
����������
�������

Citation: Kotenko, I.; Izrailov, K.;

Buinevich, M. Static Analysis of

Information Systems for IoT Cyber

Security: A Survey of Machine

Learning Approaches. Sensors 2022,

22, 1335. https://doi.org/

10.3390/s22041335

Academic Editors: Giuseppe Maria

Luigi Sarne, Jianhua Ma, Domenico

Rosaci, Gautam Srivastava and

Alessandra Rizzardi

Received: 19 December 2021

Accepted: 5 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Static Analysis of Information Systems for IoT Cyber Security:
A Survey of Machine Learning Approaches

Igor Kotenko 1,* , Konstantin Izrailov 2 and Mikhail Buinevich 3

1 Computer Security Problems Laboratory, St. Petersburg Federal Research Center of the Russian Academy of
Sciences, 199178 Saint-Petersburg, Russia

2 Department of Secure Communication Systems, The Bonch-Bruevich Saint-Petersburg State University of
Telecommunications, 193232 Saint-Petersburg, Russia; konstantin.izrailov@mail.ru

3 Department of Applied Mathematics and Information Technologies, Saint-Petersburg University of State Fire
Service of EMERCOM of Russia, 196105 Saint-Petersburg, Russia; bmv1958@yandex.ru

* Correspondence: ivkote@comsec.spb.ru

Abstract: Ensuring security for modern IoT systems requires the use of complex methods to analyze
their software. One of the most in-demand methods that has repeatedly been proven to be effective is
static analysis. However, the progressive complication of the connections in IoT systems, the increase
in their scale, and the heterogeneity of elements requires the automation and intellectualization of
manual experts’ work. A hypothesis to this end is posed that assumes the applicability of machine-
learning solutions for IoT system static analysis. A scheme of this research, which is aimed at
confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions
to the work are as follows: systematization of static analysis stages for IoT systems and decisions
of machine-learning problems in the form of formalized models; review of the entire subject area
publications with analysis of the results; confirmation of the machine-learning instrumentaries
applicability for each static analysis stage; and the proposal of an intelligent framework concept
for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the
entire process of static analysis (from the beginning of IoT system research to the final delivery of
the results), consideration of each stage from the entirely given set of machine-learning solutions
perspective, as well as formalization of the stages and solutions in the form of “Form and Content”
data transformations.

Keywords: IoT systems; cyber security; static analysis; machine learning; analytic model; survey
model; formalization

1. Introduction

A topical problem in today’s world is the lack of IoT system (IoTS) security against the
actions of intruders. IoTS security is significantly affected by software, where vulnerabilities
lead to violations of confidentiality, integrity, and the availability of information [1,2]. While
previously only individual files or software components were investigated to counter such
breaches [3], currently a key requirement is the static (SA) and dynamic (DA) analysis of
the entire information system.

IoTS consists of a great amount of data, documents and software of various types and
purposes. Almost every one of these components can be a source of threats: executable
code (e.g., exe files) may contain program bookmarks; Web-server code (e.g., PHP files) may
contain backdoors; a hidden channel for leaking confidential and malicious information
may be organized by means of stego attachments in images (e.g., jpeg files), and so on [4].

IoTS analysis is directly related to the study of its objects from different perspectives
to gain new knowledge about the information security (IS) state of the system [5,6]. A
great number of IoTS files, large volume of information in the files, great heterogeneity of
information, container structure of documents, etc. do not allow for expert security analysis
to be produced in an adequate time.

Sensors 2022, 22, 1335. https://doi.org/10.3390/s22041335 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041335
https://doi.org/10.3390/s22041335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-9412-5693
https://orcid.org/0000-0001-8146-0022
https://doi.org/10.3390/s22041335
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041335?type=check_update&version=1

Sensors 2022, 22, 1335 2 of 34

Classical automation with strict rules does not give the required results, because most
of the manual work is spent on creating and debugging such rules. Therefore, an interesting
and promising solution is the use of machine learning (ML), which features the transfer of
human intellectual activity (clearly, resource-intensive) to artificial (software-implementable
and therefore less resource-intensive) intelligence.

The application of DA is more justified for separate programs, which can be repeatedly
executed in the same conditions. Full coverage of the code in the investigation process
will require using all possible scenarios of the program functioning. As a result it will
be possible to obtain error reports, execution logs or program results for further analysis
(manually or automatically).

For large IoTS, however, this approach will be a significant problem, since the system
components are in a constantly changing environment (which is extremely difficult to
replace with a virtual one), and covering even part of their program code may require enor-
mous time resources. Thus, the authors consider static analysis to be the most promising
for the development of analysis applicable to modern IoTS.

Based on the above, we propose a hypothesis of the current research: ML is applicable
to SA of IoTS systems for information security. This paper is devoted to its confirmation.
The article proposes to limit the consideration of the SA task only, and the DA task is
considered by the authors to be the direction of future research.

Despite the relative novelty of ML applications in the IS field, they have already shown
relevance in this matter: for finding vulnerabilities in source [7] and machine code [8,9],
attack detection in networks [10], predicting balances on components of large distributed
systems [11,12], anomaly detection in real-time data [13], etc. Since a direct search for
vulnerabilities is only one of IoTS analysis’ subtasks (albeit most frequently reflected in
scientific publications), it is necessary to consider an application of ML on the full cycle of
system investigation, not just for executable files.

1.1. Novelty

The novelty of the current review is as follows. First, the predominant majority of
existing reviews from the software IS field are devoted to various methods of analyzing
software code (source, machine, and byte code) built on the basis of ML. For example,
work [8] analyzes binary code exclusively, work [7] analyzes source code, and work [9]
analyzes any of these code representations. While code analysis is a central part of the
search for vulnerabilities in IoTS software, the processes of data collection and preparation
that precede it, as well as the subsequent visualization of the results [14], are also essential
parts of a full IoTS SA.

From this point of view, the current review differs from the previous ones in that
it covers the entire SA process—from the beginning of investigation of an “unfamiliar”
IoTS to the moment of providing all the results of work in the form required for further
processing (human or automatic). Therefore, the novelty of the current work lies in the
uniform study of the application of machine learning to the entire SA process, and not only
to one of its stages.

Secondly, the existing reviews mainly aim at highlighting the entire variety of ways to
solve a problem (typically, code analysis) from the point of view of many ML methods and
models mentioned in the articles. Thus, papers [7–9] mention the ML problems considered
in the current review as well, with various degrees of exhaustiveness; however, no complete
systematization on such problems has been made.

The current review initially defines a certain set of problems (and, accordingly, their
solutions by methods from the ML field) and performs the selection and description of
articles based on their applicability for SA. From this position, the current review uses the
task-oriented classification of ML methods, thus, carrying out a certain systematization of
the subject area objects. Consequently, in the current work, for the first time, all possibilities
(both theoretical and practical) of applying the entire variety of solutions in the field of ML
at each stage of SA are considered.

Sensors 2022, 22, 1335 3 of 34

Thirdly, in addition to the verbal description of SA, it is not only divided into stages,
but, for the first time, it is proposed to represent their actions in a formalized form—as
transformations of Form and Content of the studied data in IoTS. In contrast to this
approach, the paper [8] only records a formalized form of the considered specific solutions,
the paper [7] gives some formulas from the ML field, and the paper [9] does not contain
any formulas at all.

As a consequence, using this mathematical apparatus, a formalized presentation
of detailed SA techniques for a particular IoTS (taking into account the features of its
elements, having non-linear and more complex conduct schemes, as well as having the
possibility of automatic verification for correctness and optimization) is possible in the
future. Consequently, a new mathematical apparatus for the formalization of SA stages
is proposed.

Thus, there are no works on the topic of the article (SA with ML of IoTS), and the
taxonomy of close surveys is inapplicable. The taxonomy proposed in the article is aimed
at systematizing all SA stages and ML tasks for IoTS. Thus, the whole set of already existing
or only proposed methods is covered.

1.2. Contributions

The main contribution of the current review to the theory is the systematization of
the basic elements of the SA (stages) and ML (task solutions) fields, in the form of two
models: the SA model and the ML application model for SA. Thus, these two models cover,
from different positions, the subject area delineated by the SA stages from the position of
the basic tasks and ML methods. The models have a matrix form, in which the columns
represent the stages and the rows define the tasks. The SA model can be used to formally
evaluate the performance and efficiency (as well as other characteristics) of the algorithms
used to implement a given SA step with ML solutions.

The contribution of the current review to the practice is the substantiated possibility to
create an intelligent framework, which contains a whole set of elements for the construction
of methods of nonlinear variations of SA for complex IoTS, while being amenable to
complete automation. Thus, in the simplest case, these elements of the Framework can
correspond to the cells of the specified matrix models, and with further development, have
more detail. The possibility of practical application for almost any of the ML solutions in
any of the SA stages is substantiated. The SA model can serve as a theoretical basis for
practical implementations of the corresponding algorithms.

1.3. Article Content

The article has the following content. Section 3 reviews publications with independent
reviews of articles on the IoTS SA process produced using ML methods. The methodological
scheme of the study is constructed, reflecting also its ontology. In Section 4, the main stages
of SA are defined, and their formal representation is given in the form of transformations
performed on the Form and Content of the IoTS data under study. Then, typical tasks
solved with ML are considered, which are also written in a formalized form.

At the end of the chapter, the steps and problem solutions are systematized into a
single matrix, the cells of which specify the application of one of the ML field solutions
to the operation of one of the SA steps. This matrix corresponds to the first result of the
study—the SA model.

Section 5 reviews articles with research results applicable to the performance of a stage
of SA, and describes the ML solutions used in doing so. Section 6 systematizes the articles
in the form of a matrix model—according to their relation to a certain SA stage and one of
the tasks solved with the help of ML. This matrix corresponds to the second result of the
study—a model of ML application to SA.

A conceptual model of a complex SA using ML, based on a hypothetical intelligent
framework is described. Section 7 presents the main conclusions of the study and indicates
the way forward.

Sensors 2022, 22, 1335 4 of 34

2. Research Methodology

The specificity of using SA for IoTS based on ML is as follows.
Internet of Things. IoTS security is of particular relevance, since the disruption of

their functioning directly affects the real world—the operation of mechanisms, people’s
lives, etc. For example, errors in the operation of smart home security systems can lead
to financial losses for owners, incorrect operation of the transport system [15] can lead to
accidents and traffic congestion, and errors in the operation of medical IoT devices can lead
to the death of patients.

Statical Analysis. The particular difficulty of conducting SA is manifested precisely
for IoTS, which have different functional purposes. Thus, devices use various OS, distros
and CPU architectures [16]. Each such choice, in particular, is selected based on the tasks of
the devices. For example, some IoTS require high operating speed, others demand battery
life, others lack ultra-precise complex calculations, etc. As a result, a more generalized and
systematized set of SA methods and instruments is needed across the entire IoTS diversity.

The existing SA methods, based in particular on expert-based rules, are being devel-
oped for the some type of Desktop PC software. For example, the well-known Hex-Rays
decompiler from IDA Pro supports only code for the x86, x64, ARM32, ARM64, and Pow-
erPC processors. Wherein, threat detection based on suspicious network traffic (i.e., through
dynamic analysis) will not always reveal a single attack exploiting a 0-day vulnerability.
Thus, a security analysis is required even before the devices are actually launched.

System of IoT. The presence of a whole system of interacting IoTS imposes a number
of restrictions on how to ensure security. Thus, in particular, dynamic analysis will be of
little use, since it is rather difficult to emulate the environment of a device that continuously
interacts with the outside world. At the same time, sometimes, security problems manifest
themselves precisely in the case of a group of several interacted IoTS and not a single device.

Machine Learning. The large number of IoT manufacturers and the variety of solutions
used do not allow the application of SA rules that are created by hand or are required
to use manual labor of experts. Otherwise, SA will be extremely resource intensive. A
large number of cyber-physical interfaces (sensors, sources of impact, etc.) significantly
complicates the development of a test case manually. As a result, a partial replacement of a
person’s creative abilities with automation is required. This is what justifies the use of ML.

The first step in verifying applicability of any new set of methods to the tasks at hand
should be a review of existing assumptions for such an application. In order to confirm the
hypothesis, we formulate an ongoing research problem, compiled from two subtasks:

1. To justify that ML-based solutions can underlie the transformations carried out at
each stage of IoTS SA for information security.

2. To make an overview of ML-based solutions, each applicable to each stage of IoTS SA
for information security.

The process of solving this hypothesis and its solution is described in this article.
In addition, since the results of the review should give an answer regarding the

formulated hypothesis and tasks, the main results of the study will be defined in the
following form:

1. The SA model, systematizing in a formalized form the required transformations of
IoTS SA stages and possible solutions of ML tasks.

2. A model of ML application for SA, systematizing the existing solutions linking IoTs
SA and the possibilities of ML application for its implementation.

The obtained results will be useful both in creating a general methodology of intelligent
static analysis and in selecting implementations of its specific solutions. In addition, the
second result will assess the status and research trends of existing solutions. The research
methodology in schematic form, reflecting also its ontology, is presented in Figure 1.

According to Figure 1, the ongoing study has the following layout, in which the actions
are marked with the corresponding numbers:

1. Actualization of the research topic as IS of IoTS.

Sensors 2022, 22, 1335 5 of 34

2. Selection of the subject area of the research, as SA from the ML position.
3. Proposal of the hypothesis for confirmation in the study.
4. Statement of the main research problem.
5. Division the main research problem into subtasks.
6. Analysis of publications with existing reviews in the subject area.
7. Allocation and formalization of the SA stages.
8. Allocation and formalization of tasks to be solved with the help of ML.
9. Systematization of SA stages and ML tasks.
10. Building the SA model.
11. Basic overview of the articles in the subject area.
12. Building an ML application model for SA.
13. Obtaining and analyzing publication metrics in the SA subject area.
14. Creation of the intelligent framework concept for SA.
15. Selection of future research directions.
16. Determination of future research perspectives: conducting a similar review for IoTS

DA, development of the mathematical apparatus of ML application for SA, creation
of a framework prototype.

17. Carrying out practical experiments with the framework prototype and its analysis.

Figure 1. Research scheme.

The ontological part of the scheme in Figure 1 is defined by the elements presented
on it (in rectangles) and their relationships, with the following values (according to the
line numbers):

1. Has current solution paths.
2. Has solution paths not considered in the work.
3. Is the first basis of the hypothesis.
4. Is the second basis of the hypothesis.
5. Sets the main problem of the study.
6. Divides into subtask 1 of the study.
7. Divides into subtask 2 of the study.
8. Explores existing solutions.
9. Concludes that there are no suitable solutions.
10. SA steps are identified and formalized.
11. ML tasks are identified and formalized.
12. Used as the matrix columns in systematization.
13. Used as the matrix rows in systematization.
14. SA model is constructed.
15. Main review of publications is done.
16. ML application model is built for SA.
17. Publication metrics are calculated.

Sensors 2022, 22, 1335 6 of 34

18. Justifies the ML application model.
19. Constructs the framework basis using the solution of subtask 1.
20. Constructs the framework basis using the solution of subtask 2.
21. Predicts continuation of the study.
22. Chooses directions for future research.
23. Analyzes the application of ML to DA.
24. Development of a mathematical apparatus to refine the model.
25. Development and testing of a smart framework prototype.

Note that the Main survey (action 11, Figure 1) is the collection and analysis of
publications for each application of the ML tasks for SA stages (it is described in Section 4).
This is necessary to collect statistical data on the research history of each application.
Statistical data will reveal the main research trends and their possible problems. The
general picture of the elaboration of the entire subject area will be visible. At the same time,
a large number of publications will be able to confirm the research hypothesis.

