the eNose with Ethanol and Acetone

This section shows the calibration of the proposed eNose in order to detect two target
gases: ethanol and acetone. This calibration is inspired in [34], in which a custom eNose
based on conventional MOX gas sensors was embedded in a mobile robot in order to early
detect gas leaks of the similar target gases. Therefore, the goal of this calibration is to obtain
static evaporation profiles similar to the dynamic evaporation profiles analyzed in [34].
The result of this calibration will allow the future application of the eNose proposed in this
paper in similar early detection applications.

The calibration experiments are based on using a heater of 60 W to force the evapora-
tion of liquid acetone and ethanol during 250 s. During this calibration experiments the
eNose and the PID are placed above the evaporator at a relative height of 0.25 m. The eNose
and the sample tube of the PID are placed together to measure the convective currents
generated by the evaporator.

Figure 5 shows the raw measurement results obtained with the eNose and the PID.
Figure 5a shows the evolution of the concentration of ethanol measured with the PID that
is provided just as a reference. The concentration of ethanol suddenly increases when
power is applied to the evaporator heater and slowly decreases when power is removed
and forced evaporation ends. Figure 5b shows the raw evolution of the resistance of the
sensing layer of the 16 MOX gas sensors of the eNose. This resistance suddenly decreases
as a consequence of the presence of evaporated ethanol. Unexpectedly, the response of
the MOX gas sensors to the presence of ethanol in air is faster than the PID, probably
because the circulation of a forced convection. Figure 5c shows the deduced evolution
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of the conductance and Figure 5d shows the evolution of the average conductance of the
16 MOX gas sensors of the eNose. This average conductance is used in this paper to binary
detect the presence of gas by the application of a threshold value relative to the background
conductance level obtained in clean air conditions.
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Figure 5. Evolution of the sensor readings obtained during an experiment with ethanol: (a) Ethanol
concentration measured with the ppbRAE3000 sensor; (b) Evolution of the raw resistance of the
16 MOX sensors; (c) Evolution of the conductance of the 16 MOX sensors; (d) Evolution of the mean
conductance of the 16 MOX sensors.

This calibration experiment has been repeated evaporating acetone obtaining very
similar transitory results to those obtained when evaporating ethanol.
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Figure 6 shows the normalized radial representation of the maximum conductance
measured with the sensors of the eNose in the presence of ethanol (orange line), and
acetone (yellow line). Figure 6 also shows the average conductance measured in the case
of clean air (blue line). Figure 6 shows small differences between the ethanol and acetone
profiles, which may allow the classification of both gasses. Specifically, the sensor that offers
the maximum difference between the ethanol and acetone cases is S12, heated at 350 ◦C,
which is the recommended operation temperature of the MOX gas sensor embedded into
the BME680.
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Figure 6. Normalized representation of the maximum conductance values when the sensors are
exposed to air (blue), ethanol (orange) and acetone (yellow).

Figure 7 shows the results of a PCA analysis applied to the raw conductance informa-
tion measured from the 16 MOX gas sensors embedded in the 16 BME680 used in the eNose
presented in this paper. Figure 7 shows the first and second principal components pro-
posed by the PCA analysis of data measured for the cases of forced evaporation of ethanol
(yellow) and acetone (red) (see Figures 5 and 6). The first component scores the 99.77% of
the variation of the conductance of the MOX gas sensors and the second component scores
the 0.17% of this variation. The first component is truly representative of the variation of
the measurement, but the use of two components facilitates the visual interpretation of
the results. After completing the PCA using the reference samples of ethanol (yellow) and
acetone (red) we have applied the PCA projection to general air measurements (blue) just
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to observe its location in the projected space. Figure 7 shows these three classes (ethanol,
acetone and air) clearly differentiated in the projected space.
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In this paper, we apply a threshold to the variation of conductance to detect a variation
in the concentration of volatile substances. The relative conductance threshold was defined
as 0.6 mΩ after a trial and error procedure. This means that the eNose detects the existence
of a volatile substance when the average conductance increases 0.6 mΩ from a background
reference value that has been obtained by averaging this average conductance during a
time window of 300 s. At this stage, this background reference value is constantly updated
until the detection of a gas, as we usually end the experiments after detecting a gas.

The use of this detection threshold is in part responsible of the good scores of the two
principal components shown in Figure 7. This is because the application of the threshold
potentially avoids the classification of conflictive measurement points obtained in the cases
of very low gas concentrations and very low and similar conductance values. Therefore,
the use of a detection threshold simplifies the PCA analysis and contributes to separate the
gas classes.

