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Abstract: Extracting indoor scene components (i.e., the meaningful parts of indoor objects) and
obtaining their spatial relationships (e.g., adjacent, in the left of, etc.) is crucial for scene reconstruction
and understanding. At present, the detection of indoor scene components with complex shapes
is still challenging. To fix the problem, a simple yet powerful slice-guided algorithm is proposed.
The key insight is that slices of indoor scene components always have similar profiles no matter
if the components are simple-shaped or complex-shaped. Specifically, we sliced the indoor scene
model into many layers and transformed each slice into a set of two-dimensional (2D) profiles by
resampling. After that, we clustered 2D profiles from neighbor slices into different components on
the base of spatial proximity and similarity. To acquire the spatial relationships between indoor
scene components, an ontology was constructed to model the commonsense knowledge about the
semantics of indoor scene components and their spatial relationships. Then the spatial semantics of
the relationships between indoor scene components were inferred and a semantic graph of spatial
relationship (SGSR) was yielded to represent them. The experimental results demonstrate that our
method can effectively detect complex-shaped indoor scene components. The spatial relationships
between indoor components can be exactly acquired as well.

Keywords: indoor scene components; point clouds; slices; spatial relationship; ontology

1. Introduction

Components of indoor scenes are meaningful parts of indoor objects. Detecting the
indoor scene components and acquiring their spatial relationships (e.g., adjacent, in the
right of, in the left of, etc.) is one of the most important research problems in the computer
vision and graphics community. As pointed out in many studies [1–3], the acquirement of
indoor scene components and their spatial relationships will benefit many computer vision
works such as indoor scene reconstruction and indoor scene understanding [4,5].

There are two main difficulties that arise during the detection of indoor scene com-
ponents and their spatial relationships: (1) indoor scene components often have varied
shapes and complex three-dimensional (3D) geometry. Moreover, the indoor scene compo-
nents occlude each other. Thus, it is challenging to detect complex-shaped indoor scene
components from point clouds; (2) due to the diverse internal structures of indoor objects
and the messy arrangement of indoor objects, the spatial relationships between indoor
scene components are complex, which makes it difficult to extract the spatial relationships
between indoor scene components.

Most of the approaches [6–12] for the detection of indoor scene components concen-
trate on using primitive shapes (e.g., planes, cylinders, spheres, cuboids, etc.) to approx-
imate the components and exploit 3D primitive shape segmentation algorithms such as
Hough transforming [13,14] and Random Sample Consensus (RANSAC) [15,16] to detect
indoor scene components. In these approaches, the primitive shape features of indoor
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components are always pre-assumed, which is not suitable for complex-shaped indoor
scene components.

Many methods [17–19] transform the scattered point clouds into 3D voxel grids and use
spatial connectivity and geometric features to segment the indoor scene models. However,
due to sparsity of the point clouds, the voxel grids may have empty voxels which leads to
redundant computations. Moreover, it is difficult to select the appropriate resolution to
accurately segment the components and preserve the boundaries due to the different scales
of objects in the indoor scene model and the non-uniform point cloud density.

With the availability of large 3D datasets and the popularity of machine learning
techniques, some data-driven segmentation methods [20–27] have been proposed for
indoor scene components. In previous data-driven methods [20,21,27], indoor scene models
are first segmented. Then the segmented results of the indoor scenes are classified into
different components based on handcrafted features by machine-learning techniques, e.g.,
conditional random field (CRF), support vector machine (SVM) and so on. Motivated by
directly learning features from input point clouds, the deep neural network has recently
been exploited. Qi et al. [22] designed a novel type of neural network (PointNet) to
provide a unified architecture for feature classification directly from point clouds. On
the architecture, the labelling of components of objects is performed. Followed PoinNet,
other deep neural networks have been proposed, such as PointNet++ [28], the deep part
induction network [23], the regularized graph convolutional neural network (RCGNN) [25],
semantic part decomposition network [29] and so on. Although progress in detecting
complex-shaped components is impressive, these methods are still inferior when it comes
to discovering new components whose types are not covered in the training sets.

There are also other methods. Balado et al. [30] proposed a method to detect floor
elements based on relative distances. In the references [31,32], surface patches of indoor
scene models were merged into components according to the consistency of their local
convexity or non-local geometric signature. Due to poor connectivity caused by missing
parts and outliers of point clouds, convexity-based methods are not reliable for detecting
the indoor scene components. The detection of complex-shaped indoor scene components
is still challenging.

The extraction of the spatial relationships between indoor scene components lays a
foundation for understanding the indoor scene in a way similar to the way that humans
perceive the environment. Many methods [33–35] have been proposed to extract spatial
relationships from scene images. In contrast with the spatial relationships in images, the
spatial relationships in 3D point clouds are more complex [36,37], and the extraction of
them is more challenging.

Recently, a few methods [38,39] have been proposed to extract spatial relationships
from indoor point clouds based on machine learning techniques such as SVM and latent
max-margin learning. However, it is difficult to build up a fixed parameter model for train-
ing due to the complexity of 3D spatial relationships. To fix the problem, Wald et al. [40]
recently tried to use deep learning techniques to train and predict spatial relations. The
deep learning-based method showed prospects in the extraction of certain spatial rela-
tionships. However, spatial relationships in 3D space are complex. It is difficult to obtain
salient features between different spatial relationships and to effectively divide the spatial
relationships into different categories based on the feature.