The SA stages model (action 7, Figure 1) is needed to create a new model (action 9,
Figure 1)—a model applying ML tasks (action 8, Figure 1) for SA stages. The last model
is necessary for theoretical confirmation of the hypothesis. In fact, an attempt to create
a methodological apparatus for theoretical confirmation of hypotheses of the form “Is it
possible to use certain methods to solve requires problems” has been made.

3. Analysis of Existing Review Works
3.1. ML for SA of IoTs

There are many reviews devoted to collecting, systematizing, and comparing scientific
publications on the topic of ML applications for information systems in general and IoTS in
particular. However, only a small fraction of them relate to the field of IoTS security, and
not, for example, network security. A brief analysis of interesting reviews is given below.

In [8], a comprehensive study of different ways to analyze binary code is presented. A
taxonomy of the corresponding framework is given, which consists of four components:
feature extraction, feature embedding, analysis techniques, and applications. Greater
attention is specifically paid to the application of ML regarding the techniques of code
analysis. Thus, there are many works (more than 100) in which ML is applied to the
problem of classification, including viruses and their families, string tokens, cryptographic
algorithms, and code clones.

Clustering is also described from the following positions, in addition to preparing data
for other classifiers: authorship detection, detection of clones, determination of similarity
of the program to a virus from the base, and identification of auxiliary features in the code
(virus features and entry points in functions). The following works are described concerning
the application of ML for binary code analysis: classify malware [17–20], identify function
entry points [21], and recognize functions [22].

Work [7] is devoted to the application of ML exclusively to source code for the fol-
lowing tasks: Recommender Systems—help systems for software developers (code au-
tocompletion, etc.); Inferring Coding Conventions—support of coding style conventions
(formatting, variable naming, etc.; Code Defects—detection of anomalies in the code, which
can tell you about vulnerabilities; Code Translation, Copying, and Clones—code conversion
between different programming languages and search for similar code fragments; Code
to Text and Text to Code—conversion between the program code and natural language
code; Documentation, Traceability and Information Retrieval—code documentation and
searching; and Program Synthesis—mechanisms of “smart” program code generation.

The works [23–29] describe concerning the application of ML to analyze the source
code for anomalies, i.e., code defects. Thus, the review covers only a narrow set of secu-
rity subdomains.

In the review [9] on software vulnerability analysis and detection, all reviewed works
are divided into four categories (with corresponding papers): Vulnerability Prediction
Models based on Software Metrics, Anomaly Detection Approaches, Vulnerable Code

Sensors 2022, 22, 1335 7 of 34

Pattern Recognition, and miscellaneous Approaches. The first category is devoted to
prediction of possible vulnerabilities on the basis of different source metrics [30–38] and
binary code [37,39], as well as code commits (which goes beyond SA).

The second category is devoted to detecting anomalies in the code, which may be a
consequence of the vulnerabilities in it. This is done by looking for deviations in API calls
from applicable patterns [40–46] and missing typical checks [45,47,48]. The third category
is devoted to the direct detection of vulnerabilities in code by pretrained patterns. For this
purpose, the works [49–58] apply classification and in [52,56] also clustering. The fourth
category contains descriptions of approaches not included in the previous three categories.

The category mentions the following works and their ideas: fuzzy testing using genetic al-
gorithms [59]; bug report analysis using classification to identify hidden vulnerabilities [60,61];
searching for memory corruption vulnerabilities by source code using genetic algorithms
and Fish School Search [62]; classification and prediction of false positives in SA vulnerabil-
ities in Web application code and automatic fixing them [63]; and improving SA efficiency
and scalability for software repositories [64]. Thus, although the research in the fourth
category is related to SA, it is rather of an auxiliary nature and will not be discussed further.

Work [65] focuses on the security of software interactions in complex information
systems through visualization. In particular, to increase the intellectualization of the
analysis of interactions, it is proposed to use classification, anomaly detection, clustering,
regression, and dimensionality reduction.

As we can clearly see, despite the vast number of works, most of them are appli-
cable only to the source code and have far from always satisfactory efficiency. The re-
view concludes that the field of detection of vulnerabilities in code using ML is insuffi-
ciently developed. In spite of the rather extensive reviews (by the number of publications
reviewed—from 100 to 200), all the works considered in them can be attributed only to
direct software security testing.

However, the processes of collecting such a code, its preparation and presentation to
an expert are of a partial nature, not being part of a unified static analysis methodology. As
a result, it is not always possible to build a static analysis process out of several coordinated
steps. It is necessary to pay attention to these questions, which will be done in this article.

3.2. ML for IoT Security

We also analyze the latest works devoted to other reviews on the topic of using ML to
enhance IoT security.

The work [66] is devoted to the problem of identifying IoT devices. The article
provides an overview of identification methods based on ML. Identification mechanisms are
separated into four groups: pattern recognition, deep learning identification, unsupervised
learning identification, and anomalous device detection. Thus, this work is partially related
to the current subject area. However, the proposed solutions can only be attributed to SA
Stage 1.

In [67], the security trends for IoT devices are assessed. A total of 20 surveys are
reviewed, and ML is considered in only 25% of them. The main taxonometries, however,
relate to the identification of groups of attacks and not how to defend against them. The use
of ML to improve security is mainly considered in the context of identifying the dynamic
attacks, and not static weaknesses in the implementation of devices (i.e., in program code,
algorithms, architecture, etc.).

The work [16] emphasizes the relevance and underdevelopment of solutions for the
search for malicious IoT software. Particular attention is paid to the executed Unux-
like programs in the ELF format. The statistics show that the OS for IoT is 70% Linux
(file format—ELF), and Windows—22% (file format—PE); the frequency of using other
operating systems is less than 20%.

The main fields of the ELF header are considered. A feature of the survey is the
consideration of approaches to searching for malicious code from the standpoint of their
independence from the architecture of the program execution. A taxonomy of features

Sensors 2022, 22, 1335 8 of 34

obtained from ELF programs is created, which can be used for static and dynamic analysis
to search for malicious code in IoT devices.

The taxonomy separates features into the following: for SA—metrics, graphs and trees,
sequences, and dependencies; for DA—logs and resource usage. Despite some closeness
of this survey to the current research, its results can be partially attributed to Stage 3 only
(with partial consideration of Stage 1 and Stage 2), i.e., not to the full SA process. At
the same time, only such ML problems as classification (and its special case—detection)
are highlighted.

In [68], the IoT threats as well as ML-based IoT security models are outlined. A layered
IoT model is proposed. A Q work flow of threat detection is described based on this model.
However, all countermeasures involve analyzing the network activity of devices at various
network levels, i.e., they belong to dynamic analysis. At the same time, there is no direct
analysis of IoTS as a software system. From ML techniques, only classification, clustering
and regression are indicated. Techniques, such as rule-based systems and reinforcement
learning, are highlighted separately.

In [69], the application of Federated Learning (FT) for IoT is considered. As a result
of using this technique, there will be no need to transfer data for training. The FL-IoT
system is presented, describing local training, FT-server and exchange processes between
them. The possibility of using FT also for detecting malicious software in a static way
is indicated. The main applicability of ML is in classification, regression, and anomaly
detection. The main countermeasures for IoT threats are through dynamic device analysis.
At the same time, the survey is devoted specifically to the implementation of FT in IoT
and not to systematize SA. Note that the use of FT can increase efficiency and safety when
conducting the SA (at all stages and tasks of ML).

The work [70] is devoted to IoT security in 5G networks, characterized by a huge
number of devices and high data transfer rates. The existing authentication schemes at
the physical layer are analyzed. Schemes are considered from the perspective of applying
ML. ML technologies, such as autoregressive random process, Kalman filtering prediction,
reinforcement learning (specifically Q-learning and Dyna-Q), AdaBoost classifier, and
kernel machine, are investigated.

The work [71] emphasizes the relevance of IoTS security due to their wireless transmis-
sion network, large coverage area, heterogeneity of services provided, and cyber-physicality.
The application of ML methods for creating attack detection models is analyzed. It mainly
describes the application of deep-learning-based classification.

The work [72] focuses on securing the IoT using ML. Four types of defenses are
considered: device authentication, DoS and DDoS attacks defense, intrusion detection, and
malware detection (relevant in the context of current research). The possibilities of using
ML based on the following models are indicated: convolutional neural networks, SVM, BP
neural networks, and ensemble learning.

The work [73] provides an overview of using honeypots to collect information about
malware that attacks PE files, data streams, and IoT. A feature of the considered honeypots
is the use of ML for data collection and analysis. Based on a “raw” review of articles in the
IEEE Xplore and ACM databases, it is concluded that there is an increasing trend in the use
of such smart honeypots. However, there is no specificity regarding the details of the use
of ML.

The work [74] provides an overview of ways to detect malware for Android systems
(including those in the IoT field) using ML. Experiments were carried out using the Naive
Bayes, J48, Random Forest, Multiclass Classifier, and Multi class perceptron algorithms.
The main application of ML here is to solve a classification problem.

Based on this review of other surveys on the application of ML for IoT security, the
following conclusions can be drawn.

First, the considered solutions mainly belong to the field of dynamic analysis, since
they process external effects of malicious devices during their operation. In contrast, our
review focuses to SA. Such an analysis can be carried out both without the direct launch of
IoTS, and only at a certain point in time.

Sensors 2022, 22, 1335 9 of 34

Second, the solutions reviewed mainly seek to introduce taxonometry for systematiz-
ing devices, offering countermeasures based in part on ML. Our review introduces the
systematization of all SA stages using basic ML tasks. We investigate not a problem of
identifying threats, but a problem of identifying ways to counter threats during SA.

Third, the considered solutions mainly conducted systematization according to exist-
ing threats and solutions. This can lead to the fact that hypothetically some of the elements
will be lost (for example, if such solutions have not yet been proposed). We initially synthe-
size the entire set of solutions—as a 4 × 5 matrix (or most of it). Then, we prove that every
such decision has a right to exist. Thus, our approach is more methodologically correct.

Fourth, none of the reviews considered the entire set of main tasks solved with the
help of ML—classification, anomaly detection, regression, clustering, and generalization.
As a rule, IoT security applies only the solution of the first two problems. SA of a binary
code is done basically only with the use of classifiers. Thus, new applications of more rare
solutions in ML for the IoT field can be “missed”.

Fifth, the considered solutions are mainly aimed at studying individual IoT devices or
their interactions. We position the review as an analysis of the whole IoTS. In the interests
of this, the concept of Intelligent Framework is proposed.

4. SA Model

To create models of the subject area, we consider in more detail the SA area from the
position of application of ML in it. To do this, we use both known theoretical preconditions
and practical experience in the published studies. First, the whole SA is heterogeneous (and
often not linear), which means that it can be divided into certain time segments or stages
(with a certain purpose). Secondly, the solutions must use ML. Consequently, it is possible
to distinguish the tasks for which ML is applicable. As a result, it is possible to systematize
in a single model both the stages of SA and the ML solutions applicable to them.

For the stages, classical and generalized time segments were used (excluding, for
example, balancing and augmentation).

The purpose of the Model is as follows. First, its formation itself formally confirms the
possibility of applying various solutions to ML tasks at each stage of SA. At the same time,
such a proof will be built on a single basis (using Form and Content, described below). Thus,
the module serves as a theoretical proof of the Hypothesis. Secondly, the theoretical model
can be used for practical implementations of algorithms for solving problems for stages.

4.1. Stages of Static Analysis

Since SA is a complex process consisting of an entire set of tasks to be solved and
using qualitatively different data, it is usually divided into several stages. For convenience,
we use the following formalization to assign each of the activities to the stages of SA. Any
data is represented by the information it contains—Content (C), and appearance—Form
(F). For example, a line-by-line log of execution errors consists of: Content—errors and
Form—text strings.

Then, certain data, both stored in the IoTS and transformed in the SA process, can be
written as a tuple < F | C >. From this position, we consider each stage as a Content and
Form transformation of incoming data. Then, the formalized version of the transformations
of the stages can be written as:

< Fi+t | Ci+1 >= Stagei(< Fi | Ci >), (1)

where Fi and Fi+1 is Form before and after i-th Stage, Ci, and Ci+1 is Content before and after
i-th Stage, Stagei() is a transformation of i-th Stage. Summarizing the described approaches
and tools for SA software [75–78], we can combine them based on the method of data
transformation. With a sufficient degree of abstraction, without violating the correctness,
we can distinguish the following four stages of IoTS analysis.

Sensors 2022, 22, 1335 10 of 34

4.1.1. Stage 1. Data Collection

This is the initial stage and is intended to isolate from the IoTS that subsystem (“vertical
component”) or level (“horizontal component”), which will be further processed. This step
is necessary because the IoTS, like any complex and multifaceted object, can be considered
in terms of different aspects. A specific aspect must be chosen at this stage. The input of
the stage is the information about the IoTS itself. The output of the stage receives only part
of the information about the IoTS selected for processing.

The formal notation of Stage 1 is as follows:
< F2 | C2 >= Stage1(< F1 | C1 >)

F2 = F1

| C2 |<| C1 |
, (2)

where operator | X | is a set power calculation, which together with the third equation
means that after Stage 2 the Content size has decreased. This is explained by the fact that
at this stage only part of IoTS information (C2) is selected, and not information about the
entire IoTS (C1). At the same time, the IoTS Data Form does not change at this stage, which
is shown in Equation (2).

This step may not be explicitly related to IoTS tasks, although it is necessary. Typical
actions for the stage are the following: selecting the direction and level of research; un-
packing data containers (archives); typing and attributing files; structuring executable code
architectures, etc. For example, at this stage, only executable files (PE format for Windows
or ELF format for Linux) will be selected from all IoTS files.

4.1.2. Stage 2. Data Preparation

This stage is designed to convert the data about a part of the IoTS to a form suitable
for the processing methods. Without this step, all processing methods would have to
adapt to the form of the data in the IoTS, which is naturally not productive. The input
of the stage is the IoTS piece of information selected in Stage 1. The output of the stage
creates part of the IoTS information converted into a suitable form. Naturally, if there is
more than one processing method, this step must convert the IoTS information into a form
suitable for each method. Thus, the step may separate the Form and Content population
for each method.

The formal notation of Stage 2 is as follows:
< F3 | C3 >j= Stagej

2(< F2 | C2 >)

F3 6= F2⋃
j=1..N

Cj
3 ≡ C2

, (3)

where < F3 | C3 >j is the Form and Content after Stage 2 suitable for the j-th processing
method; Stagej

2() is the part of Stage 2 where the data after Stage 1 is converted to the form
suitable for each j-th method; and operator “≡” is identity, which together with the second
equation means that, after Stage 3, the total Content has not changed (N is the number of
processing methods);

⋃
j

Cj—merging of all Content. The second equation is explained by

the fact that this stage “tweaked” only individual Form parts of Content, without changing
the total information in Content. The fact of the change of the Form in the step is reflected
in the second equation.

This phase does not solve specific IS problems but converts the data into a form that
best represents the features associated with such problems. Typical actions for this stage
are: creating a project and environment; separating IoTS modules; obtaining binary code
sections; disassembling; separating subprograms in the code; building an Abstract Syntax
Tree, Intermediate Representation Tree, Call Tree, Control Flow, Data Flow, etc. For example,

Sensors 2022, 22, 1335 11 of 34

at this stage, for each IoTS file will be built a graph of the execution of instructions of its
functions—Control Flow, as well as calls of other functions from them—Call Flow.

