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Abstract: The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-
ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-
charge transport properties of electrons, with mobility-lifetime products µeτe > 10−2 cm2/V and
µhτh > 10−5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for
thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole
mobility-lifetime product enhancements (µhτh > 10−4 cm2/V and µeτe > 10−3 cm2/V) have been
fabricated for high-flux measurements (high-flux HF-CZT detectors). In this work, we will present
the performance and charge-sharing properties of sub-millimeter CZT pixel detectors based on
LF-CZT and HF-CZT crystals. Experimental results from the measurement of energy spectra after
charge-sharing addition (CSA) and from 2D X-ray mapping highlight the better charge-collection
properties of HF-CZT detectors near the inter-pixel gaps. The successful mitigation of the effects of
incomplete charge collection after CSA was also performed through original charge-sharing correction
techniques. These activities exist in the framework of international collaboration on the development
of energy-resolved X-ray scanners for medical applications and non-destructive testing in the food
industry.

Keywords: CZT detectors; charge sharing; incomplete charge collection; charge-sharing correction;
semiconductor pixel detectors

1. Introduction

Nowadays, cadmium zinc telluride (CdZnTe or CZT) detectors have reached an ex-
cellent maturity level in room-temperature X-ray and gamma-ray detection, from photon
energies of a few keV up to 1 MeV [1–11]. After the first CZT detector was presented by
Butler in 1992 [12], intense research activities started with important progress made in
both crystal growth and electrical contact technology. CZT detectors with pixel and strip
electrodes were widely developed for X-ray and gamma-ray spectroscopic imaging, meeting
the different requirements of many applications, including diagnostic-nuclear medicine [4–7],
astrophysics [8–11], security [1], and non-destructive testing in the food industry [13,14].
Typically, the best-spectroscopic-grade CZT crystals are grown via Bridgman (B) [15–18]
and traveling heater method (THM) growth [18–22] techniques. In particular, important
progress in the charge carrier transport properties and uniformity in THM-CZT crystals
has been made. The development of THM-CZT detectors with high electron transport
properties, i.e., characterized by mobility-lifetime products of electrons µeτe greater than
10−2 cm2/V, was pioneered by Chen in 2007 [21]. Since then, several suppliers (Redlen
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Technologies, Canada; Kromek, UK) were able to fabricate high-µeτe CZT crystals with
thicknesses greater than 10 mm. Excellent performances were obtained in thick CZT detec-
tors (>5 mm), where the particular electron-sensing design (a drift strip and coplanar grids)
is often optimized to work in low-electricity fields (<1000 V/cm) [8,9]. Besides this, great
efforts have also been made to enhance the mobility-lifetime products of the holes (µhτh),
especially for high-flux measurements. Enhancements in hole charge transport properties
are necessary to minimize the effects of radiation-induced polarization phenomena at high
fluxes [23–26]. Recently, high-µhτh THM-CZT crystals (µhτh > 10−4 cm2/V) are provided
by Redlen for high-flux applications [27–29]. Therefore, high-µhτh CZT detectors (high-flux
HF-CZT detectors) are typically used for high-flux measurements, while high-µeτe CZT
materials (low flux LF-CZT) for thick electron-sensing detectors generally work at low flux
conditions.

As is well known, the most important critical issues in sub-millimeter CZT pixel
detectors are represented by charge-sharing and crosstalk effects, with the presence of
severe degradations in both the spectral and spatial performance [29–40]. Despite the
potential of charge-sharing addition (CSA) techniques in reducing the charge-sharing
effects, the presence of incomplete charge collection in the summed energy after CSA
often prevents full energy recovery in the energy spectra [33–40]. These effects, due to
the presence of charge losses at the inter-pixel gaps, are strictly related to the physical
properties of the detectors (crystals and electrical contacts) near the gaps between the pixels.

In this work, we investigated the effects of charge losses near the inter-pixel gap in
LF/HF-THM CZT pixel detectors. The detectors are fabricated on THM-CZT crystals re-
cently produced by Redlen Technologies company (Canada), for both low- (LF-CZT) [19–22]
and high- (HF-CZT) flux applications [27–29]. Measurements with uncollimated radiation
sources and collimated synchrotron X-ray beams were performed on LF/HF-CZT pixel
detectors characterized by the same crystal dimensions, electrical layout, bias voltage
operation, and readout electronics.