On the other hand, some approaches [41–44] have been proposed to extract spatial
relationships from indoor point clouds based on prior spatial knowledge. For example,
Zender et al. [42] presented an ontology to encode the spatial and functional knowledge of
typical indoor environments. Suchan and Bhatt [43] adopted prior knowledge to extract
commonsense spatio-temporal relations. Most existing knowledge-based methods have
aimed to provide root navigation for indoor robots or model specific interactions between
human and indoor objects. They mainly focused on the inter-object or human-centric spatial
relationships. As a smaller-grained element of scenes, spatial relationships between the
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indoor scene components are also affected by the structure of indoor objects. Accordingly,
it is more difficult to detect the spatial relationships between indoor components.

In this paper, we present a framework to segment out the indoor scene components
and detect their spatial relationships. Our method is based on a slice strategy. We are
inspired by the methods in [45–47], where components of complex-shaped indoor objects
were segmented based on the similarity of 2D profiles. Furthermore, our kernel insight lies
in two points: (1) Slices of indoor scene components always have spatial proximity and
similar profiles no matter if the components are simply or complex shaped. (2) The spatial
topological relationships between indoor scene components can be effectively preserved by
slicing the indoor scene layer by layer.

We use the slice strategy to obtain many slices of indoor scene models and convert
each slice into a set of profiles, then merge the profiles of neighbor slices progressively into
different components based on spatial proximity and similarity. Next, we geometrically
establish relationships between the detected indoor scene components on the base of two
geometric distances. Meanwhile, an ontology is built up to model the semantic knowledge
about the spatial relationships between indoor scene components. The geometrically
correlated indoor scene components are loaded to populate the ontology. Finally, the
spatial semantics of the relationships are thereby inferred, and a semantic graph of spatial
relationship (SGSR) is yielded to organize the indoor scene components and their spatial
relationships.

The contributions of this paper can be summarized as follows:

(1) We propose a slice-guided algorithm to detect complex-shaped indoor scene com-
ponents from point clouds. The detected components are faithful to the meaningful
parts of indoor objects;

(2) We present a framework for modelling indoor scene components and their spatial
relationship structure, which lays a foundation for the detection of following objects,
semantic analysis, and understanding of indoor scenes.

The remainder of the paper is organized as follows. Section 2 presents a brief review
of the extraction of indoor scene components and their spatial relationships. Section 3
gives the overview of the proposed method. Section 4 describes how to detect indoor
scene components on the base of clustering of profiles. Section 5 elaborates on the inferring
of spatial relationships between indoor scene components. The experimental results are
presented in Section 6. The limitations of our method and proposals for future research are
indicated in the last section.

2. Related Work
2.1. Detection of Indoor Scene Components

The extraction of indoor scene components from point clouds has received a lot of re-
search interest in numerous works. Here we review the works of indoor scene components
detection methods as follows. The methods can largely be classified into four types, i.e., the
primitive shape proximity-based methods, the voxel grid-based methods, the data-driven
methods, and other methods.

The primitive shape proximity-based methods approximate the indoor scene compo-
nents with primitive shapes and use the primitive shape segmentation algorithms to detect
indoor components. Rchnabel et al. [7] represented 3D semantic entities with configurations
of basic shapes. Wang et al. [6] abstracted the sub-scenes with geometric primitives and
their topological relationships with structural attributes. Li et al. [10] operated simultane-
ously on both the local and global aspects by fitting primitives locally while optimizing
global relations iteratively. Hashemifar et al. [12] adapted a cuboid fitting algorithm for the
mapping of indoor scenes. A limitation of the primitive shape proximity-based methods
is that the commonly used primitive shape segmentation algorithms such as HOUGH
transforming [13,14] and Random Sample Consensus (RANSAC) methods [15,16] are all
based on statistical techniques. The segmentation results of these algorithms are randomly
generated and the topological relationships between indoor scene components will be
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lost. It hinders the following spatial relationship analysis between the components. Most
importantly, the shapes of indoor scene components are complex and varied. When using
these methods to detect the components, segments of indoor scenes (i.e., components) with
complex shapes will not be detected effectively.

The voxel grid-based methods always adopt the 3D voxel grids representation of point
clouds and perform segmentation on the simplified data structure. In [17], a point cloud
was first voxelized by the octree. Then a K-means clustering algorithm was employed to
realize super-voxel segmentation. Xu et al. [18] reported a novel strategy for segmenting 3D
point clouds using a voxel structure and graph-based clustering with perceptual grouping
laws. Lin et al. [19] proposed a new practice in super-voxel generation that adopted an
adaptive resolution to preserve boundaries. It is challenging to accurately segment out
components and preserve the boundaries in this kind of method.

The data-driven approaches often detect indoor scene components by training and apply-
ing a classifier to label the segments of indoor point clouds. For instance, Hausman et al. [21]
pre-segmented a raw point cloud of a given scene using a part graph-based hashing algo-
rithm, then an SVM-based classifier was trained by GRSD (Global Radius-based Surface
Descriptor) feature and applied for the segments of point clouds. Recently, a few methods
have employed deep learning to operate on indoor point clouds to segment out indoor
scene components. Wang et al. [48] partitioned each object into smaller super-faces and
each such super-face was associated with a vector of shape descriptors. Then must-link or
cannot-link constraints between super-faces were added between super-faces through an
active learning method. Qi et al. [22] designed a novel type of neural network (PointNet)
that consistsedof a Classification Network and Segmentation Network. PointNet well
respects the permutation invariance of points in the input and can be directly used for
indoor scene components segmentation from point clouds. Li et al. [23] introduced a new
deep learning-based method to parse 3D objects into moving parts based on input static
shape snapshots. Te et al. [25] used a regularized graph convolutional neural network
(RGCNN) for the semantic segmentation of object parts. However, the data-driven methods
need to label the amounts of the point clouds scanned from indoor scenes, which is tedious
work. In addition, these methods can only extract indoor scene components that observe
comments in the training set and cannot discover new components.