4.1.3. Stage 3. Data Processing

This stage is the main and most difficult both from a theoretical and practical point
of view. At this stage, all the methods of data processing are performed in relation to
IS (vulnerabilities, malwares, stego, bugs, backdoors, etc.). The results of this stage are
determined by the combined results of all its methods. At the input of the stage comes the
data, prepared for its work with the help of Stage 2. Each method, as a rule, consists of
many complex algorithms, often creating qualitatively new data sets. Consequently, at the
output of the stage, we can obtain data with completely different Form and Content. The
formal notation of Step 3 is as follows (for one method):

< F4 | C4 >= Stage3(< F3 | C3 >)

F4 6= F3

C4 6= C3

, (4)

where Stage3() is the part of Stage 3 corresponding to one of the methods for which data
were generated in Stage 2. As indicated, the resulting Form and Content can have significant
variations, as reflected in Equations (2) and (3).

At this stage, IS tasks are solved directly: vulnerabilities are discovered, virus clones
are found, code security metrics are evaluated, code vulnerabilities are neutralized, pre-
dictions are made regarding future threats, etc. Typical actions at this stage are: creating
and updating an infiltrator model; searching for and predicting vulnerabilities; searching
for clones; converting code to a human-oriented form; authorship determination, etc. For
example, at the stage by the aggregate of function calls (received by Control Flow and Call
Flow) this function can be detected as malicious. The exact match between the function
instructions and the malware from the database is not necessary.

4.1.4. Stage 4. Result Formation

Result formation is the final stage, providing all the results of the IoTS analysis. At
this stage, the data obtained during processing at Stage 3 are converted into a single form
(less often, into their set), ready for further analysis—both human and software. At the
input of the stage are the results of all methods of data processing. The output of the stage
can be considered problem-oriented, depending on the purpose of the analysis application.

The formal notation of Stage 4 is as follows:
< F5 | C5 >= Stage4

(⋃
j=1..M

< F4 | C4 >j

)
F5 6= F4

C5 =
⋃

j=1..M
Cj

4

, (5)

where Stage4() is the transformation of Stage 4, taking as input all the set of methods
results (by number M). The form of data is likely to change after applying stage (although,
theoretically, it can remain the same for trivial problems). The Content after the stage will
consist of all the Content obtained by the methods at the previous stage.

4.1.5. Form and Content Transformation

The stage adapts results of IS tasks to the required view given in the specific SA
goal. Typical actions for the stage are as follows: systematization of parameters and
characteristics of IoTS objects; classification of viruses and vulnerabilities; displaying the
list of found viruses and vulnerabilities; displaying security metrics and statistics; selection
of IS recommendations, etc. For example, at the stage on the obtained list of malicious
functions, the output of this stage may consist of the list itself as infection statistics can. For

Sensors 2022, 22, 1335 12 of 34

an easier presentation of stages analyzing the IoTS, we present their Form and Content
transformations in Table 1.

Table 1. Form and Content transformations in the process of static analysis of the information system.

Transformations
Stage 1.

Data Collection
Stage 2.

Data Preparation
Stage 3.

Data Processing
Stage 4.

Result Formation

Form and Content < F2 | C2 >=
Stage1(< F1 | C1 >)

< F3 | C3 >j=

Stagej
2(< F2 | C2 >)

< F4 | C4 >=
Stage3(< F3 | C3 >)

< F5 | C5 >=

Stage4

(⋃
j=1..M

< F4 | C4 >j

)
Form F2 = F1 F3 6= F2 F4 6= F3 F5 6= F4

Content | C2 |<| C1 |
⋃

j=1..N
Cj

3 ≡ C2 C4 6= C3 C5 =
⋃

j=1..M
Cj

4

The formalization from Table 1 will be used implicitly when assigning each of the
following activities to the SA stages.

4.2. Tasks Solved by ML

Now, we consider the problems usually solved with ML. According to both general
theory and a large number of scientific papers and their reviews ([79,80]), all ML problems
can be divided into the following.

Classification is assigning objects to a given class. The application requires teacher-
led training regarding the features of each class. One of the most common applications in
IS is the division of program code into safe and malware, using the features of the latter.

The formal notation of a solution to the classification problem is as follows:
{O} → {O}T1 ...{O}TN

i 6= j : {O}Ti ∩ {O}Tj = ∅,
Given : {Oi

Train ∈ {O}Tk}
(6)

where {O} is the set of classified objects; {O}Ti is the set of objects belonging only to
class Ti (following the second equation of the formula, the intersection of the set of objects
of different classes equals an empty set “∅”); Given is the indication of given solution
parameters as a set of predefined training objects Oi

Train, assigned to the corresponding
classes Tk.

Anomaly detection is the assignment of objects to a new unknown class, thus, dis-
tinguishing the task from classification. Applications are possible both with and without
training with the teacher—on normal and anomalous data—on deviations from normal
data. One of the most frequent applications in the field of IS (besides the typical detection
of network attacks) can be the detection of differences in the operation of the program from
normal (function calls, disk operation, processor power consumption, etc.), which often
indicates the presence of malware in it.

The formal notation of a solution to the anomaly detection problem is as follows:
{O} → {O}N , {O}A

Oi ∈ {O}N , Oj ∈ {O}A, Oi 6≈ Oj

Given : ∅ ‖ {Oi
Train ∈ {O}N}, {Oi

Train ∈ {O}A}
, (7)

where {O} is a set of objects to detect anomalies; {O}N is a set of normal objects; {O}A

is a set of anomalous objects significantly different from normal (which is shown by the
second equation, the symbol “ 6≈” is used for significant difference); Given is an indication
of given solution parameters as two options (through operator OR—“‖”): None (∅) or a set
of pre-known training objects (Oi

Train and Oj
Train), assigned to normal ({O}N) and abnormal

Sensors 2022, 22, 1335 13 of 34

({O}A). Thus, the first part of the last equation is true in the case of detection without a
teacher, and the second part is true with a teacher.

Regression is the prediction of a continuous value for datasets (as opposed to clas-
sification, where a discrete value—a class—is determined). Similarly to classification,
the application requires training with a teacher. In IS, it can be used to predict errors in
future programs.

The formal notation of a solution to the regression problem is as follows:
{O} → {D}
Di = F(Oi)

Given : {F(Oi
Train) = Di}

, (8)

where {O} is the set of objects to determine the regression; {D} is the set of numbers from
the set of real “R”, matched to objects {O}; Di is i-th number matched to i-th object Oi

using some function F(); Given is the indication of given solution parameters as a set of
predefined objects Oi

Train, matched (using function F()) to the corresponding numbers Di.
Clustering is the division into groups according to their attributes. Application is

possible without a teacher, because the classification looks for internal patterns in the data.
Generally, clustering is applied before other classifications. However, in the IS field, it can
be applied to search for malware clones in the code of the IoTS objects under study.

The formal notation of a solution to the classification problem is as follows:
{O} → {O}K1 ...{O}KN

i 6= j : {O}Ki ∩ {O}Kj = ∅
Given : N

, (9)

where {O} is the set of clustered objects; {O}Ki is the set of objects belonging only to cluster
Ki (following the second equation of the formula, the intersection of the objects set from
different clusters equals an empty set); and Given is an indication of the given solution
parameters as their absence (∅).

Generalization (dimensionality reduction) is transformation of a feature space of one
dimension into a space of smaller dimension with minimal loss of contained information.
For reasons similar to clustering, the application of regression is possible with learning
without training. Similar to clustering, generalization is applied as preprocessing of data
before other classifications. In the IS field, dimensionality reduction can also be used for
auxiliary tasks related to threat mapping and selection of protection recommendations.

The formal notation of a solution to the generalization problem is as follows:

{O ∼ X} → {O ∼ Y}
Xi = {xi

k}
k=1...N

Yi = {yi
k}

k=1...M

N > M
Given : ∅

, (10)

where {O} is a set of objects described (using operator “∼”) by feature set {X} of dimension
N; {Y} is a set of features of objects with less dimension M than the original; xi

k and yi
k is a

value of individual k-th feature for i-th object; and Given is an indication of given solution
parameters as number of clusters, by which the original objects will be distributed.

4.3. SA Model Representation

The main stages of SA (Section 3.1) and the main tasks to be solved in ML (Section 3.2)
were specified earlier. Furthermore, a formalized description of stages and tasks was given.
Thus, the previously established hypothesis regarding the application of ML to SA can be
transformed to verify that each of the stages of SA can be based on the solution of one of
the ML tasks.

Sensors 2022, 22, 1335 14 of 34

We represent this assumption in the form of a matrix model, where the columns are SA
stages, the rows are ML tasks, and the cells are a formalized record of stage actions based
on the solution of one of the ML tasks. The possibility of filling all the cells of the matrix of
such a model will mean a theoretical confirmation of the hypothesis. The analytical model
of ML solutions for the SA stages is presented in Table 2.

Table 2. Machine-learning decision matrix for static analysis stages.

Tasks
Stage 1.

Data Collection
Stage 2.

Data Preparation
Stage 3.

Data Processing
Stage 4.

Result Formation

Task 1.
Classification

{C} →⋃
T1
{C}T1, 0× ⋃

T2
{C}T2

T1 + T2 = T

{F} →⋃
T1
{F}T1, 0× ⋃

T2
{F}T2

T1 + T2 = T

{C} →⋃
T1C

{C}T1C , 0× ⋃
T2C

{C}T2C

T1C + T2C = TC
{F} →⋃

T1F

{F}T1F , 0× ⋃
T2F

{F}T2F

T1F + T2F = TF

{F} →⋃
T1
{F}T1, 0× ⋃

T2
{F}T2

T1 + T2 = T

Task 2. Anomaly
detection {C} → {C}A, 0× {C}N {F} → {F}A, 0× {F}N {C} → {C}A, 0× {C}N

{F} → {F}A, 0× {F}N {F} → {F}A, 0× {F}N

Task 3.
Regression

{C} → {D}T1, 0× {D}T2

T1+T2=T {F} → {F}T1, 0× {F}T2

{C} →
{DC}T1C , 0× {DC}T2C

T1C + T2C = TC
{F} →

{DF}T1C , 0× {DF}T2C

T1F + T2F = TF

{F} → {F}T1, 0× {F}T2

T1 + T2 = T

Task 4.
Clustering

{C} →⋃
K1
{C}K1, 0× ⋃

K2
{C}K2

K1 + K2 = K

{F} →⋃
K1
{F}K1, 0× ⋃

K2
{F}K2

K1 + K2 = K

{C} →⋃
K1C

{C}K1C , 0× ⋃
K2C

{C}K2C

K1C + K2C = KC
{F} →⋃

K1F

{F}K1F , 0× ⋃
K2F

{F}K2F

K1F + K2F = KF

{F} →⋃
K1
{F}K1, 0× ⋃

K2
{F}K2

Task 5.
Generalization

{C ∼ X} →
{C ∼ Y}R1, {C ∼ Y}R2

R1 + R2 = R

{F ∼ X} →
{F ∼ Y}R1, {F ∼ Y}R2

R1 + R2 = R

{C ∼ XC} →
{C ∼ YC}R1F , {C ∼ YC}R2C

R1C + R2C = RC
{F ∼ XF} →

{F ∼ YF}R1F , {F ∼ YF}R2F

R1F + R2F = RF

{F ∼ X} →
{F ∼ Y}R1, {F ∼ Y}R2

R1 + R2 = R

Note. In the table, the expression with multiplication by zero “x0” means that in the process of applying the
solution from the ML field data were obtained, which are not used to this end of SA at this stage. Thus, some
classes {C}, regression numbers {D}, clusters {O}K and reduced feature dimensions {O ∼ Z} are divided into
two sets (with indices T1 and T2 and a common T, with indices K1 and K2 and a common K, and with indices R1
and R2 and a common R), the second of which is not used in the interest of SA.

Each cell of Table 2 represents an ML statement for the stage operation, taking a tuple
from Form and Content input data (obtained from the IoTS or previous) and returning the
same tuple from the output data (produced by the current stage). To simplify the record
from the formal entries of ML problem solutions, we use only the first line describing
the main action, thereby, omitting the rest, indicating the conditions on the input and
output variables.

There will be preceding and succeeding non-ML statements in addition to the above-
mentioned ML statements, since in addition to the intelligent component, each step per-

Sensors 2022, 22, 1335 15 of 34

forms strictly defined rules (e.g., unpacking archives with files, ranking documents by their
size, searching for malicious code areas in databases with signatures, translating tabular
data into the form of graphs, etc.).

Expert analysis of the matrix (see Table 2) allows us to conclude that the cells of the
matrix are written correctly. Hence, each of the ML problem solutions can be the basis for
transformations of each of the ML stages. Thus, the first subtask can be considered solved,
which confirms the main hypothesis of the current scientific research from the theoretical
point of view.

When conducting an expert analysis, 10 specialists were selected, meeting the follow-
ing requirements:

• PhD for more than 5 years,
• acquaintance and application in practice of system analysis,
• knowledge of the basics of machine learning,
• experience in the field of the IoT security,
• analytical modeling skills,
• lack of explicit affiliation with the authors of the current investigation, and
• general competence in the subject area.

Then, each selected expert was introduced to the specifics and conducting SA Steps
as well as with the goal to create an analytical model of CA using ML. Each expert was
presented with an analytical model in matrix form to study (see Table 2). The expert
conducted an individual analysis of the resulting analytical model. Then, a survey was
conducted with the experts regarding each cell of the table (4 Stages× 5 Tasks = 20 cells)
on the following five questions:

1. Do you understand the meaning of the entry?
2. Is the formal notation correct?
3. Does the entry match this SA Stage (column heading)?
4. Does the record correspond to the given ML Task (row header)?
5. To what extent the receipt of the record of the current stage logically follows from the

record of the previous stage (except for Stage 1)?

The experts evaluated the model (i.e., answers to questions) using a point system,
from 1—the answer is completely negative, to 5—the answer is completely positive.

Then, the answers for each cell of the table were summarized and averaged. The
distribution of average responses across all cells ranged from 4.5 to 5 points. This result
confirms the correctness of the obtained analytical model.

5. Systematization of SA Stages and ML Solutions

Based on the task, we present the model that systematizes the existing research in the
form of the following table: columns are represented by stages of IoTS analysis; rows—tasks
solved using ML. Next, we consider the research papers applicable to IoTS analysis. We
assign each work by its attributes to both one (or several) stages and one (or several) ML
tasks. Thus, the entire set of such studies should hypothetically allow us to fill all the cells
of the table.

We introduce the notation work groups located in cells as follows—Sx_Ty, where x is
the number of analysis stage (x = 1...4), y is the number of ML task (y = 1...5). For example,
if a scientific paper outlines the process of searching for vulnerabilities in code (Stage 3)
through classification (Task 1), then it belongs to the group S3_T1.

A large number of papers were considered for the following reasons.
First, the presence of more than a single study on the application of the solution of

each ML problem at each stage of the SA will be considered more reliable evidence of
the hypothesis.

Secondly, it is necessary to determine the presence and degree of research of each
stage of the SA from the standpoint of solving each task of the MO. This will allow one to
identify the most unaffected areas (compared to the rest) and pay special attention to them.

Sensors 2022, 22, 1335 16 of 34

Thirdly, the statistical distribution of the characteristics of work (for example, the stage
of SA, the task of MO, bringing to the experiment) over the years will make it possible to
predict the success of each affected area.

It is most difficult to divide into groups S2_T5 and S3_T1, since data is often prepared
by downsizing before the typical classification. We further divide the works into these
groups based on whether the data after downgrading can be used in isolation (group S2_T5)
or whether they are for training only (group S3_T1). Additionally, we group all the works
considered further by the SA stages.

5.1. Stage 1. Data Collection

The authors of this paper proposed and tested the typing of basic information systems
files, including IoTS (with the extensions .exe, .py, .doc, .png, .txt, .c, and .cpp) [81], and
binary code processor architectures (amd64, arm64, armel, armhf, i386, mips, mips64el,
mipsel, ppc64el, and s390x) [82–84], using ML classifiers. These works belong to the
S1_T1 group.