5. Validation of the eNose to Detect Ethanol and Acetone

The ethanol and acetone projections shown in Figure 7 are used as a reference dataset
for a k-NN classification (with k = 5). Figure 8 shows the instantaneous classification
results obtained in two validation experiments conducted with (a) ethanol and (b) acetone.
Figure 8 shows the evolution of the average conductance measured by the eNose and the
result of the volatile classification labeled with colors. Table 6 summarizes the classification
results obtained in four validation experiments conducted two days after the calibration of
the eNose (using the PCA of Figure 7 as reference data sets for the k-NN). The instantaneous
classification of the gas detected in Figure 8 was successful in the 94% of the measurements,
with an average instantaneous success of 97% in all the experiments conducted in this
paper. Therefore, the majority decision of which gas is detected in each experiment was
successful in all cases.
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Table 6. Classifier results obtained when performing experiments two days after calibration.

Experiment Volatile
Classifier Output (%) Number of Samples

Success Rate (%)Ethanol Acetone Total Hit Miss

- Ethanol 100.00% 0.00% 4073 4073 0 100.00%
Figure 8a Ethanol 94.90% 5.10% 6215 5898 317 94.90%

- Acetone 0.00% 100.00% 1971 1971 0 100.00%
Figure 8b Acetone 3.03% 96.97% 2047 1985 62 96.97%

Average 14,306 13,927 379 97.35%

Finally, Table 7 summarizes the classification results obtained in four additional vali-
dation experiments conducted two weeks after the calibration of the eNose (using the PCA
of Figure 7 as reference data sets for the k-NN). The classification results show successful
instantaneous classification ratios higher than 70% and an average instantaneous success of
77%, so again the majority decision of which gas is detected in each validation experiment
has been successful in all cases. However, the comparison of the results of Tables 6 and 7
evidences that the PCA projection used in the k-NN is less representative after two weeks
of continuous operation.

Table 7. Classifier results obtained when performing experiments two weeks after calibration.

Experiment Volatile
Classifier Output (%) Number of Samples

Success Rate (%)Ethanol Acetone Total Hit Miss

- Ethanol 70.65% 29.35% 4201 2968 1233 70.65%
- Ethanol 70.95% 29.05% 3349 2376 973 70.95%
- Acetone 9.24% 90.76% 4046 3672 374 90.76%
- Acetone 25.48% 74.52% 3375 2515 860 74.52%

Average 14,971 11,531 3440 77.02%
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6. Conclusions

This paper proposes the development and test of a compact and portable eNose based
on the use of 16 single-type miniature MEMS MOX gas sensors operating at different
heating temperatures. The eNose presented in this paper has been implemented on a single
PCB of 80.87 mm × 40.01 mm using a low-power ARM microcontroller and 16 minia-
ture BME680 sensors capable of performing simultaneous measures of air temperature,
pressure, humidity and also the total volatile organic compounds that are measured with
an embedded MEMS MOX gas sensor. The maximum power consumption of this eNose
implementation is 0.9 W (5.0 V, 180 mA) and the standby power is 0.05 W (5.0 V, 10 mA),
making it ideal for portable and battery-based applications.

The main disadvantage of common MOX gas sensors are crossed sensitivity to differ-
ent gases and different crossed sensitivities. This eNose proposal increases these sensor
differences by applying different target heater temperature to the 16 MOX gas sensors.
Then, the inherent variability and unspecificity that must be expected from the 16 MOX
gas sensors, combined with signal processing, are exploited to classify two target volatiles:
ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of
the 16 embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN
for classification.

The validation experiments presented in this paper have shown that two individual
target volatiles can be detected and classified with an instantaneous classification success
higher than 94% two days after the calibration of the eNose and higher than 70% two weeks
after this initial calibration. As a summary, in all validation experiments conducted within
this period with the proposed eNose, the majority classification of the two target volatiles
based on the sequence of instantaneous classification results (threshold > 50%) has been
always successfully in controlled laboratory conditions.

The future works planned are mainly the evaluation and improvement of the eNose
as a time-varying instrument, such as the analysis of the effect of relative humidity on the
sensing in long-term operation, the analysis of the effect of some reducing and oxidizing
gases in long-term operation, the refinement of the classificatory and the improvement of
the classification performances, and also the application of the eNose in mobile robots as
early gas leak detector and as air quality supervisor in unstructured environments.
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