Researchers have also detected the indoor scene components by other methods.
Stein et al. [31] de-composed the scene into an adjacency-graph of surface patches, where
edges in the graph were classified as either convex or concave. Then the locally convex
connected sub-graphs were extracted as components of indoor objects. Kaick et al. [32]
presented a segmentation method for components with complete and incomplete shapes
where the shape was first decomposed into approximate convex parts, then these were
merged into consistent components based on a non-local geometric signature. Due to poor
connectivity caused by missing parts and outliers of point clouds, the methods are not suit-
able for detecting indoor scene components from point clouds, especially for components
with complex shapes.

We propose a learning-free method that mainly exploits the similarity and spatial
proximity of the profiles of slices of indoor scene components. There are some similar
slicing-based methods [45–47,49,50] proposed to detect components of individual objects.
Differently from these methods, our method mainly detects components of the whole
indoor scenes. The segmentation of the indoor scene is more complex than that of the
individual objects. By our method, the complex-shaped indoor scene components (from
different individual objects) can be effectively extracted.

2.2. The Acquisition of Spatial Relationships

Extracting spatial relationships is crucial for the understanding of indoor scenes. There
are many efforts that have been expended on the extraction of spatial relationships from
scene images. Muda [33] used region boundaries and region labels to generate annotations
describing absolute object positions and also relative positions between pairs of objects
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on the base of a domain ontology and spatial information ontology. Aditya et al. [34]
presented a general architecture where the generic visual recognition techniques for the
image scenes were implemented. Then a mapping between scene categories and inferred
scene constituents was collected and implemented to predict relationships between scene
constituents. Xu et al. [35] proposed a novel end to end model that solved the scene
graph inference problem using standard Recurrent Neural Networks (RNNs) and learnt
to iteratively improve predictions on objects and their relationships via message passing.
In contrast with the spatial relationships in 2D images, the spatial relationships in the 3D
point clouds are far more complex and the extraction of them is challenging.

Existing methods for the acquisition of spatial relationships directly from 3D point
clouds can be divided into two categories, i.e., the machine learning-based methods and
the knowledge-based methods. The machine learning-based methods mainly predefine
the types of spatial relations and then train a classifier to predict the spatial relations.
Silberman [38] introduced a principled approach that integrated physical constraints and
statistical priors on support relationships to reason spatial semantics such as support from
back, support from below, etc. Choi et al. [39] introduced a 3D Geometric Phrase Model
(3DGP) which defined a group of object types (e.g., sofa, chair, table, etc.) and their 3D
spatial configuration and proposed a latent SVM method to learn the interactions among
scene objects. Because spatial relations are complex, it is difficult to establish a fixed
parametric model for training. Thereby, the deep learning technology has recently been
adopted by some researchers. Wald et al. [40] proposed two PointNet architectures for the
extraction of objects and their spatial relationships and exploited a Graph Convolutional
Networks to process the acquired object–object relationships. Although the deep learning
techniques have shown prospects in the extraction of certain spatial relations, obtaining
effective features of the complex spatial relationships is still difficult.

The knowledge-based methods mainly use prior spatial knowledge to infer spatial
relationships. Zender et al. [42] used an innate conceptual ontology that defined abstract
categories for rooms and objects and how they are related to create conceptual map repre-
sentations of human-made environments to represent spatial properties of typical indoor
environments. Suchan and Bhatt [43] proposed an ontological characterization of human
activities to extract commonsense spatio-temporal relations and patterns (e.g., left-of, touch-
ing, part-of, during, approaching, etc.) to offer human-centered automated reasoning about
embodied spatio-temporal interactions with indoor environments. Ponciano et al. [44]
proposed a knowledge system to detect the specific components of indoor objects and
interleaved between spatial semantics inference and object recognition some spatial rela-
tionships (e.g., around, parallel) that had a close connection with recognition of indoor
objects were extracted. In the context of spatial semantics extraction on synthetic data,
Kontakis et al. [41] mimicked human spatial cognition and presented a knowledge-based
index mechanism for the automated spatial correlation between objects in terms of linguis-
tic predicts. Exiting knowledge-based methods mostly handle the spatial relationships
between indoor objects. In our work, we use the spatial knowledge to infer the spatial
relationships between indoor scene components from 3D point clouds. By introducing a
slice strategy, the acquisition of spatial relationships between indoor scene components is
facilitated.

3. Overview

Our work consists of two stages, i.e., the detection of indoor components and the
spatial relationships inference. The framework is shown in Figure 1.
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Figure 1. The framework of the proposed method: (a) Input an indoor scene model; (b) Slicing
the indoor scene model; (c) Generate the profiles; (d) Cluster profiles into different indoor scene
components; (e) Construct the relationship graph; (f) Build up an ontology to model knowledge about
indoor scene components; (g) Infer spatial semantics and output SGSR of the input scene model.

(1) Detection of indoor scene components

(a) Given an indoor scene model, we firstly adopt a simple direction searching
strategy to label the ground. Then we construct a slicing coordinate system (see
Figure 1a), where the center of the bounding rectangle of the ground is taken
as the origin, and the upward normal of the ground is taken as the z-axis. The
x- and y-axes are chosen from two arbitrary orthogonal axes on the ground.

(b) In the slicing coordinate system, from bottom to up, we iteratively slice the
indoor scene model using two planes by a step size h in the perpendicular
direction to the z-axis (see Figure 1b).

(c) We project the point set of a slice on a projection plane and divide the projected
point set into many subsets. Then each subset is resampled to a profile (see
Figure 1c).

