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Abstract: The mirror galvanometer is a crucial component of laser cutters/engravers. Novel
two-dimensional mirror galvanometers demonstrate less trajectory distortion than traditional one-
dimensional ones. This article proposes an optoelectronic sensor that measures a mirror’s inclinations
in two dimensions simultaneously. The measuring range, resolution, and sampling rate are ±10◦,
0.0265◦, and 2 kHz, respectively. With the proposed sensor, a closed-loop control can be further im-
plemented to achieve precision laser machining. Its compact size and low cost meet the requirements
of miniature laser engravers, which have become popular in recent years.

Keywords: angle sensor; optoelectronic sensor; parametric design

1. Introduction

In 2017, the first miniature laser engraver (MLE) [1] was invented, and a new con-
sumer product called the “personal laser tool” was born. Compared with industrial laser
engravers, MLEs do not have high specifications, but their portability (153 g/53 cm3) and
affordability are attractive. Analyzing the internal structure of a typical MLE, Cubiio, we
found that the key to its tiny size and low cost is replacing the bulky f-theta lens with a
virtual lens [2]. This patented technique requires a ±20◦ laser scanning range, i.e., a ± 10◦

mirror tilting range, and then projects to a 100 mm-square workspace. The un-interpolated
image contains 500 × 500 pixels; therefore, the objective resolution is one five-hundredth of
the full range.

Figure 1 illustrates the arrangement of optical elements inside conventional laser
engravers. Two 1D mirror galvanometers are installed orthogonally. The laser beam
is reflected first by the horizontal scanner and then by the vertical scanner. Multiple
reflections attenuate the laser power, and the different lengths between horizontal and
vertical optical paths cause a pillow-shaped distortion [3,4], as shown in Figure 1. To avoid
the aforementioned disadvantages, 2D mirror galvanometers were developed. In these, a
single mirror that can tilt two-dimensionally reflects the laser beam only once.

Atomic force microscopes [5,6] and CD/DVD pickup heads [7,8] utilize quadrant
photodetectors (QPD) [9,10] to achieve 2D angular-displacement sensing with ultra-high
resolution, but their measuring ranges are limited. Micro-opto-electromechanical systems
(MOEMS) [11] benefit from the development of semiconductor integrated circuits and
microelectromechanical systems (MEMS) [12,13]. MOEMS scanning mirrors have enjoyed
great commercial success in the field of display. The most famous example is that of
Texas Instruments’ digital micromirror devices [14], which are widely used in projectors.
Combining QPD and MOEMS, 2D scanning mirrors with embedded sensors have been
built, modeled, and analyzed [15–17]. Their specifications, listed in Table 1, show that
MOEMS scanning mirrors are compact with good resolution, but their sensing ranges
cannot meet the requirements of MLE. Furthermore, their small mirrors cannot withstand
the heat produced by the high-power laser. Another method for measuring 2D tilt is by
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utilizing optical fibers [18–21], but they are usually bulky due to the limitations of the
bending radius. Therefore, MOEMS technology is not suitable for use in MLE applications.
To increase the sensing range, the scale of the sensor needs to be larger. Printed circuit board
(PCB) technology with surface-mount devices (SMD) meets this requirement and has lower
developing costs than MOEMS technology. With the abovementioned advantages, PCB-
based sensing technology has also been applied to encoders [22] and robot joints [23–25].
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Table 1. Scanning mirrors with embedded sensors made by QPD and MOEMS, as reported in the
surveyed literature.

Sawada et al.
[15] Cheng et al. [16] Liu et al. [17] Goals of MLE

[1]

Dimension(s) 1D tile 1D linear 2D tilt 2D tilt 2D tilt

Sensing range ±2.5◦ ±5◦ ±5◦ ≥±10◦

Resolution NA 0.238◦/mV 0.0067◦ ≤0.04◦

Mirror size ~1 × 1 mm2 2 × 2 mm2 1.4 × 1 mm2 ≥8 × 5 mm2

Device footprint 1.5 × 1.5 mm2 3 × 3 mm2 11.4 × 3.65 mm2 ≤40 × 40 mm2

In this article, a PCB-based sensor that satisfies the needs of MLEs has been designed
and proposed. After introducing the details of the proposed sensor in Section 2, an algo-
rithm that converts four signals into two angles is developed in Section 3. The experimental
validations and the overall performance are summarized, and conclusions are drawn in the
final sections.

2. Sensor Design and Operation Principle

This sensor is designed to transduce the angles of inclination, θx and θy, of a 2D
scanning mirror into four electronic signals, which will be further acquired and processed
into two digital values to represent θx and θy. The physical mechanism of operation is
illustrated in Figure 2 and is described in detail in the following section.
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Figure 2. (a) The structure of the proposed sensor. The 2D scanning mirror manipulates the high-
power blue laser. On the back, four detectors receive different infrared intensities according to the
mirror’s orientation (θx, θy). (b) Side-view of the proposed sensor. h and z represent the height of the
baffle and the mirror–PCB distance, respectively.