2. The CZT Pixel Detectors

Two-millimeter-thick CZT pixel detectors characterized by the same electrode layout
and dimensions (4.25 × 3.25 × 2 mm3) were investigated. Regarding the electrode layout
(Figure 1), all anodes consist of four arrays of 3 × 3 pixels: a large array with a pixel pitch
of 500 µm and three small arrays with pixel pitches of 250 µm.
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Figure 1. (a) The anode layout of the CZT pixel detectors. Array 3 is characterized by a pixel pitch of
500 µm, while the other three arrays by a pixel pitch of 250 µm. The width of the inter-pixel gaps
is equal to 50 µm for all arrays. All arrays are surrounded by a guard-ring electrode up to the edge
of the crystal. (b) The cathode electrode covers the surface of the CZT crystals. The figures are not
drawn to scale.
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The cathode is a simple planar electrode covering the surface of the detectors. All
arrays are designed with the same inter-pixel gap of 50 µm. The detectors are based on low-
flux LF-THM CZT and high-flux HF-THM CZT crystals, developed by Redlen Technologies
(Canada).

2.1. Low Flux LF-CZT Detectors

The LF-CZT pixel detectors were fabricated at IMEM-CNR of Parma (Parma, Italy) in col-
laboration with the due2lab company (Reggio Emilia, Italy). The detectors are based on THM-
CZT crystals provided by Redlen and characterized by gold electro-less contacts. Recently,
very-low-noise gold contacts were realized on CZT detectors by our group [19,35–38,41],
ensuring low leakage currents at room temperature (4.7 nA cm−2 at 1000 V cm−1) and good
room-temperature operation even at high bias voltages (> 5000 V cm−1). The LF-CZT de-
tectors are characterized by µeτe ranging from 1 to 3 × 10−2 cm2/V and µhτh from 2 to
3 × 10−5 cm2/V [27].

2.2. Hih Flux HF-CZT Detectors

The HF-CZT pixel detectors were fabricated by Redlen Technologies with platinum
electrical contacts. The charge transport properties are represented by µeτe ranging from 2
to 3 ×10−3 cm2/V and µhτh from 1 to 2 ×10−4 cm2/V [27].

2.3. Readout Electronics

The processing of the detector signals was performed using the same readout elec-
tronics for all detectors. Regarding the front-end electronics, the detectors were flip-chip
bonded to charge-sensitive preamplifiers (CSPs) based on a low-noise application-specific
integrated circuit (PIXIE ASIC) developed at RAL (Didcot, UK) [42]. The PIXIE ASIC,
characterized by an equivalent noise charge (ENC) less than 80 electrons, provides nine
output channels at the same time for each 3 × 3 pixel array. The output waveforms from the
PIXIE ASIC are digitized and processed online by 16-channel digital electronics, developed
at DiFC of the University of Palermo (Italy) [35,36,43,44]. The digital electronic is based
on commercial digitizers (DT5724, 16-bit, 100 MS/s, CAEN SpA, Italy), where an original
firmware was uploaded [43,44].

2.4. Spectroscopic Performance

The spectroscopic response of the detectors, when illuminated with uncollimated
radiation sources (109Cd, 241Am, 57Co), was measured. The detectors, biased at 1000 V
(5000 V/cm), are characterized by a similar room-temperature performance (T = 20 ◦C),
as shown in Figure 2. This bias voltage value represents, for both detectors, the optimum
setting for the best energy resolution. The energy resolution (FWHM) of both detectors is
from less than 2 keV up to 122 keV. The similar performance of the detectors, despite the
different charge transport properties of the CZT crystals, is due to several factors, e.g., the
high-bias voltage operation, the small thickness, and the electron-sensing properties of the
pixel detectors.
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Figure 2. Measured energy spectra of a pixel of the 500 µm array for the LF-CZT (black line) and
HF-CZT (red line) detectors. (a) The energy resolution of the main peaks (22.1 keV) of 109Cd energy
spectra is approximately 6% (1.3 keV) FWHM for both detectors. (b) The 122 keV peaks of the 57Co
spectra are characterized by an energy resolution of 1.7% (2 keV). To compare the photopeak shapes,
the energy spectra are normalized to the photopeak centroid counts.

3. Incomplete Charge Collection in Charge-Sharing Events

Charge-sharing measurements were performed through time coincidence analysis,
with a particular focus on the coincidence events of the central pixel of each array with
the neighboring pixels. The coincidence events were detected within a coincidence time
window (CTW) of 200 ns, ensuring the full detection of all coincidence events. The number
of coincidence events is the same for both detectors, confirming its dependence on the
detector layout geometry. The percentage of the coincidence events is very high, and this
number increases for high values of the ratio between the inter-pixel gap area and the
pixel area and for energies greater than the K-shell absorption energy of the CZT material
(26.7 keV, 9.7 keV, and 31.8 keV for Cd, Zn, and Te, respectively).