(d) Profiles on different projection planes are clustered into indoor scene compo-
nents based on the similarity and spatial proximity (see Figure 1c,d).

(2) Spatial relationships inference

(a) We geometrically build up relationships between indoor scene components
(see Figure 1e).

(b) An ontology is constructed to model the commonsense knowledge about
the semantics of spatial relationships between indoor scene components (see
Figure 1f). Then the ontology is populated by the geometrically correlated
indoor scene components.

(c) The pair-wise spatial relationships are inferred by SWRL rules. An SGSR of
the indoor scene model is output to represent the indoor scene components
and their spatial relationships (see Figure 1g).
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4. Detection of Indoor Scene Components
4.1. Slicing and Resampling of Indoor Point Clouds

To slice the indoor scene model effectively, the slicing coordinate system is constructed,
where the center of the bounding box of the ground is taken as the origin. The upward
normal of the ground is selected as the z-axis, and two arbitrary orthogonal axes on the
ground are chosen as x-axis and y-axis.

It is observed that most indoor objects are placed upright on the ground. Therefore,
the ground can be labeled through a simple direction searching. The specific process is as
follows. (1) Compute the Orientation Bounding Boxes (OBBs) of the indoor scene model
and obtain outer planes Πi, i = 0,1,2 . . . m (m ≤ 5) that correspond with the ground, the
walls, and the ceiling. (2) Filter the points belonging to outer planes and segment the indoor
scene model PC into point sets PC = ∪i (Pi) by a k-nearest-neighbor (KNN) algorithm.
(3) We select Πi, i = 0,1,2 . . . m (m ≤ 5) as the ground and roughly regard each point set
Pi as an object and generate OBBs from the resulting point sets. Moreover, due to the
assumption that most objects are parallel to the ground, we enforce this constraint for the
OBB computation—the orientation along the parallel plane of the plane Πi. (4) If a Πi has
the largest number of OBBs closest to itself, it is identified as the ground.

Motivated by the aim of ensuring that enough geometric features are included in each
slice, we characterize the indoor scene slice as an indoor scene section with a thickness of l.
The thickness l is computed by λdddens, ddens denotes the density of the point clouds, λd is a
density factor. ddens is formulated as the following equation,

ddens =
1
N ∑N

i=1
1
k
(∑K

k=1 ‖pi − pk‖) (1)

where pi, i = 1, ..., N denote a point of indoor point clouds, pk is the k-closest point of pi. K
is set to 6.

The slicing position is initialized at the point that has the minimum z-axis value in the
slicing coordinate system. Starting from the initial slicing position (the lower slicing plane
is located at the initial position), from bottom to up, we iteratively slice the input indoor
point clouds using two slicing planes by a step size h in the slicing direction, as seen in
Figure 2.

Figure 2. Slicing and resampling of point clouds: (a) Slicing of point clouds; (b) A slice and a profile;
(c) Profiles of the point clouds.

For each slice, a plane parallel to the slicing planes and located between the two slicing
planes and equidistant from the two slicing planes is defined as the projection plane. On
this basis, the point set of each slice is projected to the projection plane by setting the z-axis
value of each point to the z-axis value of the intersection point of the projection plane and
z-axis.

The projected point set of a slice is first divided into some subsets by the cluster-
ing algorithm [51]. Then each subset is thinned using the Moving Least Squire (MLS)
method [52], and is thereafter resampled to a profile with an interval d. The size of d is
calculated as d = 1

N ∑N
i=1

1
K ∑K

k=1‖pi − pk‖, where pi is a point of indoor point clouds, pk is
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the k-closest point of pi. K is set to 5. Figure 2b shows one of slices of the object and the
resampled point set, i.e., the profile of the slice. Figure 2c shows all the profiles of an indoor
object.

Note that some special subsets do not need to be resampled. We divide the minimum
bounding box (MBB) of each subset into many sub-rectangles and label the sub-rectangles
that include one or more projected points, then count the labeled sub-rectangles and total
sub-rectangles. If the ratio of a labeled sub-rectangles number to total sub-rectangles
number is bigger than 0.7, the subset does not need to be resampled. More details about
dividing MBB into sub-rectangles can be seen in [49]. The special subsets directly constitute
a special kind of component of the indoor scene model. We refer to them as horizontal
plane components (horizontal planes for short).

To obtain the appropriate value of the density factor λd, we performed experiments
on indoor scene models with different densities. By using different sampling rates to down-
sample the indoor point cloud, point clouds with different densities can be obtained. Given
a tabletop scene model (Figure 3a), we chose the original model, the 50% down-sampling
model, and the 25% down-sampling model for the experiments. We set λd to 0.14, 0.23, and
0.34 for the models. The results are shown in Figure 3b–l). If λd is smaller, the slice will be
thinner. The thinner the slice, the fewer points on the slice. In a severe case, profiles will
fail to be obtained. As can be seen, the profiles are largely missing when λd is 0.14 or 0.23.
When λd is 0.34, good results are achieved. In our work, λd was set to 0.34.

Figure 3. Experimental results of l: (a) Scene 1 (99538 points), ddens = 1.431; (b) λd = 0.14, l = λd ddens;
(c) λd = 0.23, l = λd ddens; (d) λd = 0.34, l = λd ddens; (e) 50% down-sampling model, ddens = 1.995;
(f) λd = 0.14, l = λd ddens; (g) λd = 0.23, l = λd ddens; (h) λd = 0.34, l = λd ddens; (i) 25% down-sampling
model, ddens = 2.779; (j) λd = 0.14, l = λd ddens; (k) λd = 0.23, l = λd ddens; (l) λd = 0.34, l = λd ddens.
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h depends on the expected number of slices. h will affect the running time. The smaller
the h, the longer the cutting and resampling process will take, as shown in Table 1. Different
slicing results of the scene are shown in Figure 4. H was finally set to 1.0 l.