Similarly to papers [81–85] applied an SVM (Support Vector Machine) to classify files
by blocks in the file system, which may be needed in forensics. The work belongs to the
S1_T1 group.

An earlier work [86] solved the problem of preprocessing data files without any
description, that are the result of events such as System Crash, data interception by secret
services, storing information in “impersonal” files to prevent leaks, etc. For this purpose,
similarities between files are sought by creating clusters of their attributes. In [87], a
classical application of clustering for grouping text documents using the TF-IDF (Term
Frequency—Inverse Document Frequency) scheme is described.

This approach can be applied to the initial collection of documents. All of them will
have common features and, therefore, will be investigated by similar methods. Similarly,
the work [88] discusses clustering algorithms (K-means, K-medoids, Single Link, Complete
Link, and Average Link) for preparing files for forensic processing by experts of the
corresponding field. The work belongs to the S1_T4 group.

In [89], a method for searching and localizing signatures and machine-printed text in
images using classification is described. MIL (Multiple Instance Learning) is used for this
purpose. The method is not directly related to IS but can be used for document indexing in
forensic and business fields (as in [90]). The work belongs to the group S1_T1. In [91], MIL
is used for clustering. Thus, the work can be classified as S1_T4.

In [92], a classical method for identifying packed executable files (PE format) using
the SVM classifier is described. This makes it possible to define objects to be first unpacked
and then processed. The work belongs to the S1_T1 group.

In [93], a method for identifying documents containing packed executables is described.
In contrast to [92], an anomaly detection method is used for this purpose. Thus, the work
belongs to the S1_T2 group.

The work [94] indicates the need to identify anomalies in file integration systems. The
proposed solution is based on the principles of self-learning. The work belongs to the
S1_T2 group.

In [95], the applied problem of file optimization is solved by predicting the lifetime of
files by absolute path symbols. By lifetime, we mean the interval between file creation and
the last reading. Regression methods based on Random Forest and Convolutional Neural
Network Model are used for prediction. The method can be used to sort files by lifetime
and select for processing those that are within a given range. This can be used in forensics
to establish files related to the chronology of cybercrime. Thus, the work belongs to the
S1_T3 group.

In [96], the classical problem of stego attachment detection is solved. For this purpose,
a universal solution based on Multiple Linear Regression is proposed. Additionally, the
length of the nested message is obtained. The images found in this way can be subjected to
additional processing using the revealed information. Thus, the work belongs to the S1_T3

Sensors 2022, 22, 1335 17 of 34

group and, to some extent, to the S2_T3 group as well (due to the partial localization of the
stego field).

In [97], the classical method of document classification based on SVM with prior
dimensionality reduction using PCA (Principal Component Analysis) is described. The
work belongs to the S1_T1 group.

In [98], a method to recognize handwritten inscriptions in graphical images is in-
vestigated. A convolutional and recurrent neural network is used for this purpose. The
inscriptions may contain sensitive information (e.g., passwords or personal data) and,
therefore, their detection and verification can be applied in the interest of IS. In addition
to the fact that a handwritten inscription is present, its translation into a specific text is
performed and hence the work can be classified as S1_T1 and S2_T1 groups.

The work [99] deals with enhancing activities in forensics. For this purpose, it is
proposed to use machine learning in terms of classification and clustering to process
documents and cell phone applications. The authors propose to apply SVM and kNN for
this purpose. Thus, the work belongs to groups S1_T1 and S1_T4.

5.2. Stage 2. Data Preparation

According to the reviewed review [8], the works [21] and [22] can be classified as
S2_T1.

In [100], the secondary problem of decompilation is solved—determination of variable
types. For this purpose, it is proposed to use the SVM and Random Free classifiers, which
showed better results in comparison with others. The work belongs to the group S2_T1.

In [101], an ML-based classification method is described, which allows to determine
Function Entry Points (the starting byte of each function) with high accuracy. This is
necessary for disassembling function instructions in the interest of further analysis. The
work belongs to the S2_T1 group.

The review [102] discusses the evolution of architecture reconstruction methods. It
contains discussion and references to works which use clustering for reconstruction of
program architecture. In the future, the obtained architecture can be processed for the
detection of high-level vulnerabilities. The work belongs to the S2_T4 group.

The work [103] solves the problem of software refactoring. It is proposed to apply the
HASP clustering algorithm to group software classes into packages.

Work [104] is devoted to a new approach for recovering binary malware code running
on embedded devices considered by Sykipot on Smart cards. This is done by collecting
data from the side channels concerning the power consumption of the device. PCA and
LDA (Linear Discriminant Analysis) methods are used to reduce the dimensionality of the
feature space and then kNN (K-Nearest Neighbors) classification is applied. It is shown
that this technique can be used in practice, not only in theory. This work is similar to that
described in [105]. The work can equally be attributed to the S2_T5 and S3_T5 groups.

In [106], a sequence of executable binary instructions is converted into a grayscale
image. Dimensionality reduction by LDA is then applied, both to reduce the image and to
obtain a more optimal training sample. Thus, the work belongs to the groups adjacent with
respect to Stage 3: S2_T5 and S4_T5.

In [107], a method built on a logistic-regression classifier that predicts row and column
separators in tabular data is proposed. This task can be common when preparing data in
files for processing by the methods in Stage 3. Thus, the work belongs to the S2_T3 group.

In [108], a method based on deep neural networks is described that aims at analyzing
log text. The anomalies detected in the text will carry the most useful information about
application startup failures. In the interest of SA, this can be used to isolate large data files
of the most suspicious information: for example, the failure of critical services in the IS.
The application of the method will help form more substantial results in Stage 4. Thus, the
work belongs to groups S2_T2 and S4_T2.

Similar to [108], the article [109] describes the experiments to identify anomalies in the
system logs of OpenStack. For this, a SVM with different cores is used. The work belongs
to the S4_T2 group.

Sensors 2022, 22, 1335 18 of 34

The previously described work [96] belongs to group S2_T3, and work [98] belongs to
group S2_T1.

5.3. Stage 3. Data Processing

According to the examined review [8], the following works can be classified as
S3_T1: [17–20] since they detect vulnerabilities by means of classification. We also mention
a work [58] that applies regression to predict vulnerabilities in new Test Cases on existing
ones for one set of programs. The work can be classified as S3_T3.

According to review [7], the works [23–29] detect anomalies in the code and belong to
group S3_T2.

According to review [9] works [49–58] belong to group S3_T1, works [40–48] are S3_T2,
works [30–39] are S3_T3 and works [52,56] are S3_T4.

The work [110] is devoted to the detection of malicious code in software using machine
learning. Taxonometry is introduced, highlighting such process steps as the presentation of
the file with the code, the identification of signs and the direct classification of the malicious
code. At the last step, classifiers, such as Artificial Neural Networks, Bayesian Network,
Naive Bayes, Decision Trees, kNN, Boosted Algorithms, SVM, Voting Feature Intervals,
and OneR are applied. The work belongs to the S3_T1 group.

In [111], a text categorization approach is applied to n-grams of binary program code.
Various classification methods are then applied to categorize the sample as safe or malicious
software. The work belongs to the group S3_T1.

In [112], we describe the application of classification based on a neural network
(with layers: input, embedding, bidirectional long-term memory, attention, and output)
trained on the binary code of known vulnerabilities (from NVD and CWE databases). The
application of the method to real VLC and LibTIFF software, often used in IoT devices, is
shown. The work should be classified as S3_T1.

In [113], the developed software HOSTBAD (Host-based Anomaly Detection) for
detecting malicious Android applications is described. It solves the task of detecting
anomalies with ML using the features: received/sent SMS, received/sent calls, device
activity state, and running applications/processes. A solution similar to [113] was proposed
in [114] but was based on a DCA (Dendritic Cell Algorithm). Both works belong to the
S3_T2 group.

In [115], an approach for malware classification in Android applications is described,
the main one being ensembles of methods, including T-SNE (t-Distributed Stochastic
Neighbor Embedding). Although T-SNE is mainly used to visualize data by downsizing
the space (to 2D or 3D), in this case, it provides significant assistance to other ensemble
classifiers: Gradient Boost Decision Tree, k-NN, Extra-Trees, Logistic Regression, and
Neural Network. As a result, it provides more accurate detection of malware. Thus, the
work belongs to the group S3_T5.

In [116], various binary data feature detection methods (CFsSubset, Principal Compo-
nents, InfoGainAttribute, Correlation AttributeEval, GainRatioAttribute, and Symmetri-
calUncertAttribute) based on n-grams are discussed and then used for classification and
malware detection. The best results are achieved by applying PCA and SVM. The work can
be equally attributed to groups S3_T1 and S3_T5.

For applications requiring user permission, [117] discusses the method of malware
detection as follows. First, the permissions dimensionality of the Android application is
lowered using PCA. Second, the SVM classifier is applied to detect malware. The work can
be attributed equally to groups S3_T1 and S3_T5.

In [118], the possibility of counteracting attacks using ML without the direct usage of
files is discussed. For this purpose, Perceptron is used to detect anomalies in the command
lines of standard Windows operating system utilities. The work belongs to the S3_T2 group.

In [119], a way to detect malware in PDF (Portable Document Format) files is described.
PCA and the artificial neural network are used for this purpose. The work belongs to the
group S3_T1.

Sensors 2022, 22, 1335 19 of 34

In [120], it is proposed to visualize malicious Android applications and then classify
the obtained images. SVM, KNN, and Random Forest are used for this purpose. The work
belongs to the S3_T1 group.

Work [121] is devoted to the security of IoT devices with command line interpreters
typical for Linux shells. It is assumed that malicious software, using shell commands, can
perform both system hacking and further infection. The proposed solution is the ShellCore
software solution based on static code analysis detecting the malware by its use of shell
commands. The solution is based on classification, which allows assigning the work to
groups S3_T1 and S3_T5.

The previously described works [104,105] belong to the S3_T5 group.

5.4. Stage 4. Result Formation

In [122], an o-glasses method is proposed, which visualizes document files (not nec-
essarily executable) to search for shellcode in them. A high F-measure is claimed (about
99.95 percent) for ×86 binary code. A special one-dimensional convolutional neural net-
work (1d-CNN) is used for this purpose. Although the method implements the full cycle of
code analysis, it solves the task of malware visualization. Therefore, the work should be
classified as S4_T1.

Work [123] deals with two problems related to the detection of malware: (1) the
detection of malware signatures from logs (e.g., the xml created when executing an .exe
file in a sandbox) for further training of classifiers and (2) the precise detection of groups
of mutant malware. To solve the first problem, ensembles of classifiers are proposed. To
solve the second problem, clustering is proposed. To visualize the obtained results in 2D
space, an algorithm for decreasing the dimensionality of t-SNE (t-distributed Stochastic
Neighbor Embedding) space is used. Thus, the two approaches to solving problems, as
well as the way to visualize the malware, refer the work to the groups S4_1, S4_4 and
S4_5, respectively.

Work [124] addresses the issue of effective interaction between visualization methods
and anomaly detection methods (as outlier). For this purpose, the author’s algorithm
«hdoutliers», different from special methods (described in many articles [125–127], etc.), is
proposed. Thus, the work belongs to the S4_T2 group.

In [128], a method for detecting anomalies in the system log containing both natural
language text and numerical values is proposed. This can be applied in the last stage of
SA for the data collected by the methods in Stage 3. Therefore, the work belongs to the
S4_T2 group.

In [129], a method for automatically classifying vulnerabilities by their textual descrip-
tion using machine learning is described. Such a method can be applied to the detected
vulnerabilities at the SA result formatting stage so that they are better presented to the
expert, which places this work in the S4_T1 group.

In [130], an attempt is made to predict 0-day vulnerabilities in products based on
vulnerabilities contained in NVDs. Linear and quadratic regression models are used for
this purpose. Clearly, the method can be applied to predict new IP vulnerabilities based on
those found (in Stage 3). Thus, the work belongs to the S4_T3 group.

The [131] evaluates the influence of the depth of field of the image on the subjective
“attractiveness” and image quality. Using logical regression and a deep neural network, it
is possible to predict the attractiveness of an image by its quality. A number of experiments
were performed. Thus, it is possible to adapt the methods of visualizing the results of SA
for further processing. The work belongs to the S4_T3 group.

A solution similar to [129], but which classifies Transport Infrastructure of a Smart
City threats, is described in [132]. For this purpose, a partitioning of threats into clusters
(based on machine learning without a teacher) is applied, each of which is mapped to a
certain class. Therefore, the work belongs to the S4_T4 group.

The previously described work [106] belongs to the S4_T5 group, and [108] belongs to
the S4_T2 group.

Sensors 2022, 22, 1335 20 of 34

6. Review Model

A summary of publication reviews (in amount of 85) is presented in four parts (Tables 3–5).
Columns of the tables have the following designations:

1. Ref. (short for Reference)—link to the publication.
2. Title—publication title.
3. Year—year of publication.
4. Type—type of publication (conference, journal, workshop, lecture notes, report, or

preprint).
5. Stage—publication’s affiliation with the corresponding stage of SA.
6. Task—publication’s affiliation with the corresponding ML problem’s solution.
7. Content—main scientific and practical content of the publication, carrying the follow-

ing meanings (as completed):

• Theory—full-fledged theory with possible partial realization of a prototype.
• Experiment—partially realized prototype with full-fledged experiments.
• Practice—full-fledged prototype or an entire software product.

We examine information from the Tables 3–5 in detail in the following order.
First, we analyze publication numbers by year, presented as a histogram in Figure 2.
Thus, first, the minimum year of publication is 1997, and the maximum is 2021, while

the average year of publication is 2013. At the same time, after 2007, there is a clear tendency
for research in this subject area, although no rapid growth (for example, in recent years) is
detected. In the context of the current research task, it can be assumed that some saturation
of existing solutions has been achieved in the applying ML for IoTS SA. Therefore, new
breakthrough ideas are required for its further development.

Secondly, we analyze the number of publications by type, presented as a bar chart
in Figure 3.

Figure 2. Distribution of publications by year.

Sensors 2022, 22, 1335 21 of 34

Table 3. Publication summary (Part 1).