2.1. Element Selection

In the test setup, a double-sided coated mirror (RB4550, Rocoes, Taiwan) with 24-layer
thin films is used to reflect a 1.6 W high-power blue laser (TB450B, Osram, Munich, Ger-
many) to engrave the target piece. The mirror’s reflectivity is greater than 98% from a
450 to 500 nm wavelength at its designed angle of incidence, 45◦. High reflectivity implies
low absorptivity, which keeps the mirror below its safe temperature of 150 ◦C. The details
of the 2D actuator that manipulates the mirror are beyond the scope of this article and will
be reported in other literature. A center-located LED emits a 940 nm infrared ray to the
back side of the mirror. Our selected LED (VSMB14940, Vishay, Malvern, PA, USA) has the
narrowest “angle of half-intensity” in the market of 9◦ for the purposes of high sensitivity.
Four surrounded phototransistors receive the unbalanced infrared ray reflected by the
tilting mirror. Our selected phototransistors (SFH3400, Osram, Munich, Germany) have a
linear response to the incident angle. To ensure producibility and low cost, off-the-shelf
SMD components are preferred. In addition, all tiny elements are placed as close together
as possible because a miniature sensor PCB is anticipated.

Figure 3 shows the schematic drawing of the sensor circuit. The resistor R0 keeps the
LED working at its nominal voltage of 1.24 V and current of 20 mA. The variable resistors
R1–4 are tuned to modulate the output signals, VE, VW , VN , VS, of four detectors because
they may have individual characteristics. All elements are soldered onto a PCB, as shown
in Figure 4. Three design parameters, the height of the baffle (h), phototransistor-connected
resistance (R1–4), and the vertical distance between the central emitter and the mirror (z),
will be quantified by practical tests in the following section.
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2.2. Test Bench

A test bench was built to achieve the aforementioned design parameters. To generate
a relative 2D tilting motion between the mirror and the sensor board, two 5-phase stepping
motors (PK543BW-H50S, Oriental Motor, Tokyo, Japan) with harmonic gears were installed
orthogonally, as illustrated in Figure 4. Motors X and Y rotate the sensor around the
x-axis and the mirror around the y-axis, respectively. The precision displacement stage
is equipped to manually adjust the vertical distance between the central emitter and the
mirror, z. Combining the stepping motor’s resolution, 500 pulse/rev, and the backlash-less
harmonic gear [26] with a 50:1 reduction ratio, ultrahigh angular accuracy at 0.0144◦ can
be achieved. The stepping motors are driven by compatible drivers (CRD507-K, Oriental
Motor, Tokyo, Japan) and are controlled by a data acquisition card (USB-6341, National
Instruments, Austin, TX, USA), which also collects the analog voltage signals from four
phototransistors. The whole system is hosted by a computer (2.5 GHz, Intel i5 CPU) and
programmed by a graphic language (LabVIEW, National Instruments, Austin, TX, USA).
Finally, this apparatus is hooded by an opaque box to shield off the ambient light.

2.3. Height of the Baffle

Although the infrared LED emits a narrow beam upward, there is still sideward
leakage that affects the surrounded phototransistors directly. Therefore, a baffle is needed
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to block the sideward leakage. The 3D-printed baffle is made of light-hardening resin with
a thin rectangular wall just a little bigger than the emitter’s footprint. Its color is matte
black to absorb the scattered light. Many baffles with different height values were printed
for the following test, under the default conditions of R1–4 = 200 Ω and z = 10 mm. Using
the test-bench, we scanned θx and plotted the signal VN in Figure 5. In the unblocked case,
i.e., h = 0, the signal was always above 3 V due to the sideward leakage. The height of the
emitter LED was 2 mm; therefore, the baffle’s height started from 3 mm. In the case where
h = 3 mm, the residual sideward leakage caused the signal to be a little distorted. In the
case where h = 4 mm, the baffle was too high and suppressed the dynamic range of the
signal. Therefore, h is decided at 3.5 mm, which is also suitable for the other three signals.
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2.4. Phototransistor-Connected Resistor

The default resistance, 200 Ω, was estimated according to the datasheets of the emitter
and the phototransistor. This resistance can be refined under conditions where h = 3.5 mm,
the most suitable height of the baffle. Using the test-bench, we scanned at θx and have
plotted the signal VN in Figure 6. By tuning the variable resistor R1 from 150 to 450 Ω, the
response curves are very different. Low resistance causes a low slope and poor sensitivity;
on the other hand, when set too high, the resistance causes saturation, i.e., a flat region.
This test established that the most suitable R1 ranged from 250 to 300 Ω. By repeating the
procedure for the other three signals, suitable ranges for R2–4 can be obtained as well.
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resistance.