Table 1. Executing times.

h 0.4 l 0.8 l 1.0 l 2 l 4 l

times 450 s 285 s 240 s 180 s 126 s

Figure 4. Experimental results of h: (a) l = 0.34 ddens, h = 4 l; (b) l = 0.34 ddens, h = 2 l; (c) l = 0.34 ddens,
h = 1.0 l; (d) l = 0.34 ddens, h = 0.8 l; (e) l = 0.34 ddens, h = 0.4 l.

4.2. Clustering of Profiles

Let the total resampled point set of indoor scene model be <, and let each profile be

λij (i.e., the jth profile of the ith slice), then < =
{{

λij
}Mi

j=1

}N

i=1
.

Given two profiles λij and λqk of<, their spatial proximity and similarity are evaluated.
To judge whether two profiles are adjacent, their MBBs are calculated and denoted as MBB1
and MBB2, respectively. If λij and λqk belong to neighboring slices and MBB1 and MBB2
are overlapped, λij and λqk have spatial proximity.

For two profiles with spatial proximity, their similarity is further judged. A similarity
measure Dsc(λij, λqk) + (1−min(MBB1

MBB2
, MBB2

MBB1
)) is designed, where Dsc(λij, λqk) computes

the distance between shape context features [53] of the two profiles, min(MBB1
MBB2

, MBB2
MBB1

) is
adopted to approximate the scale ratio of the two profiles. If the similarity measurement
between λij and λqk is smaller than a threshold δ, the two profile λij and λqk belong to
the same component. Starting from the initial profiles, the profile pair in < are iteratively
clustered into different components, i.e., the profile clustering-based components.

To evaluate the effect of threshold δ on the clustering results, we set δ to 0.38, 0.48,
0.58, respectively, and the clustering results are shown in Figure 5. It can be seen that the
smaller δ may result in over-segmentation (see the blue rectangle in Figure 5b), and the
bigger δ may result in under-segmentation (see the blue rectangle in Figure 5d). We set δ to
0.48 in our work.

Figure 5. Experimental results of δ: (a) Scene 1; (b) δ = 0.38; (c) δ = 0.48; (d) δ = 0.58.
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Note that some complex-shaped components may be over-segmented due to the
profiles in some local surfaces of the components (see the blue rectangle in Figure 6a). To
solve the problem, we will locally adjust the slicing direction in a way similar to the method
in [45] at this local surface. Specifically, given three components, Comp1, Comp2, Comp3, if
a profile of Comp1 is respectively overlapped with its neighbor’s profiles that belong to
Comp2 and Comp3 (see Figure 6a), we label the component set as {Comp1, Comp2, Comp3}c,
and we reslice the raw points that correspond with Comp1. A rotational slicing direction
will iteratively be applied in the raw points (see Figure 6b) until the optimal slicing is found.
Then we re-cluster the re-generated profiles and the profiles of Comp2 and profiles of Comp3,
and update the clustering results (see Figure 6c) according to the minimum number of
components principle.

Figure 6. Adjustment of slicing: (a) The initial segmentation result; (b) rotated slicing planes; (c) the
final results.

Algorithm 1. Clustering profiles into indoor scene components.

Input: < =
{{

λij

}Mi

j=1

}N

i=1
, λij is the jth profile on ith projection plane, δ

Output: {Compl}
1.l = 0;
2. for i = 1:1:N
3. for j = 1:1:Mi do Compl ←φ;
4. if λij is not marked
5. λs←λij, mark λij;//
6. u = I + 1; do Γ←{λuv}Mu

v=1 & λuv is not marked; Γ←φ;
7. search spatial&similar profile λr of λs in Γ;
8. Compl ← Compl ∪λr; mark λr; λs←λr;
9. u = u + 1;
10. until λr is not found
11. l = l + 1; end if
12. end for
13. end for
14. Search component set

{
Compp, Compq, Compk

}
c from {Compl}, p, q, k ∈[0,l],

15. for each
{

Compp, Compq, Compk
}

c
16. apply rational-direction slice in raw points that correspoing with Compp
17. re-genarate profiles;
18. re-cluster the profiles and profiles of Compq, Compk, and update {Compl}
19. end for
20. output {Compl}

5. Spatial Semantics Inference
5.1. Spatial Relationships
5.1.1. Topological Relationships

Topology is a fundamental aspect of space. There are some popular formalizations
of topological relations in 3D space. Region Connection Calculus (RCC) [36] is a popular
formalization of topological relationships. It provides occlusion support by considering the
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projections of 3D objects in 2D space. In [37], the Dimensionally Extended Nine-Intersection
Model (DE-9IM) defined 11 types of topological relationship such as disjoint, meet, contains,
covers, inside, covered by, equal, etc., according to the boundary-based intersection pattern
between two 3D objects.

In our work, we mainly focus on two kinds of topological relationships between indoor
scene components, i.e., connect, adjacent. They are defined on the basis of two geometric
distances. The first distance is the minimal distance between two components. It is
calculated as d1(A, B) = infp1∈A,p2∈Bd(p1, p2), where A and B are components, p1 are p2 are
two points that belong to A and B, respectively. The second distance is the distance between
the centroids of two components. It is calculated as d2(A, B) = d(centroid(A), centroid(B)).

Because indoor scene components have different scales, e.g., the components of furni-
ture and the components of tabletop objects, we adopt the following principles for building
up topological relationships between two indoor scene components.