Ref. Title Year Type Stage Task Content

[58]
Toward Large-scale Vulnerability Discovery Using
Machine Learning 2016 Conference 3 1 Practice3 3

[110]
Detection of malicious code by applying
machine-learning classifiers on static features: A
state-of-the-art survey

2009 Journal 3 1 Experiment

[111] Malicious Code Detection Using Active Learning 2008 Conference 3 1 Theory
[100] Type Learning for Binaries and Its Applications 2019 Conference 2 1 Experiment

[81] Method for classification of files based on
machine-learning technology 2020 Journal 1 1 Practice

[82–84] Identification of Processor’s Architecture of
Executable Code Based on Machine Learning 2020 Journal 1 1 Practice

[101] Machine Learning-Assisted Binary Code Analysis 2007 Workshop 2 1 Theory

[122] o-glasses: Visualizing x86 Code from Binary Using a
1d-CNN 2020 Conference 4 1 Theory

[112] Cyber Vulnerability Intelligence for Internet of
Things Binary 2020 Conference 3 1 Experiment

[113] A machine-learning approach to anomaly-based
detection on Android platforms 2015 Journal 3 2 Practice

[114] Android malware detection using the dendritic
cell algorithm 2014 Conference 3 2 Experiment

[86] Similarity detection among data files—a
machine-learning approach 1997 Conference 1 4 Theory

[88] Document Clustering for Forensic Computing: An
Approach for Improving Computer Inspection 2011 Conference 1 4 Experiment

[87] Document Clustering—A Feasible Demonstration
with K-means Algorithm 2019 Conference 1 4 Theory

[102] Evolution in Software Architecture Recovery
Techniques—A Survey 2017 Conference 2 4 Theory

[103] A Hierarchical Clustering-Based Approach for
Software Restructuring at the Package Level 2017 Conference 2 4 Practice

[123]
A Novel Solutions for Malicious Code Detection and
Family Clustering Based on Machine Learning 2019 Conference

4 1
Theory4 4

4 5
[115] Android malware detection using 3-level ensemble 2016 Conference 3 5 Experiment

[104]
Reverse engineering smart card malware using side
channel analysis with machine-learning techniques 2016 Conference 2 5 Theory3 5

[116] Feature selection and machine-learning classification
for malware detection

2015 Journal 3 1 Theory3 5

[117] Android malware detection based on permissions 2014 Conference 3 1 Practice3 5

[106]
Android ransomware detection using reduced
opcode sequence and image similarity 2017 Conference 2 5 Experiment4 5

[85] File Block Classification by Support Vector Machine 2011 Conference 1 1 Theory

[118] Preventing File-Less Attacks with Machine
Learning Techniques 2019 Conference 3 2 Theory

[89] Document Image Classification and Labeling using
Multiple Instance Learning 2011 Conference 1 1 Experiment

[90] Multi-scale Structural Saliency for
Signature Detection 2007 Conference 1 1 Practice

[91] Multi-instance clustering with applications to
multi-instance prediction 2009 Journal 1 4 Experiment

[92] Detection of packed executables using support
vector machines 2011 Conference 1 1 Practice

[93] Detecting Packed Executable File: Supervised or
Anomaly Detection Method? 2016 Conference 1 2 Experiment

[94] An anomaly detection system proposal to ensure
information security for file integrations 2018 Conference 1 2 Theory

[124] Visualizing Big Data Outliers through
Distributed Aggregation 2018 Conference 4 2 Theory

Sensors 2022, 22, 1335 22 of 34

Table 4. Publication summary (Part 2).

Ref. Title Year Type Stage Task Content

[128]
Relational Synthesis of Text and Numeric Data
for Anomaly Detection on Computing
System Logs

2016 Conference 4 2 Practice

[95] Predicting File Lifetimes with Machine Learning 2019 Lecture Notes 1 3 Theory

[107] A Machine-Learning Approach to Automatic
Detection of Delimiters in Tabular Data Files 2016 Conference 2 3 Theory

[96] Multiple linear regression for universal
steganalysis of images

2018 Conference 1 3 Experiment2 3
[108] Log File Anomaly Detection 2016 Report 2 2 Theory4 2

[109]

Experimentations with OpenStack System Logs
and Support Vector Machine for an Anomaly
Detection Model in a Private
Cloud Infrastructure

2020 Conference 2 2 Experiment

[130] Forecasting Zero-Day Vulnerabilities 2016 Conference 4 3 Practice

[131]
The Effects of Depth of Field on Subjective
Evaluation of Aesthetic Appeal and Image
Quality of Photographs

2020 Journal 4 3 Experiment

[97] Text Document Classification with PCA and
One-Class SVM 2017 Conference 1 1 Theory

[119]
Machine Learning With Feature Selection Using
Principal Component Analysis for Malware
Detection—A Case Study

2019 Journal 3 1 Theory

[105] Power-based Side-Channel
Instruction-level Disassembler

2018 Conference 2 5 Practice3 5

[17] Data mining methods for detection of new
malicious executables 2001 Conference 3 1 Practice

[18] Integrated static and dynamic analysis for
malware detection 2015 Journal 3 1 Experiment

[19] Classification of malware families based on
N-grams sequential pattern features 2013 Conference 3 1 Experiment

[20] Malware detection using machine learning 2009 Conference 3 1 Practice

[21] Byteweight: Learning to recognize functions in
binary code 2014 Conference 2 1 Practice

[22] Recognizing functions in binaries with
neural networks 2015 Conference 2 1 Theory

[23] Automatically learning semantic features for
defect prediction 2016 Conference 3 2 Theory

[24] Emergent, crowd-scale programming practice in
the IDE 2014 Conference 3 2 Practice

[25] Using web corpus statistics for program analysis 2014 Conference 3 2 Practice

[26] Bugram: bug detection with n-gram
language models 2016 Conference 3 2 Practice

[27] Finding Likely Errors with Bayesian
Specifications 2017 Preprint 3 2 Practice

[28] Learning to Represent Programs with Graphs 2018 Conference 3 2 Theory
[29] Deep Learning to Find Bugs 2017 Journal 3 2 Practice

[30]
Strengthening the empirical analysis of the
relationship between linus’ law and
software security

2010 Conference 3 3 Theory

[31] An empirical study of the evolution of PHP web
application security 2011 Conference 3 3 Theory

[32] Can traditional fault prediction models be used
for vulnerability prediction? 2013 Journal 3 3 Theory

[33]
An initial study on the use of execution
complexity metrics as indicators of
software vulnerabilities

2011 Conference 3 3 Theory

[34]
Evaluating complexity, code churn, and
developer activity metrics as indicators of
software vulnerabilities

2011 Journal 3 3 Theory

[35] Using complexity metrics to improve
software security 2013 Journal 3 3 Theory

[36] Predicting vulnerable components: Software
metrics vs text mining 2014 Conference 3 3 Theory

Sensors 2022, 22, 1335 23 of 34

Table 5. Publication summary (Part 3).

Ref. Title Year Type Stage Task Content

[37] Challenges with applying vulnerability
prediction models 2015 Conference 3 3 Theory

[38]
To fear or not to fear that is the question: Code
characteristics of a vulnerable function with an
existing exploit

2016 Conference 3 3 Theory

[39] Searching for a needle in a haystack: Predicting
security vulnerabilities for windows vista 2010 Conference 3 3 Theory

[40] Bugs as deviant behavior: A general approach to
inferring errors in systems code 2001 Conference 3 2 Practice

[41] DynaMine: Finding common error patterns by
mining software revision histories 2005 Conference 3 2 Practice

[42]
PR-miner: Automatically extracting implicit
programming rules and detecting violations in large
software code

2005 Conference 3 2 Practice

[43] Detecting object usage anomalies 2007 Conference 3 2 Practice

[44] Mining API patterns as partial orders from source
code: From usage scenarios to specifications 2007 Conference 3 2 Practice

[45] Alattin: Mining alternative patterns for detecting
neglected conditions 2009 Conference 3 2 Theory

[46] Learning from 6000 projects: Lightweight
cross-project anomaly detection 2010 Conference 3 2 Theory

[47] Discovering neglected conditions in software by
mining dependence graphs 2008 Journal 3 2 Theory

[48] Chucky: Exposing missing checks in source code for
vulnerability discovery 2013 Conference 3 2 Theory

[49] Vulnerability extrapolation: Assisted discovery of
vulnerabilities using machine learning 2011 Conference 3 1 Experiment

[50] Generalized vulnerability extrapolation using
abstract syntax trees 2012 Conference 3 1 Theory

[51] Predicting common web application vulnerabilities
from input validation and sanitization code patterns 2012 Conference 3 1 Experiment

[52] Predicting SQL injection and cross site scripting
vulnerabilities through mining input
sanitization patterns

2013 Journal 3 1 Practice3 4

[53] Mining SQL injection and cross site scripting
vulnerabilities using hybrid program analysis 2013 Conference 3 1 Experiment

[54] Web application vulnerability prediction using
hybrid program analysis and machine learning 2015 Journal 3 1 Theory

[55] Predicting vulnerable software components via
text mining 2014 Journal 3 1 Theory

[56] Automatic inference of search patterns for
taintstyle vulnerabilities

2015 Conference 3 1 Experiment3 4

[57] Predicting vulnerable software components through
N-gram analysis and statistical feature selection 2015 Conference 3 1 Theory

[120] Classification and Analysis of Android Malware
Images Using Feature Fusion Technique 2021 Conference 3 1 Practice

[121] SHELLCORE: Automating Malicious IoT Software
Detection Using Shell Commands Representation

2021 Conference 3 1 Practice3 5
[98] Machine Learning Tensor Flow Based Platform for

Recognition of Hand Written Text
2021 Conference 1 1 Practice2 1

[99] A Machine Learning-Based Framework for
Mobile Forensics

2020 Conference 1 1 Practice1 4

[129] Automation of Vulnerability Classification from its
Description using Machine Learning 2020 Conference 4 1 Practice

[132] Threats Classification Method for the Transport
Infrastructure of a Smart City 2020 Conference 4 4 Theory

The vast majority of the publications belong to conferences, a quarter to journals, and
1 to the other types. The main reason for this distribution is most likely the greater ease of
acceptance into a conference proceedings collection than into a journal. Nevertheless, we
can reasonably conclude that the scientific community has sufficient awareness of decisions
in the field, since information from conferences is more open than from journals. Thus,
decisions regarding the use of machine learning for static analysis are of a discussion nature.

Sensors 2022, 22, 1335 24 of 34

Consequently, the systematization of all such decisions in this study will accelerate the
bringing of the remaining studies to practical implementation. This determines the value
of the current survey.

Thirdly, we analyze the number of publications according to their scientific and
practical content, presented as a bar chart in Figure 4.

We can see that the majority of publications refer more to theoretical research (creation
of models and algorithms), although featuring the conduct of certain experiments. Slightly
fewer publications are devoted to already finished prototypes, which have passed the
minimum necessary testing and are used for experimental evaluations. Substantially fewer
publications describe experiments on a prototype with the minimum required functionality.
This distribution can be attempted to explain by the fact that the vast majority of the studies,
after the theory had been worked out, failed to implement it in practice.

While the part of the research, in which the prototype was nevertheless implemented,
successfully brought it to a completed state. Only a small part of the research refused to
implement the practical part after conducting experiments. Thus, the following conclusions
can be drawn. Bringing the research to its logical conclusion directly depends on the
“success” of the choice of the initial idea. The proposed systematization of machine-learning
applications for analysis can serve as sources of new, more grounded ideas, supported by
already obtained research results.

Figure 3. Distribution of publications by type.

Figure 4. Distribution of publications by content.

Sensors 2022, 22, 1335 25 of 34

Based on the above conclusions on results of quantitative analysis by year, type, and
content publications, we can draw the following most important conclusion, which also
determines the general direction of development in this subject area:

“While there is sufficient awareness of ML-enabled SA solutions, new breakthrough ideas
are needed to evolve IS approaches for IoTS to full-fledged practical products.”

It is in this direction that the efforts of authors of this review are focused at.
We separately analyze the attribution each of the publications to the SA stage and the

ML tasks. In doing so, some of the publications ([56,96,98,99,104–106,108,116,117,121,123])
were assigned to several such pairs at once. This would create an appropriate review model,
which is presented in matrix form in Table 6. The model describes the works in which ML
solutions are applied and which can be applied at each stage of the SA IoTS.

The authors attempted to search and select articles in the following way. The search
methodology itself consisted of the following actions: entering a keyword in the IEEE
Explorer, ResearchGate, and Google Scholar databases; searching for and studying suitable
papers; studying references in papers; searching for new keywords from found papers; etc.

The obtained model has an important methodological value since it almost completely
covers the area of study—“SA + ML”. Moreover, it allows us to evaluate the state of
elaboration of this area. The search was carried out in two stages—main and advanced.

During the main stage search, the keywords were used that characterize the application
of one of the machine-learning tasks for this from the stages of static analysis. Combinations
of names of stages and machine-learning tasks (as well as their synonyms or analogs) were
used as keywords. For example, to search for the S1_T4 group, the following keywords
were selected: “data collection clusterization”, “data gather clusterization”, “data collection
cluster algorithm”, etc. Thus, 20 (i.e., 4 Stages x 5 Tasks) search passes were made in
all databases.

For the keywords of each SA stage and the ML task, a main search was made for
scientific publications in each of the scientific databases (IEEE Explorer, ResearchGate, and
Google Scholar). Of these, 100 relevant in each of the bases were selected. Then, out of
100 publications, close topics were selected: the current stage of the SA, the solution of the
current task of the ML, and the applicability to the IoTS.

In the advanced stage search, instead of the task names (T1–T2), more general key-
words were used—machine learning, intelligent, etc. Similarly to the main stage search, the
50 most relevant works were selected for the advanced stage search.

The main criteria for selecting articles for the review was their compliance, both with
one of the stages and with one of the tasks. Additional criteria were their application
for IoTS analysis. The adaptation of solutions in other areas to this one was taken into
account—applying to the IoT.

The total number of found and selected works for each SA stage and ML task is shown
in Table 6 and is equal to 91 (including 3 parts of the one investigation—[82–84]).

Thus, we can say with some certainty that the resulting distribution of publications in
Table 6 reflects the current state and trends. Therefore, a significant amount of research is
devoted to the processing of IoTS data in the interest of detecting IS violations by classifying
and detecting anomalies (groups S3_T1—22 papers and S3_T2—19 papers), and predicting
vulnerabilities using regression (group S3_T3—11 papers), often using generalization
(group S3_T5—6 papers).

The attention of scientific papers is focused on the selection of IoTS data using classifi-
cation (group S1_T1—9 papers). In contrast, for a number of groups (S1_T2, S2_T2, S1_T3,
S2_T3, S4_T3, S2_T4, S4_T4, and S2_T5), there were only two studies each. No studies were
found on the selection of objects in Stage 1 with the use of dimension reduction (group
S1_T5—0 works).

Sensors 2022, 22, 1335 26 of 34

Table 6. Overview model of scientific works on the implementation of the static analysis stages using
machine learning.

Task Name Stage 1.
Data Collection

Stage 2.
Data Preparation

Stage 3.
Data Processing

Stage 4.
Result Formation

Task 1. Classification [81–85,89,90,92,97–99] [21,22,98,100,101] [17–20,49–58,110–
112,116,117,119–121] [122,123,129]

Task 2. Anomaly
detection [93,94] [108,109] [23–29,40–48,113,114,118] [108,124,128]

Task 3. Regression [95,96] [96,107] [30–39,58] [130,131]
Task 4. Clustering [86–88,91,99] [102,103] [52,56] [123,132]

Task 5. Generalization [104–106] [104,105,115–117,121] [106,123]

The absence of works for group S1_T5 can be explained by the rarity of the gener-
alization task in IS data collection, nevertheless, such a situation is quite possible; for
example, using probabilistic downscaling LSH (Locality-Sensitive Hashing) to find IoTS
documents [133] close to a given one, with their merging to apply the other stages of SA.

Such a distribution of the research work of each SA stage and the ML problem solved
in the process is well represented by the histogram in Figure 5.

In the author’s opinion, the uneven distribution of articles in the model is a disadvan-
tage: some subareas appear to be understudied. A number of papers cover several groups
at once ([96,98,104–106,108,116,117,123]). All this suggests a targeted predisposition of the
proposed solutions—capturing a few specific tasks (in each group) out of all of them.

Perhaps it would be more feasible to direct the research towards solving all of the
subtasks individually, mapped to each group, i.e., filling each cell of Table 6 completely and
evenly. In this way, the possibilities of applying intelligent methods to all groups would
have been fully “uncovered”.

Figure 5. Histogram of research work distribution for static analysis and machine-learning tasks.

The general conclusion from the conducted analysis of scientific publications and their
systematization in the form of a table is that for almost every combination of the SA stage
and the ML problem there are a number of works substantiating such “symbiosis”. Thus,
the second set subtask can be considered solved, which confirms the main hypothesis of
the current scientific research from a practical point of view.