In this last case, the fluorescent X-rays create both an increase in the charge cloud
dimensions and the generation of crosstalk phenomena between the pixels. Regarding the
coincidence percentages, the results for the central pixel show values of 33–34% and 52–53%
at 22.1 keV for the 500 µm and 250 µm arrays, respectively; while at energies greater than
the K-shell absorption energy, we measured values of 56–58% and 79–81% at 59.5 keV for
the 500 µm and 250 µm arrays, respectively. Figure 3 shows a comparison between the raw
energy spectrum of the central pixel of the large 500 µm array (black line) and the spectrum
with only single events (violet line), i.e., the events with multiplicity m= 1. The shape of
the energy spectrum is strongly improved after the rejection of the coincidence events, i.e.,
after the application of the charge-sharing discrimination (CSD) technique. The coincidence
events are mainly a result of charge-sharing and fluorescence crosstalk phenomena, and
their effects are clearly visible in the raw spectrum: The fluorescent peaks at 23.2 and
27.5 keV, the escape peaks at 36.3 and 32 keV, the low-energy background, and tailing.
As is well known, a typical recovery of the rejected events after CSD can be performed
through the classical charge-sharing addition (CSA) technique. Figure 4 shows the results
obtained after the application of CSA in LF/HF-CZT detectors, at energies below (109Cd
source) and above (241Am source) the K-shell absorption energy of CZT. Both detectors are
characterized by energy deficits in the spectra after CSA (brown lines), particularly of about
3.1 keV (6 keV) and 1.6 keV (3 keV) at 22.1 keV (59.5 keV) for the LF and HF CZT detectors,
respectively. We also observed that this energy deficit is strongly related to the bias voltage,
e.g., at 500 V, we measured a deficit of about 9 keV and 5 keV at 59.5 keV for the LF and
HF detectors, respectively. Moreover, the distribution of these energy deficits within the
inter-pixel gap between two pixels is also presented in Figure 5. The two-dimensional (2D)
scatter plots show the summed energy ECSA of the coincidence events (m = 2) between two
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adjacent pixels (pixels no. 5 and no. 6), after CSA, versus the charge-sharing ratio R. The
quantity R, calculated from the ratio between the energies of two adjacent pixels (Figure 5),
gives indications about the position of the photon interaction between the two pixels.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 3. Comparison between the raw 241Am energy spectrum (black line) and the spectrum (violet 

line) after charge-sharing discrimination (CSD). The energy spectra are related to the central pixel 

of the 500 μm array of the HF-CZT detector. After CSD, 56% of all events are rejected. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Measured 109Cd and 241Am energy spectra after the application of the charge-sharing ad-

dition (CSA) technique. The energy spectra of the single events (blue lines) and the spectra of the 

coincidence events with the eight adjacent pixels (multiplicity m = 2) after CSA (brown lines) for the 

(a), (c) LF-CZT and (b), (d) HF-CZT detectors. The energy spectra after CSA are characterized by 

energy deficits due to the presence of charge losses near the inter-pixel gaps, more severe for the 

LF-CZT detectors. 

Figure 3. Comparison between the raw 241Am energy spectrum (black line) and the spectrum (violet
line) after charge-sharing discrimination (CSD). The energy spectra are related to the central pixel of
the 500 µm array of the HF-CZT detector. After CSD, 56% of all events are rejected.

The curvature shows the presence of energy deficits for both detectors and at all
energies; they are more severe at R = 0, i.e., related to events interacting at the center of the
inter-pixel gap. The summed energy ECSA of certain coincidence events at about R = 0.22
is fully recovered after CSA. These events represent the coupling of fluorescent X-rays
at 23.2 keV and the escape events at 36.3 keV. As is clearly shown in Figures 4 and 5, the
energy deficit after CSA is less severe for the HF-CZT detectors. Recently, similar results
were obtained by other researchers [29]; in particular, they measured less-incomplete charge
collection after CSA in HF-CZT pixel detectors, in comparison with CdTe pixel detectors,
attributing this to the better hole transport properties of the HF-CZT crystals than the CdTe
ones. We believe that this difference is not dependent on the charge transport properties
of the carriers but is strictly related to the characteristics of the electric field lines near the
inter-pixel gaps. To confirm this conclusion, we also measured the energy deficits in charge-
sharing events, where the charge clouds are mainly contributed to by the electrons; in this
case, because of the better electron charge transport properties of the LF-CZT detectors
than the HF-CZT ones, the charge losses in LF-CZT detectors should be less severe than
the HF-CZT ones. In order to investigate shared events with high electron contributions
in the charge cloud, we used low-energy X-rays (22.1 keV X-rays from the 109Cd source)
interacting near the cathode side and measured the events from the pixels of the 250 µm
arrays, characterized by high electron-sensing properties (in agreement with the small pixel
effect [2]). The results are presented in Figure 6.