(1) We divide the indoor scene components into two categories, i.e., Class_I and Class_II,
according to their scales. Specifically, if the area of a horizontal plane is bigger than the area
threshold, or the volume of a profile clustering-based component is bigger than the volume
threshold, the component is classified into Class_I components. Otherwise, the component
is classified into Class_II components.

(2) For two Class_I components A and B, if d1(A, B) < σ1, they are connected. If
d1(A, B) > σ1 and d2(A, B) < σ2, they are adjacent. In our work, σ1 was set to 0.35, σ2 was
set to 3.

(3) For two Class_II components A and B. if d1(A, B) < σ1, they are connected. If
d1(A, B) > σ1 and d2(A, B) < σ2, they are adjacent. σ1 was set to the same value as that of
Class_I component. σ2 was set to 0.75.

(4) For a Class_I horizontal plane and a Class_II component, we will judge whether
they are connected or not. The adjacent relationships between them are not considered.
Moreover, we only consider the connected relationship between the Class_I horizontal
plane and the Class_II components. The topological relationships between the other Class_I
components and Class_II components are not considered.

5.1.2. Directional Relationships

Directional relations refer to another major category of spatial analysis. The directional
relationships mainly describe the relative position of 3D components in a coordinate system.
In order to depict the directional relationships between the indoor components finely, we
divide 3D space around an indoor scene component into 14 sub-spaces, i.e., above, below,
left, right, front, back, left_above_back, left_above_front, etc., as seen in Figure 7.

Figure 7. Directional relationships.
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Obviously, given a reference component B, when a component A is located in the six
subspaces around the reference component, i.e., above, below, left, right, front, and back,
there at exists least six corresponding directional relationships between A and B, i.e., leftOf,
rightOf, frontOf, backOf, ect. We take the leftOf or rightOf as the examples to illustrate
how to decide the directional relationships. The slicing coordinate system is taken as the
reference coordinate system. The directional relationship of indoor scene components is
determined through the coordinates of vertices of the indoor scene component’s MBBs.

We first project their MBB vertices that have maximum and minimum y-axis coordinate
value onto the y-axis, as shown in Figure 8. Then we calculate the length of the longest line
segment formed by the projected vertices, i.e., ly. Next, for MBB of A or B, we calculate
the distance between the vertices that respectively have the largest and the smallest y-
axis coordinate value, i.e., la and lb. Let lyo = la + lb, if ly/lyo is larger than 0.8, and
A_MBB.maxy ≥ B_MBB.maxy, then A is in the right of B (see the blue rectangle A), as seen
in Equation (2). On the contrary, A is in the left of B (see the red rectangle A), as shown in
Equation (3).

isRightO f (A, B)← ly/lyo ≥ τ && A_MBB.maxy ≥ B_MBB.maxy (2)

isLe f tO f (A, B)← ly/lyo ≥ τ && A_MBB.miny < B_MBB.miny (3)

Figure 8. Directional relationships: (a) The leftOf and rightOf relationships; (b) the leftFrontOf relationships.

In some cases, there may be two directional relationships between component B and
component A simultaneously. For example, if component A is located at the front-left of
component B, as seen in Figure 8b. This two spatial relations are collectively denoted as
isleftFrontOf (A,B). It depends on the projection of their MBBs on x-axis and y-axis. There
also are some similar directional relationships, e.g., leftFrontOf (A,B), rightFrontOf (A,B), etc.

If component A is located in the eight sub-spaces around the reference component
B such as left_above_back, left_above_front, etc., there will be corresponding relation-
ships leftFrontAboveOf (A,B), and rightFrontOf (A,B), etc., between them. Similarly, these
directional relationships are defined on the x-axis, y-axis, and z-axis coordinates.

5.2. Ontology-Based Spatial Semantics Inference

We built up an ontology to model the common sense knowledge about the semantics of
spatial relationships between indoor scene components, as seen in Figure 9a. The ontology
consists of a number of concepts arranged hierarchically. The root concept is a scene concept
with two sub-concepts, i.e., component and component pair. The component pair concept
includes two sub-concepts, i.e., the reference component and the target component. The
hierarchical spatial relationship between indoor scene components is shown in Figure 9b.
The properties of the ontology concepts are enumerated in Table 2.
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Figure 9. The scene ontology: (a) The scene ontology; (b) the spatial relationships.

Table 2. Properties of ontology concepts.

Properties of Component Concept Meaning Properties of Component
Pair Concept Meaning

hasType horizontal plane or profile
clustering-based component hasReferenceComp a relation starting from

a component

hasArea area of the horizontal plane hasTargetComp a relation target at
a component

hasVolume volume of MBB of profile
clustering-based component

hasMBB MBB of the component

We firstly geometrically built relationships between indoor scene components on the
base of two geometric distance d1 and d2 and obtain component pairs. Then the ontology
concepts are populated by a related component. For each component pair instance, the
horizontal plane is preferred as the reference component, and the profile clustering-based
component is preferred as the target component. If both components are horizontal planes
or the profile clustering-based components, any one of them is instantiated as the reference
component, and the other one is instantiated as the target component.