A practical suggestion for confirming the hypothesis can be the creation of an intelli-
gent SA framework of IoTS using ML methods. The framework can provide the ability to

Sensors 2022, 22, 1335 27 of 34

build complex meta-algorithms for analysis from basic blocks consisting of SA stages. Each
of these building blocks can harness the full power of ML. Inputs data for some blocks
(i.e., Stage 1) can be outputs from other blocks (i.e., Stage 4). Likewise, a block output (i.e.,
Stage 4) can serve as an input to other blocks (i.e., Stage 1). Thus, the framework allows
building complex SA architectures for large IoTS from minimal ML-based SA blocks and
pipes between them.

An example of a that intellectual framework as a set of interconnected single SA (as
part of the described Stage 1–Stage 4) is shown in Figure 6.

The analysis process in Figure 6 is as follows:

1. Content of Logs and Scripts and File Attributes are analyzed by separate Pipes with
numbers 1, 2, and 3.

2. Results of the first two Pipes are analyzed by the fourth Pipe and the third Pipe by the
fifth Pipe.

3. Results of the fourth Pipe and the fifth Pipe are analyzed by the sixth Pipe, from which
a Total Report is created.

Let us justify the possibility of conducting a complex SA based on an intelligent
framework (similar to the one shown in Figure 6). Consider again the idea of a four-step
process for a particular SA. As input (Stage 1), the SA process takes raw formalized data
(usually files). In the main part of the SA (Steps 2 and 3), data is prepared, and problems in
information security are searched for. The output of the SA process (Stage 4) generates a
representation of the results in the form of formalized data (usually also files). However,
the data obtained after Stage 4 may not be sufficient to detect problems on the IoTS.

For example, SA has identified graphs of suspicious interactions between programs,
but information security problems themselves have not been detected. In this case, the
received data must be subjected to a new SA process (also with four steps). For example, in
the graph of interactions between programs, backdoors can be detected using a signature
method. Thus, running a SA without any one of the four stages is impractical, and the
output from one SA (files after Step 4) can be used as input from another (files from Step 1).
Therefore, it makes sense to build an intelligent SA framework as shown in Figure 6.

Figure 6. Example of complex static IoTS analysis using machine learning.

7. Conclusions

In the paper, a theoretical and practical proof of the hypothesis concerning the applica-
tion of ML to SA was made.

Speaking about the first proof, in a formal form, the execution of each SA Stage and
the solution of ML tasks on this stage was considered. Then, the stages and tasks were
systematized into a generalized analytical model with a matrix form (see Table 2). The
fact of existence and the correctness of the description of this model substantiates the
hypothesis from a theoretical point of view. The significance of this scientific result lies in
the approbation of the apparatus of formal proofs for solving certain problems by some

Sensors 2022, 22, 1335 28 of 34

decisions. The model can serve as the basis for practical implementations of intelligent
SA algorithms.

Speaking of the second proof, a review of existing works applicable to the stages of SA
of IoTS from the perspective of the tasks solved by ML was made to this end. The results
are summarized in a matrix (see Table 6), and a review model was created. The advantage
of the model is its necessity and sufficiency—almost all the works refer to its table element.
Filling in the cells of the model substantiated the hypothesis from a practical point of view.

The significance of this scientific result lies in the creation of a single consistent base of
intelligent solutions (i.e., using ML) in the interests of SA. Thus, if necessary, developers
of IoTS analysis systems can make an informed choice of one or another solution for this
SA Stage. They can assess the degree of elaboration and technical implementation of the
chosen solution path.

The resulting models linking SA and ML allow designing methodological solutions
(theoretically and practically justified) in the interest of providing IS of complex IoTS. Nat-
urally, this requires the creation of an appropriate framework to ensure the implementation
of all phases using the full variety of ML methods for Big Data and heterogeneous data.
An important feature of the framework will be intellectualization supported by the ML
methods. As many studies [134–136] emphasize, such systems are in great demand in the
IoTS IS field.

Despite the availability of reviews regarding ML applications for IoT security (for
example, from the point of view of countering attacks [137]), the review and taxonometry
proposed in the current article have a number of significant differences. First, the article
is devoted specifically to the IoTS analysis but not the attack detection or neutralization.
Secondly, the analysis is exactly static (but not dynamic), which allows detecting violations
in the system before its immediate launch. Thirdly, a comprehensive consideration of the
SA stages and ML tasks allows us to assume not only existing methods of analysis but also
hypothetical ones (for example, for a S1_T5). No such reviews have been found in existing
scientific papers.

The following directions for further research are proposed.
First, similar to the current review, it is necessary to investigate the possibilities to

intellectualize the DA, also breaking it down into phases and introducing solutions from
the ML field. As a result, the entire field of IoTS analysis for IS will be fully grasped.

Secondly, based on the overall complexity of SA (as well as DA) large-scale hetero-
geneous IoTS and their data, a deep and more mathematically correct elaboration of the
corresponding mathematical apparatus is required. Although the representation of SA in
the form of one of the ML solutions modeled for each stage of SA are given in the article, it
is nevertheless more intuitive than objectively correct.

Thirdly, following the concept of an intelligent framework (for the SA of IoTS), it is nec-
essary to create its architecture, synthesis of the basic algorithms, their implementation as a
prototype and testing in the “battlefield conditions” (similar to the author’s research [138]).
The success of subsequent experiments will prove the functionality of hypothetical frame-
work and allow forming the requirements for its full-fledged development.

Author Contributions: Conceptualization, I.K.; methodology, M.B.; validation, I.K., K.I. and M.B.;
investigation, I.K., K.I. and M.B.; writing—original draft preparation, I.K., K.I. and M.B.; writing—
review and editing, I.K., K.I. and M.B.; visualization, K.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by This research is being supported by the grant of RSF #21-71-
20078 in St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 1335 29 of 34

References
1. Kucherova, K.; Mescheryakov, S.; Shchemelinin, D. Using Predictive Monitoring Models in Cloud Computing Systems. Distributed

Computer and Communication Networks; Springer International Publishing: Cham, Switzerland, 2018; pp. 341–352.
2. Buinevich, M.; Izrailov, K.; Vladyko, A. Metric of vulnerability at the base of the life cycle of software representations. In

Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea,
11–14 February 2018. [CrossRef]

3. Komashinskiy, D.; Kotenko, I. Malware Detection by Data Mining Techniques Based on Positionally Dependent Features. In
Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Pisa, Italy, 17–19
February 2010; pp. 617–623. [CrossRef]

4. Ageev, S.; Kopchak, Y.; Kotenko, I.; Saenko, I. Abnormal traffic detection in networks of the Internet of things based on fuzzy
logical inference. In Proceedings of the 2015 XVIII International Conference on Soft Computing and Measurements (SCM),
St. Petersburg, Russia, 19–21 May 2015; pp. 5–8. [CrossRef]

5. Desnitsky, V.A.; Kotenko, I.V.; Nogin, S.B. Detection of anomalies in data for monitoring of security components in the Internet of
Things. In Proceedings of the 2015 XVIII International Conference on Soft Computing and Measurements (SCM), St. Petersburg,
Russia, 19–21 May 2015; pp. 189–192. [CrossRef]

6. Kotenko, I.; Saenko, I.; Skorik, F.; Bushuev, S. Neural network approach to forecast the state of the Internet of Things elements.
2015 XVIII International Conference on Soft Computing and Measurements (SCM), St. Petersburg, Russia, 19–21 May 2015;
pp. 133–135. [CrossRef]

7. Allamanis, M.; Barr, E.; Devanbu, P.; Sutton, C. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.
2017, 51, 36. [CrossRef]

8. Xue, H.; Sun, S.; Venkataramani, G.; Lan, T. Machine Learning-Based Analysis of Program Binaries: A Comprehensive Study.
IEEE Access 2019, 7, 65889–65912. [CrossRef]

9. Ghaffarian, S.; Shahriari, H.R. Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining
Techniques: A Survey. ACM Comput. Surv. 2017, 50, 1–36. [CrossRef]

10. Kotenko, I.; Saenko, I.; Kushnerevich, A.; Branitskiy, A. Attack Detection in IoT Critical Infrastructures: A Machine Learning
and Big Data Processing Approach. In Proceedings of the 27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pavia, Italy, 13–15 February 2019; pp. 340–347. [CrossRef]

11. Mescheryakov, S.; Shchemelinin, D.; Izrailov, K.; Pokussov, V. Digital Cloud Environment: Present Challenges and Future
Forecast. Future Internet 2020, 12, 82. [CrossRef]

12. Fu, X.; Li, X.; Zhu, Y.; Wang, L.; Goh, R.S.M. An intelligent analysis and prediction model for on-demand cloud computing
systems. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; IEEE: Beijing,
China, 2014; pp. 1036–1041. [CrossRef]

13. Ardulov, Y.; Kucherova, K.; Mescheryakov, S.; Shchemelinin, D. Self-learning Machine Method for Anomaly Detection in Real
Time Data. In Proceedings of the 10th International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–5. [CrossRef]

14. Borevich, E.; Mescheryakov, S.; Yanchus, V., Statistical Model of Computing Experiment on Digital Color Correction. In Distributed
Computer and Communication Networks; Springer: Cham, Switzerland, 2019; pp. 140–150. [CrossRef]

15. Buinevich, M.; Izrailov, K.; Stolyarova, E.; Vladyko, A. Combine method of forecasting VANET cybersecurity for application of
high priority way. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT),
Chuncheon, Korea, 11–14 February 2018; pp. 266–271. [CrossRef]

16. Raju, A.D.; Abualhaol, I.Y.; Giagone, R.S.; Zhou, Y.; Huang, S. A Survey on Cross-Architectural IoT Malware Threat Hunting.
IEEE Access 2021, 9, 91686–91709. [CrossRef]

17. Schultz, M.; Eskin, E.; Zadok, F.; Stolfo, S. Data mining methods for detection of new malicious executables. In Proceedings 2001
IEEE Symposium on Security and Privacy. S P 2001, Oakland, CA, USA, 14–16 May 2000; pp. 38–49. [CrossRef]

18. Shijo, P.; Salim, A. Integrated Static and Dynamic Analysis for Malware Detection. Procedia Comput. Sci. 2015, 46, 804–811.
[CrossRef]

19. Sornil, O.; Liangboonprakong, C. Malware Classification Using N-grams Sequential Pattern Features. Int. J. Inf. Process. Manag.
2013, 4, 59–67.

20. Gavriluţ, D.; Cimpoeşu, M.; Anton, D.; Ciortuz, L. Malware detection using machine learning. In Proceedings of the International
Multiconference on Computer Science and Information Technology, Mragowo, Poland, 12–14 October 2009; pp. 735–741.
[CrossRef]

21. Bao, T.; Burket, J.; Woo, M.; Turner, R.; Brumley, D. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In
Proceedings of the 23rd USENIX Conference on Security Symposium, San Diego, CA, USA, 20–22 August 2014; USENIX
Association: San Jose, CA, USA, 2014; p. 845–860.

22. Shin, E.C.R.; Song, D.; Moazzezi, R. Recognizing Functions in Binaries with Neural Networks. In Proceedings of the 24th USENIX
Security Symposium, Washington, DC, USA, 12–14 August 2015; USENIX Association: Washington, DC, USA, 2015; pp. 611–626.

23. Wang, S.; Liu, T.; Tan, L. Automatically Learning Semantic Features for Defect Prediction. In Proceedings of the 38th International
Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; Association for Computing Machinery: New York, NY,
USA, 2016; pp. 297–308. [CrossRef]

http://doi.org/10.23919/ICACT.2018.8323939
http://dx.doi.org/10.1109/PDP.2010.30
http://dx.doi.org/10.1109/SCM.2015.7190394
http://dx.doi.org/10.1109/SCM.2015.7190452
http://dx.doi.org/10.1109/SCM.2015.7190434.
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1109/ACCESS.2019.2917668
http://dx.doi.org/10.1145/3092566
http://dx.doi.org/10.1109/EMPDP.2019.8671571
http://dx.doi.org/10.3390/fi12050082
http://dx.doi.org/10.1109/IJCNN.2014.6889875
http://dx.doi.org/10.1109/ICUMT.2018.8631225
http://dx.doi.org/10.1007/978-3-030-36614-8_11
http://dx.doi.org/10.23919/ICACT.2018.8323720
http://dx.doi.org/10.1109/ACCESS.2021.3091427
http://dx.doi.org/10.1109/SECPRI.2001.924286.
http://dx.doi.org/10.1016/j.procs.2015.02.149
http://dx.doi.org/10.1109/IMCSIT.2009.5352759
http://dx.doi.org/10.1145/2884781.2884804

Sensors 2022, 22, 1335 30 of 34

24. Fast, E.; Steffee, D.; Wang, L.; Brandt, J.R.; Bernstein, M.S. Emergent, Crowd-Scale Programming Practice in the IDE. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014;
Association for Computing Machinery: New York, NY, USA, 2014; pp. 2491–2500. [CrossRef]

25. Hsiao, C.H.; Cafarella, M.; Narayanasamy, S. Using Web Corpus Statistics for Program Analysis. Sigplan Not. 2014, 49, 49–65.
[CrossRef]

26. Wang, S.; Chollak, D.; Movshovitz-Attias, D.; Tan, L. Bugram: Bug Detection with n-Gram Language Models. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering, Singapore, 3–7 September 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 708–719. [CrossRef]

27. Murali, V.; Chaudhuri, S.; Jermaine, C. Finding Likely Errors with Bayesian Specifications. arXiv 2017, arXiv:1703.01370.
28. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to Represent Programs with Graphs. arXiv 2017, arXiv:1711.00740(2017).
29. Pradel, M.; Sen, K. Deep Learning to Find Bugs; Technical Report, Department of Computer Science, Technischen Universität

Darmstadt: Hessen, Deutschland, 2017.
30. Meneely, A.; Williams, L. Strengthening the Empirical Analysis of the Relationship between Linus’ Law and Software Security. In

Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Bolzano-
Bozen, Italy, 16–17 September 2010; Association for Computing Machinery: New York, NY, USA, 2010. [CrossRef]

31. Doyle, M.; Walden, J. An Empirical Study of the Evolution of PHP Web Application Security. In Proceedings of the 3th
International Workshop on Security Measurements and Metrics, Banff, AB, Canada, 21 September 2011; pp. 11–20. [CrossRef]

32. Shin, Y.; Williams, L.A. Can traditional fault prediction models be used for vulnerability prediction? Empir. Softw. Eng. 2013,
18, 25–59. [CrossRef]

33. Shin, Y.; Williams, L. An Initial Study on the Use of Execution Complexity Metrics as Indicators of Software Vulnerabilities. In
Proceedings of the 7th International Workshop on Software Engineering for Secure Systems, Honolulu, HI, USA, 22 May 2011;
Association for Computing Machinery: New York, NY, USA, 2011; p. 1–7. [CrossRef]

34. Shin, Y.; Meneely, A.; Williams, L.; Osborne, J.A. Evaluating Complexity, Code Churn, and Developer Activity Metrics as
Indicators of Software Vulnerabilities. IEEE Trans. Softw. Eng. 2011, 37, 772–787. [CrossRef]

35. Moshtari, S.; Sami, A.; Azimi, M. Using complexity metrics to improve software security. Comput. Fraud. Secur. 2013, 2013, 8–17.
[CrossRef]

36. Walden, J.; Stuckman, J.; Scandariato, R. Predicting Vulnerable Components: Software Metrics vs Text Mining. In Proceedings
of the IEEE 25th International Symposium on Software Reliability Engineering, Naples, Italy, 3–6 November 2014; pp. 23–33.
[CrossRef]