2.5. Emitter-Mirror Distance

The final parameter, PCB-mirror distance, z, can be decided according to the conditions
refined earlier, h = 3.5 mm and R1 = 300 Ω. By fine-tuning at the precision displacement
stage, we scanned z from 6 to 10.5 mm and plotted the signal VN shown in Figure 7 in the
same manner. As the PCB-mirror distance goes further, the peak value of the signal goes
up and then down. From z = 6.5 to 7.0 mm, the curves show a maximal dynamic range
with good linearity. In summary, the optimal design parameters can be seen in Table 2.
With suitable design parameters, the proposed sensor can generate four 2D bell-shaped
signals over θx and θy. An algorithm that converts the four signals into θx and θy will be
developed in the next section.
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Table 2. The most suitable ranges for the design parameters.

Design Parameters Symbol Suitable Range

Baffle Height h 3.5 mm

Phototransistor-connected Resistance R1–4 250–300 Ω

Emitter-mirror Distance z 6.5–7.0 mm

3. Inverse Mapping Algorithm

A typical QPD method inversely maps four signals to two angular displacements
using Equation (1):

(θx, θy) =

(
Cx(VN −VS)

VE + VW + VN + VS
,

Cy(VE −VW)

VE + VW + VN + VS

)
(1)

where VE, VW , VN , VS are the signals measured by detectors in the east, west, north, and
south; Cx and Cy are the coefficients obtained by calibration. However, these equations
are only valid when the angular displacements are small. If the mirror’s scanning range is
as large as ± 10◦, the behavior is no longer independent and linear. A more complicated
inverse mapping algorithm has been developed below.

When approaching a simplified 1D case in Figure 8a, only one bell-shaped signal has
been pre-collected in the database. During sensing, a measured voltage, VW , projects to
two possible candidates, θW1 and θW2, but we do not know which one is true. To obtain
a unique θ output, more information is necessary. If there is one more detector with a
bell-shaped signal like Figure 8b, VE projects to θE1 and θE2. The intersection of {θW1, θW2}
and {θE1, θE2} yields the unique output, θW2 = θE1.
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In the same manner, for a 2D case, four detectors with four bell-shaped signals are pre-
collected as in Figure 8c. When the mirror turns to (θx, θy) during sensing, four measured
voltages project to four circles on the solution domain. The correct sensing result, (θx, θy), is
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located within the intersection of these four circles. In a realistic measurement with noise,
however, a level of tolerance must be allowed when screening candidates because two
measurements are rarely exactly equal to each other. Therefore, as illustrated in Figure 8d,
four circles become four hoops, the intersection of which contains multiple candidates. A
further averaging procedure will be applied to produce a single result.

Figure 9a illustrates the distribution of four bell-shaped signals, pre-collected by our
proposed sensor. As explained before, in a realistic measurement with noise, there are
multiple candidates within the intersection, as shown in Figure 9b. To obtain meaningful
(θx, θy) among these candidates, a weighted average is applied, as in Equation (2):

(θx, θy) =
∑n

i=1[wi(θxi, θyi)]

∑n
i=1 wi

(2)

where i and n are the index and the number of candidates; (θxi, θyi) is the location of the ith
candidate; and wi is the weight defined by Equation (3):

wi = |VE −VEi|−1 + |VW −VWi|−1 + |VN −VNi|−1 + |VS −VSi|−1 (3)

where VE, VW , VN , VS are the voltages presently measured by detectors in the east, west,
north, and south, respectively; VEi, VWi, VNi, VSi are the ith candidate’s voltages as pre-
collected in the database. The four voltage values, grouped as a set, can be perceived as
the “fingerprint” of a candidate. If a candidate’s fingerprint is more similar to the present
measurement, its weight should be stronger. Conversely, the weight should be weaker if
the fingerprint is less similar to the present measurement. To implement the above idea
mathematically in Equation (3), the weight is designed as the reciprocal summation of the
absolute value between a candidate’s recorded voltages and presently measured voltages.

There are other mathematical approaches to designing the weighting, e.g., Equation (4),
which generates similar fusion results; however, the squaring operations take some time
and seriously slow down the overall speed. To achieve a prompt response, the weighting is
designed as in Equation (3), with simple and quick mathematical operations. The following
experiments show that Equations (2) and (3) can work effectively and efficiently:

wi = (VE −VEi)
−2 + (VW −VWi)

−2 + (VN −VNi)
−2 + (VS −VSi)

−2 (4)
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Figure 9. (a) Four bell-shaped signals pre-collected by our proposed sensor. (b) For a realistic
measurement with noise, VE, VW , VN , VS are inversely mapped to four hoops. Orange, green, blue,
and red dots represent the candidates, projected from VE, VW , VN , VS, respectively. Black dots
represent their intersection, as shown in the zoomed region.
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4. Experiment

To verify the performance of the proposed sensor, experiments were executed accord-
ing to the flow chart Figure 10. The thermal equilibrium, i.e., steady voltage readings, can
be achieved after 1 min of warmup since the total heat dissipation is lower than 0.5 W.
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Figure 10. The flow chart for testing the proposed sensor.