We mainly adopt Semantic Web Rule Language (SWRL) to regulate rules for inferring
spatial semantics. For instance, the following assert the topological relationships and spatial
relationships between two components, respectively.

isAdjacent(?A,?B)→ isComPair(?comPair)ˆhasReferenceComp(?comPair, ?A) ˆ hasTargetComp (?comPair, ?B) ˆ Distance1 (?A, ?B,
?dis1) ˆ swrlb: greaterThan(?dis1, σ1) ˆ Distance2(?A,?B, ?dis2) ˆ swrlb: greaterThan(?dis2, σ2)

isLeftOf (?A,?B)→

isComPair(?comPair)ˆhasReferenceComp(?comPair, ?A) ˆ hasTargetComp (?comPair, ?B) ˆ hasMBB
(?A,?A_MBB) ˆ hasMBB(?B,?B_MBB) ˆ ?Length1(?A_MBB,?B_MBB,?ly) ˆ Length2(?A_MBB,?
B_MBB,?lyo)ˆMinY(?A_MBB,? A_MBB_miny) ˆMinY(?B_MBB,?B_MBB_miny)ˆswrlb:
greaterThan(?ly,τlyo?) ˆ swrlb: smallerThan(?A_MBB_miny,? B_MBB_miny)

We adopt a graph to represent the indoor scene components and spatial relationships
as seen in Figure 10a, where the light green nodes represent the Class_II profile clustering-
based components, the light purple nodes represent the Class_II horizontal plane, the dark
purple nodes represent the Class_I horizontal plane, a pair of nodes connected by edges
represent two geometrically related components. The component in each component pair is
taken as the node of SGSR. The inferred spatial relationships are added into SGSR as edges
as shown in Figure 10b, where the blue edges denote the adjacent relationships, and the
yellow edges denote connect relationships. To limit redundancy, the adjacent relationships
between the components that share a horizontal plane have been filtered. The directional
relationships whose reference component and target component have been exchanged each
other have also not been shown.
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Figure 10. SGSR of a scene: (a) The tabletop scene and the relationships graph of scene; (b) SGSR
of scene.

6. Experiments
6.1. Evaluation of Indoor Scene Components Segmentation
6.1.1. Experiments of Indoor Scene Components Detection

To evaluate the effectiveness of the proposed method, we ran an extensive set of
experiments on some indoor scene models. The proposed algorithm was programmed
with VC++ and OpenGL for display and rendering. All of the experiments in this paper
were run on a PC with IntelI CoreI2, CPU2.80GHz, 2G memory. We evaluated our method
on ETH [54], TUM [55] and dataset [56]. We empirically set λd = 0.34, h = 1.0 × l, δ = 0.48
for the experimental scenes. ETH is a high-quality point cloud dataset containing 18 office
scenes. It mainly includes indoor objects such as chair, desk, keyboard, monitor, mouse,
cup, cabinet, lamp, sofa, pillow and so on. Clutter and occlusion were presented in the
dataset. In order to show the scenes clearly, we removed the walls, ceilings and ground
from the scenes. The qualitative experimental results are shown in Figure 11. They show
that most of the components were detected correctly. Besides, some objects in the scenes
were cuboid-like or cylinder-like (e.g., cabinets, boxes, and bottles). Each of them was
simply structured and should have been an individual component of the indoor scene.
However, considering that our proposed method can segment out the plane parallel to the
slicing planes from each object, these objects were labeled as two components in the ground
truth, i.e., the body and the cover (i.e., a plane parallel to the slicing planes). Although it is
inconsistent with the general ground truth (i.e., these objects are individual components),
this segmentation (i.e., label the body and the cover of the object) is still meaningful.

The dataset [56] included different kinds of scenes such as living rooms, office rooms,
meeting rooms. Figure 12a–d respectively shows the detected indoor components of
living room, office, lounge, and meeting room. It can be seen that most indoor scene
components have been detected successfully, which is expected from the results presented
in the previous section.

TUM dataset is a low-quality RGBD dataset and its scenes include persons. Generally
speaking, persons have more complex shapes than furniture. Through the TUM dataset,
the effectiveness of the proposed method for complex shaped indoor components was
evaluated. Figure 13a–c respectively shows the detected indoor scene components of three
kinds of scenes that including person with different poses. It can be seen that the walls,
computer screens, table tops, most body parts of persons have been detected effectively.
Moreover, the TUM dataset is made up of low-quality RGBD data, which increased the
difficulty of detection of components. Due to the adoption of profile features instead of
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point features, the general object and human separation of our method was still very good.
The executing time of our method on the three datasets are shown in Table 3.

Figure 11. Experiment results of ETH scenes, different colors denote the components of indoor scenes:
(a) Input scenes; (b) Top views of components of scenes; (c) Front views of components of scenes.

Figure 12. Experimental results of scenes of dataset [56], the first row is the input scene model, the
second row is the indoor scene components detection result: (a) Living room; (b) Office; (c) Lounge;
(d) Meeting room.
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Figure 13. Experimental results of TUM scenes, the first row is the input scene model, the second
row is the indoor scene components detection result: (a) Scene with a standing person; (b) Scene with
two sitting person; (c) Scene with two standing person.

Table 3. Mean executing times on dataset.

Dataset ETH Dataset [56] TUM

Mean time 4300 s 2105 s 1100 s

A few special-shaped components of objects were over-segmented, e.g., the chair back
in Figure 14a. However, the main part of the chair back (the red rectangle) was detected and
preserved. A limitation of our method is the determination of slicing direction. We adopted
a fixed slicing direction that was orthogonal with the normal direction of the ground. If
some objects are not placed on the ground with an up-right posture, some components will
not be detected correctly, as shown in Figure 14c.

Figure 14. Limitations: (a) Objects with special shaped components; (b) Objects with normal posture;
(c) Objects with abnormal posture.

6.1.2. Comparison of the Methods

To demonstrate the advantage of the proposed method, we compared our method
with RANSAC [16], a local convexity-based method (LCB) [31], a CRF-based method [27]
and PointNet++ [28] on the tabletop scene and the meeting room. The results are shown in
Figure 15. It can be seen that the complex-shaped indoor scene components such as the
bowl handle and some chairs and legs were not detected exactly by LCB and RANSAC.
With the help of machine-learning technology, CRF achieved better results than LCB and
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RANSAC. However, CRF still failed to detect some components due to the fact that the
optimal CRF model parameters are difficult to obtain. The semantic segmentation results
of PointNet++ are shown in Figure 15d, where the components semantic categories are
labeled. The indoor scene components with same semantic categories are further separated
by a classification network and the instance components are shown in Figure 15e. A few of
the components were not detected accurately by PointNet++ because of the wrong semantic
label of points.