37. Morrison, P.; Herzig, K.; Murphy, B.; Williams, L. Challenges with Applying Vulnerability Prediction Models. In Proceedings of
the 2015 Symposium and Bootcamp on the Science of Security, Urbana, IL, USA, 21–22 April 2015; Association for Computing
Machinery: New York, NY, USA, 2015. [CrossRef]

38. Younis, A.; Malaiya, Y.; Anderson, C.; Ray, I. To Fear or Not to Fear That is the Question: Code Characteristics of a Vulnerable
Functionwith an Existing Exploit. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy,
New Orleans, LA, USA, 9–11 March 2016; Association for Computing Machinery: New York, NY, USA, 2016; p. 97–104. [CrossRef]

39. Zimmermann, T.; Nagappan, N.; Williams, L. Searching for a Needle in a Haystack: Predicting Security Vulnerabilities for
Windows Vista. In Proceedings of the 3th International Conference on Software Testing, Verification and Validation, Paris, France,
6–10 April 2010; pp. 421–428. [CrossRef]

40. Engler, D.; Chen, D.Y.; Hallem, S.; Chou, A.; Chelf, B. Bugs as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. ACM Sigops Oper. Syst. Rev. 2001, 35, 57–72. [CrossRef]

41. Livshits, B.; Zimmermann, T. DynaMine: Finding Common Error Patterns by Mining Software Revision Histories. SIGSOFT
Softw. Eng. Notes 2005, 30, 296–305. [CrossRef]

42. Li, Z.; Zhou, Y. PR-Miner: Automatically Extracting Implicit Programming Rules and Detecting Violations in Large Software
Code. SIGSOFT Softw. Eng. Notes 2005, 30, 306–315. [CrossRef]

43. Wasylkowski, A.; Zeller, A.; Lindig, C. Detecting Object Usage Anomalies. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
Dubrovnik, Croatia, 3–7 September 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 35–44. [CrossRef]

44. Acharya, M.; Xie, T.; Pei, J.; Xu, J. Mining API Patterns as Partial Orders from Source Code: From Usage Scenarios to Specifications.
In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, Dubrovnik, Croatia, 3–7 September 2007; Association for Computing Machinery:
New York, NY, USA, 2007; pp. 25–34. [CrossRef]

45. Thummalapenta, S.; Xie, T. Alattin: Mining Alternative Patterns for Detecting Neglected Conditions. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20 November 2009;
pp. 283–294. [CrossRef]

46. Gruska, N.; Wasylkowski, A.; Zeller, A. Learning from 6,000 Projects: Lightweight Cross-Project Anomaly Detection. In
Proceedings of the 19th International Symposium on Software Testing and Analysis, New York, NY, USA, 12–16 July 2010;
Association for Computing Machinery: New York, NY, USA, 2010; pp. 119–130. [CrossRef]

47. Chang, R.Y.; Podgurski, A.; Yang, J. Discovering Neglected Conditions in Software by Mining Dependence Graphs. IEEE Trans.
Softw. Eng. 2008, 34, 579–596. [CrossRef]

http://dx.doi.org/10.1145/2556288.2556998
http://dx.doi.org/10.1145/2714064.2660226
http://dx.doi.org/10.1145/2970276.2970341
http://dx.doi.org/10.1145/1852786.1852798
http://dx.doi.org/10.1109/Metrisec.2011.18
http://dx.doi.org/10.1007/s10664-011-9190-8
http://dx.doi.org/10.1145/1988630.1988632
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1016/S1361-3723(13)70045-9
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1145/2857705.2857750
http://dx.doi.org/10.1109/ICST.2010.32
http://dx.doi.org/10.1145/502059.502041
http://dx.doi.org/10.1145/1095430.1081754
http://dx.doi.org/10.1145/1095430.1081755
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1145/1287624.1287630
http://dx.doi.org/10.1109/ASE.2009.72
http://dx.doi.org/10.1145/1831708.1831723
http://dx.doi.org/10.1109/TSE.2008.24

Sensors 2022, 22, 1335 31 of 34

48. Yamaguchi, F.; Wressnegger, C.; Gascon, H.; Rieck, K. Chucky: Exposing Missing Checks in Source Code for Vulnerability
Discovery. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8
November 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 499–510. [CrossRef]

49. Yamaguchi, F.; Lindner, F.; Rieck, K. Vulnerability Extrapolation: Assisted Discovery of Vulnerabilities Using Machine Learning.
In Proceedings of the 5th USENIX Conference on Offensive Technologies, San Francisco, CA, USA, 8 August 2011; USENIX
Association: San Jose, CA, USA, 2011; p. 13.

50. Yamaguchi, F.; Lottmann, M.; Rieck, K. Generalized Vulnerability Extrapolation Using Abstract Syntax Trees. In Proceedings of
the 28th Annual Computer Security Applications Conference, Orlando, FL, USA, 3–7 December 2012; Association for Computing
Machinery: New York, NY, USA, 2012; pp. 359–368. [CrossRef]

51. Shar, L.K.; Tan, H.B.K. Predicting common web application vulnerabilities from input validation and sanitization code patterns.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7
September 2012; pp. 310–313. [CrossRef]

52. Shar, L.K.; Tan, H.B.K. Predicting SQL injection and cross site scripting vulnerabilities through mining input sanitization patterns.
Inf. Softw. Technol. 2013, 55, 1767–1780. [CrossRef]

53. Shar, L.K.; Beng Kuan Tan, H.; Briand, L.C. Mining SQL injection and cross site scripting vulnerabilities using hybrid program
analysis. In Proceedings of the 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26
May 2013; pp. 642–651. [CrossRef]

54. Shar, L.K.; Briand, L.C.; Tan, H.B.K. Web Application Vulnerability Prediction Using Hybrid Program Analysis and Machine
Learning. IEEE Trans. Dependable Secur. Comput. 2015, 12, 688–707. [CrossRef]

55. Scandariato, R.; Walden, J.; Hovsepyan, A.; Joosen, W. Predicting Vulnerable Software Components via Text Mining. IEEE Trans.
Softw. Eng. 2014, 40, 993–1006. [CrossRef]

56. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic Inference of Search Patterns for Taint-Style Vulnerabilities. In
Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 797–812. [CrossRef]

57. Pang, Y.; Xue, X.; Namin, A.S. Predicting Vulnerable Software Components through N-Gram Analysis and Statistical Feature
Selection. In Proceedings of the IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL,
USA, 9–11 December 2015; pp. 543–548. [CrossRef]

58. Grieco, G.; Grinblat, G.L.; Uzal, L.; Rawat, S.; Feist, J.; Mounier, L. Toward Large-Scale Vulnerability Discovery Using Machine
Learning. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA,
9–11 March 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 85–96. [CrossRef]

59. Sparks, S.; Embleton, S.; Cunningham, R.; Zou, C. Automated Vulnerability Analysis: Leveraging Control Flow for Evolutionary
Input Crafting. In Proceedings of the 23th Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL,
USA, 10–14 December 2007; pp. 477–486. [CrossRef]

60. Wijayasekara, D.; Manic, M.; Wright, J.L.; McQueen, M. Mining Bug Databases for Unidentified Software Vulnerabilities. In
Proceedings of the 5th International Conference on Human System Interactions, Perth, WA, Australia, 6–8 June 2012; pp. 89–96.
[CrossRef]

61. Wijayasekara, D.; Manic, M.; McQueen, M. Vulnerability identification and classification via text mining bug databases. In
Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November
2014; pp. 3612–3618. [CrossRef]

62. Alvares, M.; Marwala, T.; de Lima Neto, F.B. Applications of computational intelligence for static software checking against
memory corruption vulnerabilities. In Proceedings of the IEEE Symposium on Computational Intelligence in Cyber Security
(CICS), Singapore, 16–19 April 2013; pp. 59–66. [CrossRef]

63. Medeiros, I.; Neves, N.F.; Correia, M. Automatic Detection and Correction of Web Application Vulnerabilities Using Data Mining
to Predict False Positives. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014;
Association for Computing Machinery: New York, NY, USA, 2014; pp. 63–74. [CrossRef]

64. Sadeghi, A.; Esfahani, N.; Malek, S. Mining the Categorized Software Repositories to Improve the Analysis of Security
Vulnerabilities. In International Conference on Fundamental Approaches to Software Engineering; Gnesi, S.; Rensink, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 155–169.

65. Buinevich, M.; Izrailov, K.; Ganov, G. Intellectual method of program interactions visualisation in unix-like systems for
information security purposes. In Proceedings of the 12th Majorov International Conference on Software Engineering and
Computer Systems, Saint Petersburg, Russia, 10–11 December 2020; pp. 1–12.

66. Liu, Y.; Wang, J.; Li, J.; Niu, S.; Song, H. Machine Learning for the Detection and Identification of Internet of Things Devices: A
Survey. IEEE Internet Things J. 2022, 9, 298–320. [CrossRef]

67. Harbi, Y.; Aliouat, Z.; Refoufi, A.; Harous, S. Recent Security Trends in Internet of Things: A Comprehensive Survey. IEEE Access
2021, 9, 113292–113314. [CrossRef]

68. Zaman, S.; Alhazmi, K.; Aseeri, M.A.; Ahmed, M.R.; Khan, R.T.; Kaiser, M.S.; Mahmud, M. Security Threats and Artificial
Intelligence Based Countermeasures for Internet of Things Networks: A Comprehensive Survey. IEEE Access 2021, 9, 94668–94690.
[CrossRef]

69. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A
Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [CrossRef]

http://dx.doi.org/10.1145/2508859.2516665
http://dx.doi.org/10.1145/2420950.2421003
http://dx.doi.org/10.1145/2351676.2351733
http://dx.doi.org/10.1016/j.infsof.2013.04.002
http://dx.doi.org/10.1109/ICSE.2013.6606610
http://dx.doi.org/10.1109/TDSC.2014.2373377
http://dx.doi.org/10.1109/TSE.2014.2340398
http://dx.doi.org/10.1109/SP.2015.54
http://dx.doi.org/10.1109/ICMLA.2015.99
http://dx.doi.org/10.1145/2857705.2857720
http://dx.doi.org/10.1109/ACSAC.2007.27
http://dx.doi.org/10.1109/HSI.2012.22
http://dx.doi.org/10.1109/IECON.2014.7049035
http://dx.doi.org/10.1109/CICYBS.2013.6597207
http://dx.doi.org/10.1145/2566486.2568024
http://dx.doi.org/10.1109/JIOT.2021.3099028
http://dx.doi.org/10.1109/ACCESS.2021.3103725
http://dx.doi.org/10.1109/ACCESS.2021.3089681
http://dx.doi.org/10.1109/COMST.2021.3075439

Sensors 2022, 22, 1335 32 of 34

70. Jiang, J.R. Short Survey on Physical Layer Authentication by Machine-Learning for 5G-based Internet of Things. In Proceedings
of the 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 21–23 August
2020; pp. 41–44. [CrossRef]

71. Babu, M.R.; Veena, K.N. A Survey on Attack Detection Methods For IOT Using Machine Learning And Deep Learning. In
Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India,
13–14 May 2021; pp. 625–630. [CrossRef]

72. Wu, H.; Han, H.; Wang, X.; Sun, S. Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey. IEEE
Access 2020, 8, 153826–153848. [CrossRef]

73. Matin, I.M.M.; Rahardjo, B. The Use of Honeypot in Machine Learning Based on Malware Detection: A Review. In Proceedings
of the 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal, Indonesia, 23–24 October 2020;
pp. 1–6. [CrossRef]

74. Uma, K.; Blessie, E.S. Survey on Android Malware Detection and Protection using Data Mining Algorithms. In Proceedings of
the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, Palladam, India, 30–31 August 2018; pp. 209–212.
[CrossRef]

75. Ayewah, N.; Pugh, W.; Hovemeyer, D.; Morgenthaler, J.D.; Penix, J. Experiences Using Static Analysis to Find Bugs. IEEE Softw.
2008, 25, 22–29. [CrossRef]

76. Asryan, S.; Hakobyan, J.; Sargsyan, S.; Kurmangaleev, S. Combining dynamic symbolic execution, code static analysis and
fuzzing. Proc. Inst. Syst. Program. RAS 2018, 30, 25–38. [CrossRef]

77. Aslanyan, H. Platform for interprocedural static analysis of binary code. Proc. Inst. Syst. Program. RAS 2018, 30, 89–100.
[CrossRef]

78. Bergeron, J.; Debbabi, M.; Erhioui, M.; Ktari, B. Static analysis of binary code to isolate malicious behaviors. In Proceedings of the
IEEE 8th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’99), Stanford,
CA, USA, 18 June 1999; pp. 184–189. [CrossRef]

79. L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine Learning With Big Data: Challenges and Approaches.
IEEE Access 2017, 5, 7776–7797. [CrossRef]

80. Wang, M.; Cui, Y.; Wang, X.; Xiao, S.; Jiang, J. Machine Learning for Networking: Workflow, Advances and Opportunities. IEEE
Netw. 2018, 32, 92–99. [CrossRef]

81. Buinevich, M.; Izrailov, K. Method for classification of files based on machine learning technology. Bull. St. Petersburg State Univ.
Technol. Des. Ser. Nat. Tech. Sci. 2020, 1, 34–41. [CrossRef]

82. Buinevich, M.; Izrailov, K. Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 1.
Frequency Byte Model. Proc. Telecommun. Univ. 2020, 6, 77–85. [CrossRef]

83. Buinevich, M.; Izrailov, K. Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 2.
Identification Method. Proc. Telecommun. Univ. 2020, 6, 104–112. [CrossRef]

84. Buinevich, M.; Izrailov, K. Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 3.
Assessment Quality and Applicability Border. Proc. Telecommun. Univ. 2020, 6, 48–57. [CrossRef]

85. Sportiello, L.; Zanero, S. File Block Classification by Support Vector Machine. In Proceedings of the Sixth International Conference
on Availability, Reliability and Security, Vienna, Austria, 22–26 August 2011; pp. 307–312. [CrossRef]

86. Dash, M.; Liu, H. Similarity detection among data files-a machine learning approach. In Proceedings of the 1997 IEEE Knowledge
and Data Engineering Exchange Workshop, Newport Beach, CA, USA, 4 November 1997; pp. 172–179. [CrossRef]

87. Arif, W.; Mahoto, N.A. Document Clustering – A Feasible Demonstration with K-means Algorithm. In Proceedings of the 2nd
International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January
2019; pp. 1–6. [CrossRef]

88. da Cruz Nassif, L.F.; Hruschka, E.R. Document Clustering for Forensic Computing: An Approach for Improving Computer
Inspection. In Proceedings of the 10th International Conference on Machine Learning and Applications and Workshops, Honolulu,
HI, USA, 18–21 December 2011; Volume 1, pp. 265–268. [CrossRef]

89. Kumar, J.; Pillai, J.; Doermann, D. Document Image Classification and Labeling Using Multiple Instance Learning. In Proceedings
of the International Conference on Document Analysis and Recognition, Beijing, China, 18–21 September 2011; pp. 1059–1063.
[CrossRef]

90. Zhu, G.; Zheng, Y.; Doermann, D.; Jaeger, S. Multi-scale Structural Saliency for Signature Detection. In Proceedings of the 2007
IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [CrossRef]

91. Zhang, M.L.; Zhou, Z.H. Multi-instance clustering with applications to multi-instance prediction. Appl. Intell. 2009, 31, 47–68.
[CrossRef]

92. Wang, T.Y.; Wu, C.H. Detection of packed executables using support vector machines. In Proceedings of the International
Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011; Volume 2; pp. 717–722. [CrossRef]