STEP 1: Pre-scan. Every fabricated sensor board needed to be 2D-scanned by our test
bench, and an associated 4-peak topography was pre-collected in its database. In the record,
every (θx, θy) yields four featured voltage values as a unique fingerprint.

STEP 2: Within ±15◦, we generated a random location (ϕx, ϕy) to be tested.
STEP 3: We commanded the motors of the test bench to turn to (ϕx, ϕy).
STEP 4: Screening candidates. During sensing, four voltages were inputted and then

mapped to four hoops, as illustrated in Figure 8. Several candidates were quickly selected
by intersecting these four hoops.

STEP 5. Weighted average. Equations (2) and (3) were calculated to produce (θx, θy)
as the sensor output, then to loop back to STEP 2 for the next location to be tested. The
difference between the actual location (ϕx, ϕy) and the sensor output (θx, θy) is defined as
the sensing error (Equation (5)):

(errx, erry) =
(∣∣ϕx − θx

∣∣, ∣∣ϕy − θy
∣∣ ) (5)

STEP 1 takes 4 h to complete because of the high-density data. This time-consuming
procedure can be treated as a form of calibration. STEP 3 is a mechanical behavior that takes
about 1 s. STEPS 4 and 5 represent a sensor behavior that takes 0.5 ms, i.e., at a 2000 Hz
sampling rate. The experimental results are plotted in Figure 11. The sensor outputs are
close to the actual locations within a ± 15◦ test range. We tested a ± 20◦ range and found
that the error increased seriously when the locations were outside ± 15◦. To be on the safe
side, the range of the proposed sensor is limited to ± 10◦. Within the range, the average
of errors is 0.0265◦ in both dimensions. Similar to the idea of a “signal-to-noise ratio”, the
resolution of the proposed sensor is defined as “range-to-error ratio”, which is equal to 755.
The details of the performance of the proposed sensor are listed in Table 3, which meets the
goals of MLE, as listed in Table 1.
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Table 3. Performance of the proposed sensor.

x-Axis y-Axis

Range ±10◦ ±10◦

Sampling rate 2000 Hz 2000 Hz

Average of errors 0.0265◦ 0.0265◦

Standard deviation of errors 0.0251◦ 0.0159◦

Resolution: range-to-error ratio 755 755

Mirror size 10 × 10 mm2

PCB footprint 30 × 20 mm2

5. Discussion

The main novelty of this research is to transfer QPD from a MEMS to a PCB platform.
Thus, this research achieves three advantages: a wider sensing range, higher laser power,
and a shorter development period.

This research has demonstrated the widest possible sensing range, ± 10◦, among the
surveyed studies in Table 1. With a doubled scanning range, an MLE can cover a workspace
with a half-projection distance, which implies a smaller focusing spot and higher energy
density. A small laser spot, cooperated with 0.0265◦ accuracy, achieves good engraving
quality. On the other hand, a high energy density plus a 2000 Hz sampling rate leads to
a fast engraving speed. It is definite that the above performance cannot compete with
expensive industrial laser engravers, but the proposed sensor can be used in cost-effective
MLEs. The µm-level mirrors in MEMS cannot withstand the heat produced by a powerful
laser. Thus, MEMS galvanometers are only suited to laser-displaying applications. Our
PCB-based system can cooperate with centimeter-level mirrors, which suit more powerful
laser engravers. In terms of the development period, a PCB-based layout/component can
be modified in a month. In contrast, a MEMS system involving several photomasks would
take far longer to be redesigned.
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6. Conclusions and Outlook

Our proposed angular displacement sensor can measure the tilt motion of a scanning
mirror around two axes simultaneously. This PCB-based sensor consists of off-the-shelf,
tiny SMD components, and demonstrates the advantages of a large sensing range, compact
size, and cost-effectiveness. The experiments show that the sensing range, averaged error,
range-to-error ratio, and sampling rate are ± 10◦, 0.0265◦, 755, and 2000 Hz, respectively.
With the above advantages and performance, the proposed sensor can be utilized in the
next generation of miniature laser engravers. In the future, the pulse emission technique
with lock-in amplifiers can be adopted to enhance the signal-to-noise ratio for better
resolution, which makes it possible for this sensor to be further utilized in industrial laser
cutters/engraves, but the cost would necessarily be higher. The tradeoff between accuracy
and cost is always inevitable.
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