Figure 15. Components of the indoor scene models: (a) LCB; (b)RANSAC; (c) CRF; (d) Semantic
segmentation result of PointNet++; (e) Instance segmentation result of PointNet++; (f) The pro-
posed method.

The quantitative results of Figure 15 are shown in Table 4, where the totally detected
components numbers (TN) and the correctly detected components numbers (RN) are
counted. A detected indoor scene component was considered to be correctly detected
if its IoU overlap ratio with the MBB of the ground truth components was larger than a
threshold. IoU is the volume of the 3D intersection of the MBBs, divided by the volume of
their 3D union. Here, the threshold overlap ratio was set to 0.7. The ground truth indoor
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scene components of the scenes were manually labeled, and the ground truth numbers
(GN) of the tabletop scene and meeting room were17 and 20, respectively. Table 4 shows
more of the components of the scenes correctly detected by the proposed method.

Table 4. The quantitative results of Figure 15.

LCB RANSAC CRF PointNet++ Our Method

TN RN TN RN TN RN TN RN TN RN

Tabletop scene 23 9 28 16 17 15 14 14 18 17
Meeting room 33 14 20 9 20 15 19 18 21 15

The quantitative results of the experiments are shown in Table 5. The extraction
ratio and error ratio of indoor scene components was introduced to evaluate the methods.
The extraction ratio was expressed as ratio_extra = RN

GN . Moreover, the error extraction
ratio was formulated as ratio_error = TN−RN

TN . It shows that the proposed method had a
higher extraction ratio than LCB and RANSAC. In comparison with CRF and PointNet++,
the proposed method achieved a higher extraction ratio of the indoor scene components.
However, because the proposed method may have generated more segments, its error
extraction may have also been higher than CRF and PointNet++. In comparison with LCB,
CRF, and PointNet++, the proposed method had a lower IoU overlap ratio with the ground
truth. This was due to the over-segmentation of some special shapes.

Table 5. The extraction ratio of indoor scene components and topological relationships.

Components Error Ratio of Components
Mean IoU
Overlap

Topo-
RelationshipsEHT Dataset

[56] TUM EHT Dataset
[56] TUM

LCB 0.60 0.55 0.49 0.56 0.64 0.66 0.92 -
RANSAC 0.66 0.65 0.70 0.43 0.50 0.41 0.86 -

CRF 0.86 0.84 - 0.17 0.18 - 0.90 -
Baseline [57] - - - - - - - 0.72
Our method 0.86 0.87 0.88 0.23 0.20 0.18 0.87 0.83
PointNet++ 0.87 0.84 - 0.16 0.15 - 0.89 -

6.2. Evaluation of Spatial Semantics Acquisition

Here, we report the 3D spatial semantics inference results of our method. We represent
the component and the spatial relationships of the meeting room by SGSR, as seen in
Figure 16a. We compared our method against a relationship prediction baseline inspired
by baseline [57]. The baseline extracted indoor components from point clouds on the
base of 3D primitive shapes approximation and built up the topological relationships (e.g.,
adjacent, parallel, and orthogonal, etc.), as seen in Figure 16b. We represented each spatial
relationship as a triplet (Compi, relationship, Comj) and compared the triplets of SGRS with
the ground truth triplets. If Compi and Comj of a triplet, respectively, had an IoU overlap
ratio of 0.7 or higher with that of a ground truth triplet, and the relationship of the triplet
was also the same with that of the ground truth triplet, the triplet of SGSR was considered
as correctly predicted. The extraction rate was defined as the number of the correctly
predict triplets against the number of the ground truth triplets. The triplets of generated
inspired by baseline [57] were also compared with the ground truth in the same way. The
extraction ratio of the proposed method and the baseline are shown in Table 5. It shows
that SGSR represented the structure of indoor scenes more exactly.
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Figure 16. Spatial relationships predicts: (a) SGSR of the meeting room of Figure 15f; (b) Spatial
relationships predicted on the base of the baseline [57].

7. Conclusions

We present a framework to detect the complex shaped indoor components and infer
their spatial relationships. The kernel is a slice-guided indoor scene components detection
algorithm for indoor point clouds. The core insight is that slices of most components of
indoor scenes always have similar 2D profiles, which allows for the detection of complex
shaped components regardless of whether these components have regular geometry. Be-
sides, through the layers of global slicing, the topological relationships between indoor
components were reserved and the construction of spatial relationships between indoor
components was also facilitated.

To obtain a spatial structure of indoor scene models, we built up an ontology to model
the commonsense knowledge about the semantics of spatial relationships between indoor
scene components. The spatial relationships between indoor components were inferred
and a SGSR was constructed to represent the components and their spatial relationships.

With experimental evaluation, we demonstrated the segmentation performance of our
proposed method on indoor scene components with complex shapes. We have also shown
that our method can exactly predict spatial relationships.

A limitation of our method is the calculation of slicing direction. When using our
proposed method, different slicing directions will lead to different segmentation results.
In a real indoor scene, most objects are placed on the ground in a normal posture, thus
the perpendicular direction to normal of floor is selected as the slicing direction and the
segmentation results are satisfied. For the objects placed on the ground with an abnormal
posture and the objects having special shapes, how to determine the slicing direction and
how to detect the components are our future work.
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