93. Hubballi, N.; Dogra, H. Detecting Packed Executable File: Supervised or Anomaly Detection Method? In Proceedings of the
11th International Conference on Availability, Reliability and Security (ARES), Salzburg, Austria, 31 August–2 September 2016;
pp. 638–643. [CrossRef]

http://dx.doi.org/10.1109/ICKII50300.2020.9318879
http://dx.doi.org/10.1109/ICSPC51351.2021.9451740
http://dx.doi.org/10.1109/ACCESS.2020.3018170
http://dx.doi.org/10.1109/CITSM50537.2020.9268794
http://dx.doi.org/10.1109/I-SMAC.2018.8653720
http://dx.doi.org/10.1109/MS.2008.130
http://dx.doi.org/10.15514/ISPRAS-2018-30(6)-2
http://dx.doi.org/10.15514/ISPRAS-2018-30(5)-5
http://dx.doi.org/10.1109/ENABL.1999.805197
http://dx.doi.org/10.1109/ACCESS.2017.2696365
http://dx.doi.org/10.1109/MNET.2017.1700200
http://dx.doi.org/10.46418/2079-8199_2020_1_6
http://dx.doi.org/10.31854/1813-324X-2020-6-1-77-85
http://dx.doi.org/10.31854/1813-324X-2020-6-2-104-112
http://dx.doi.org/10.31854/1813-324X-2020-6-3-48-57
http://dx.doi.org/10.1109/ARES.2011.52
http://dx.doi.org/10.1109/KDEX.1997.629863
http://dx.doi.org/10.1109/ICOMET.2019.8673480
http://dx.doi.org/10.1109/ICMLA.2011.59
http://dx.doi.org/10.1109/ICDAR.2011.214
http://dx.doi.org/10.1109/CVPR.2007.383255
http://dx.doi.org/10.1007/s10489-007-0111-x
http://dx.doi.org/10.1109/ICMLC.2011.6016774
http://dx.doi.org/10.1109/ARES.2016.18

Sensors 2022, 22, 1335 33 of 34

94. Uzum, I.; Can, O. An anomaly detection system proposal to ensure information security for file integrations. In Proceedings
of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4.
[CrossRef]

95. Monjalet, F.; Leibovici, T. Predicting File Lifetimes with Machine Learning. In International Conference on High Performance
Computing; Springer: Cham, Switzerland, 2019; Volume 11887, pp. 288–299. [CrossRef]

96. Gomis, F.K.; Camara, M.S.; Diop, I.; Farssi, S.M.; Tall, K.; Diouf, B. Multiple linear regression for universal steganalysis of images.
In Proceedings of the International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018;
pp. 1–4. [CrossRef]

97. Kumar, B.; Vadlamani, R. Text Document Classification with PCA and One-Class SVM. In Proceedings of the 5th International
Conference on Frontiers in Intelligent Computing: Theory and Applications; Advances in Intelligent Systems and Computing; Springer:
Singapore, 2017; Volume 515, pp. 107–115. [CrossRef]

98. Gupta, N.; Goyal, N. Machine Learning Tensor Flow Based Platform for Recognition of Hand Written Text. In Proceedings of the
International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–6.
[CrossRef]

99. Peng, L.; Zhu, X.; Zhang, P. A Machine Learning-Based Framework for Mobile Forensics. In Proceedings of the IEEE 20th
International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; pp. 1551–1555. [CrossRef]

100. Xu, Z.; Wen, C.; Qin, S. Type Learning for Binaries and Its Applications. IEEE Trans. Reliab. 2019, 68, 893–912. [CrossRef]
101. Rosenblum, N.; Zhu, X.; Miller, B.; Hunt, K. Machine Learning-Assisted Binary Code Analysis. In Proceedings of the NIPS

Workshop Machine Learning Adversarial Environment, Vancouver, BC, Canada, 7–8 December 2007; pp. 1–3.
102. Zahid, M.; Mehmmod, Z.; Inayat, I. Evolution in software architecture recovery techniques—A survey. In Proceedings of the 13th

International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 27–28 December 2017; pp. 1–6. [CrossRef]
103. Marian, Z.; Czibula, I.G.; Czibula, G. A Hierarchical Clustering-Based Approach for Software Restructuring at the Package

Level. In Proceedings of the 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), Timisoara, Romania, 21–24 September 2017; pp. 239–246. [CrossRef]

104. Tsague, H.D.; Twala, B. Reverse engineering smart card malware using side channel analysis with machine learning techniques.
In Proceedings of the IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016;
pp. 3713–3721. [CrossRef]

105. Park, J.; Xu, X.; Jin, Y.; Forte, D.; Tehranipoor, M. Power-based Side-Channel Instruction-level Disassembler. In Proceedings of the
55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

106. Karimi, A.; Moattar, M.H. Android ransomware detection using reduced opcode sequence and image similarity. In Proceedings
of the 7th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 26–27 October 2017;
pp. 229–234. [CrossRef]

107. Saurav, S.; Schwarz, P. A Machine-Learning Approach to Automatic Detection of Delimiters in Tabular Data Files. In Proceedings
of the IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney,
NSW, Australia, 12–14 December 2016; pp. 1501–1503. [CrossRef]

108. Yang, T.; Agrawal, V. Log File Anomaly Detection; Cource of Deep Learning for Natural Language (CS224d); Technical Report;
Stanford University: Stanford, CA, USA, 2016.

109. Akanle, M.; Adetiba, E.; Akande, V.; Akinrinmade, A.; Ajala, S.; Moninuola, F.; Badejo, J.; Adebiyi, E. Experimentations with
OpenStack System Logs and Support Vector Machine for an Anomaly Detection Model in a Private Cloud Infrastructure. In
Proceedings of the 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), Durban, South Africa, 6–7 August 2020; pp. 1–7. [CrossRef]

110. Shabtai, A.; Moskovitch, R.; Elovici, Y.; Glezer, C. Detection of malicious code by applying machine learning classifiers on static
features: A state-of-the-art survey. Inf. Secur. Tech. Rep. 2009, 14, 16–29. [CrossRef]

111. Moskovitch, R.; Nissim, N.; Elovici, Y. Malicious Code Detection Using Active Learning. In Privacy, Security, and Trust in KDD;
Bonchi, F., Ferrari, E., Jiang, W., Malin, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 74–91.

112. Liu, S.; Dibaei, M.; Tai, Y.; Chen, C.; Zhang, J.; Xiang, Y. Cyber Vulnerability Intelligence for Internet of Things Binary. IEEE Trans.
Ind. Inform. 2020, 16, 2154–2163. [CrossRef]

113. Abah, J.; Waziri, V.; Abdullahi, M.; U.M, A.; O.S, A. A Machine Learning Approach to Anomaly-Based Detection on Android
Platforms. Int. J. Netw. Secur. Its Appl. 2015, 7, 15–35. [CrossRef]

114. Ng, D.V.; Hwang, J.I.G. Android malware detection using the dendritic cell algorithm. In Proceedings of the International
Conference on Machine Learning and Cybernetics, Lanzhou, China, 13–16 July 2014; Volume 1; pp. 257–262. [CrossRef]

115. Ouyang, L.; Dong, F.; Zhang, M. Android malware detection using 3-level ensemble. In Proceedings of the 4th International
Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, China, 17–19 August 2016; pp. 393–397. [CrossRef]

116. Khammas, B.M.; Monemi, A.; Stephen Bassi, J.; Ismail, I.; Mohd Nor, S.; Marsono, M.N. Feature selection and machine learning
classification for malware detection. J. Teknol. 2015, 77, 243–250. [CrossRef]

117. Xiaoyan, Z.; Juan, F.; Xiujuan, W. Android malware detection based on permissions. In Proceedings of the International
Conference on Information and Communications Technologies (ICT 2014), Nanjing, China, 15–17 May 2014; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/SIU.2018.8404373
http://dx.doi.org/10.1007/978-3-030-34356-9_23
http://dx.doi.org/10.1109/ISACV.2018.8354060
http://dx.doi.org/10.1007/978-981-10-3153-3_11
http://dx.doi.org/10.1109/ICCCI50826.2021.9402622
http://dx.doi.org/10.1109/ICCT50939.2020.9295714
http://dx.doi.org/10.1109/TR.2018.2884143
http://dx.doi.org/10.1109/ICET.2017.8281704
http://dx.doi.org/10.1109/SYNASC.2017.00046
http://dx.doi.org/10.1109/BigData.2016.7841039
http://dx.doi.org/10.1109/DAC.2018.8465848
http://dx.doi.org/10.1109/ICCKE.2017.8167881
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0213
http://dx.doi.org/10.1109/icABCD49160.2020.9183878
http://dx.doi.org/10.1016/j.istr.2009.03.003
http://dx.doi.org/10.1109/TII.2019.2942800
http://dx.doi.org/10.5121/ijnsa.2015.7602
http://dx.doi.org/10.1109/ICMLC.2014.7009126
http://dx.doi.org/10.1109/CCIS.2016.7790290
http://dx.doi.org/10.11113/jt.v77.3558
http://dx.doi.org/10.1049/cp.2014.0605

Sensors 2022, 22, 1335 34 of 34

118. Bucevschi, A.G.; Balan, G.; Prelipcean, D.B. Preventing File-Less Attacks with Machine Learning Techniques. In Proceedings
of the 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara,
Romania, 4–7 September 2019; pp. 248–252. [CrossRef]

119. Zhang, J. Machine Learning With Feature Selection Using Principal Component Analysis for Malware Detection: A Case Study; Technical
Report; Sophos: Abingdon, UK, 2019.

120. Singh, J.; Thakur, D.; Gera, T.; Shah, B.; Abuhmed, T.; Ali, F. Classification and Analysis of Android Malware Images Using
Feature Fusion Technique. IEEE Access 2021, 9, 90102–90117. [CrossRef]

121. Alasmary, H.; Anwar, A.; Abusnaina, A.; Alabduljabbar, A.; Abuhamad, M.; Wang, A.; Nyang, D.H.; Awad, A.; Mohaisen, D.
SHELLCORE: Automating Malicious IoT Software Detection Using Shell Commands Representation. IEEE Internet Things J. 2021,
9, 2485–2496. [CrossRef]

122. Otsubo, Y.; Otsuka, A.; Mimura, M.; Sakaki, T. o-glasses: Visualizing X86 Code From Binary Using a 1D-CNN. IEEE Access 2020,
8, 31753–31763. [CrossRef]

123. Yang, H.; Li, S.; Wu, X.; Lu, H.; Han, W. A Novel Solutions for Malicious Code Detection and Family Clustering Based on Machine
Learning. IEEE Access 2019, 7, 148853–148860. [CrossRef]

124. Wilkinson, L. Visualizing Big Data Outliers Through Distributed Aggregation. IEEE Trans. Vis. Comput. Graph. 2018, 24, 256–266.
[CrossRef]

125. Henry, T. Testing For Normality; CRC Press: Boca Raton, FL, USA, 2002; p. 368. [CrossRef]
126. Boris Iglewicz, D.C.H. Volume 16: How to Detect and Handle Outliers; ASQC Quality Press: Milwaukee, WI, USA, 2013; p. 87.
127. Hinneburg, A.; Keim, D.; Wawryniuk, M. HD-Eye: visual mining of high-dimensional data. IEEE Comput. Graph. Appl. 1999,

19, 22–31. [CrossRef]
128. Baseman, E.; Blanchard, S.; Li, Z.; Fu, S. Relational Synthesis of Text and Numeric Data for Anomaly Detection on Computing

System Logs. In Proceedings of the 15th IEEE International Conference on Machine Learning and Applications (ICMLA),
Anaheim, CA, USA, 18–20 December 2016; pp. 882–885. [CrossRef]

129. Aota, M.; Kanehara, H.; Kubo, M.; Murata, N.; Sun, B.; Takahashi, T. Automation of Vulnerability Classification from its
Description using Machine Learning. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC),
Rennes, France, 7–10 July 2020; pp. 1–7. [CrossRef]

130. Last, D. Forecasting Zero-Day Vulnerabilities. In Proceedings of the 11th Annual Cyber and Information Security Research
Conference, Oak Ridge, TN, USA, 5–7 April 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1–4.
[CrossRef]

131. Zhang, T.; Xie, J.; Zhou, X.; Choi, C. The Effects of Depth of Field on Subjective Evaluation of Aesthetic Appeal and Image Quality
of Photographs. IEEE Access 2020, 8, 13467–13475. [CrossRef]

132. Izrailov, K.; Chechulin, A.; Vitkova, L. Threats Classification Method for the Transport Infrastructure of a Smart City. In
Proceedings of the IEEE 14th International Conference on Application of Information and Communication Technologies (AICT),
Tashkent, Uzbekistan, 7–9 October 2020; pp. 1–6. [CrossRef]

133. Durmaz, O.; Bılge, H.S. Fast image search with distrubuted hashing. In Proceedings of the 26th Signal Processing and
Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [CrossRef]

134. Aslanyan, H.; Asryan, S.; Hakobyan, J.; Vardanyan, V.; Sargsyan, S.; Kurmangaleev, S. Multiplatform Static Analysis Frame-
work for Program Defects Detection. In Proceedings of the International Conference on Computer Sciences and Information
Technologies, Helsinki, Finland, 21–23 August 2017; pp. 1–5.

135. Lee, S.; Dolby, J.; Ryu, S. HybriDroid: Static analysis framework for Android hybrid applications. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE), Singapore, 3–7 September 2016; pp. 250–261.

136. Mihancea, P.F. Towards a Reverse Engineering Dataflow Analysis Framework for Java and C++. In Proceedings of the 10th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, 26–29 September
2008; pp. 285–288. [CrossRef]

137. Tahsien, S.; Karimipour, H.; Spachos, P. Machine learning based solutions for security of Internet of Things (IoT): A survey. J.
Netw. Comput. Appl. 2020, 161, 102630. [CrossRef]

138. Kotenko, I.; Izrailov, K.; Buinevich, M. Analytical Modeling for Identification of the Machine Code Architecture of Cyberphysical
Devices in Smart Homes. Sensors 2022, 22, 1017. [CrossRef]

http://dx.doi.org/10.1109/SYNASC49474.2019.00042
http://dx.doi.org/10.1109/ACCESS.2021.3090998
http://dx.doi.org/10.1109/JIOT.2021.3086398
http://dx.doi.org/10.1109/ACCESS.2020.2972358
http://dx.doi.org/10.1109/ACCESS.2019.2946482
http://dx.doi.org/10.1109/TVCG.2017.2744685
http://dx.doi.org/10.1201/9780203910894
http://dx.doi.org/10.1109/38.788795
http://dx.doi.org/10.1109/ICMLA.2016.0158
http://dx.doi.org/10.1109/ISCC50000.2020.9219568
http://dx.doi.org/10.1145/2897795.2897813
http://dx.doi.org/10.1109/ACCESS.2020.2966523
http://dx.doi.org/10.1109/AICT50176.2020.9368828
http://dx.doi.org/10.1109/SIU.2018.8404472
http://dx.doi.org/10.1109/SYNASC.2008.7
http://dx.doi.org/10.1016/j.jnca.2020.102630
http://dx.doi.org/10.3390/s22031017

	Introduction
	Novelty
	Contributions
	Article Content

	Research Methodology
	Analysis of Existing Review Works
	ML for SA of IoTs
	ML for IoT Security

	SA Model
	Stages of Static Analysis
	Stage 1. Data Collection
	Stage 2. Data Preparation
	Stage 3. Data Processing
	Stage 4. Result Formation
	Form and Content Transformation

	Tasks Solved by ML
	SA Model Representation

	Systematization of SA Stages and ML Solutions
	Stage 1. Data Collection
	Stage 2. Data Preparation
	Stage 3. Data Processing
	Stage 4. Result Formation

	Review Model
	Conclusions
	References