The energy deficits of the 22.1 keV photopeaks after CSA are approximately 3.5 keV
and 2.5 keV for the LF-CZT and HF-CT detectors, respectively; the degradation continues
to be more severe for the LF-CZT detector, confirming that the charge losses are not related
to the transport properties of the charge carriers. This was also confirmed by simulation
procedures. We performed a simulation of the two-dimensional (2D) scatter plots of the
summed energy ECSA of the coincidence events (m = 2) between two adjacent pixels, for
both detectors and arrays. The simulations were carried out by means of a first principle
tool [45], composed of three main blocks: (i) The radiation–semiconductor interaction based
on the Monte Carlo approach (Geant4), (ii) electric and weighting field calculation by the
finite element method (FEM) with COMSOL Multiphysics, and (iii) the computation of
the charge carrier transport and pulse formation in the MATLAB environment. In order
to evaluate whether the charge losses in LF/HF CZT detectors are due to the transport
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properties of carriers, a spatially homogeneous distribution of charges was simulated inside
the whole CZT volume. To focus the attention on the transport properties, any crystal
defects (e.g., Te inclusions) or inter-pixel electric field distortions were implemented in
simulations. The simulation was carried out using the physical quantities reported in
Table 1.
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Figure 4. Measured 109Cd and 241Am energy spectra after the application of the charge-sharing
addition (CSA) technique. The energy spectra of the single events (blue lines) and the spectra of the
coincidence events with the eight adjacent pixels (multiplicity m = 2) after CSA (brown lines) for
the (a), (c) LF-CZT and (b), (d) HF-CZT detectors. The energy spectra after CSA are characterized
by energy deficits due to the presence of charge losses near the inter-pixel gaps, more severe for the
LF-CZT detectors.

Table 1. Simulation parameters.

High-Flux HF-CZT Low-Flux LF- CZT

µeτe
(
cm2/V

)
2.5 × 10−3 µeτe

(
cm2/V

)
2 × 10−2

µhτh
(
cm2/V

)
1.5 × 10−4 µhτh

(
cm2/V

)
2.5 × 10−5

Number of generated charges 5 × 106 Number of generated charges 5 × 106

Bias voltage (V) 1000 Bias voltage (V) 1000
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Figure 5. Two-dimensional (2D) scatter plot of the summed energy ECSA of the coincidence events
(m = 2) between two adjacent pixels (central pixel no. 5 and pixel no. 6), after CSA, versus the
charge-sharing ratio R. The plots highlight the dependence of the energy deficit on the position
within the inter-pixel gap and the higher charge losses of (a), (c) the LF-CZT than (b), (d) the HF-CZT
detector.
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We simulated the two-dimensional (2D) scatter plots of the summed energy ECSA of
the coincidence events (m = 2) between two adjacent pixels, after CSA, versus the charge-
sharing ratio R, for both detectors and arrays (Figure 7). No remarkable differences are
present in the comparison of the charge losses. This means that transport properties do not
significantly influence the charge loss mechanism.
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Figure 7. Simulated two-dimensional (2D) scatter plots of the summed energy ECSA of the coincidence
events (m = 2) between two adjacent pixels, after CSA, versus the charge-sharing ratio R obtained for
500 um and 250 um pitch pixel arrays and calculated for HF and LF−CZT.

These effects are due to the presence of distortions and non-uniformities in the electric
field lines near the gaps between the pixels. This was also confirmed by the results obtained
after a micro-scale 2-D X-ray mapping of the detectors. Collimated synchrotron X-ray
beams were used at the B16 test beamline at the Diamond Light Source facility (Didcot,
UK), in particular, 10 × 10 µm2 micro-beams with scan steps of 12.5 µm at 40 keV. The
results of the mapping for the small 250 µm arrays are shown in Figure 8, where the 40 keV
photopeak energy at different positions is presented.

Both detectors, due to the charge sharing, show a reduction in the photopeak energy
near the inter-pixel gaps; however, the LF-CZT detector is characterized by an extended
charge-sharing region (blue region), due to the increased presence of distortions and non-
uniformities in the electric field lines. The cause of these distortions is unclear but may
be due to either the presence of crystalline defects (inclusions) or perhaps issues with the
electrical contacts. Fortunately, the energy deficits of the shared events after CSA can be
recovered through a custom correction technique, recently developed by our group [36,37].
This technique is based on the correction of (i) the shared events after CSA with m = 2,
(ii) the events with m > 2, and (iii) the fluorescence crosstalk events. The results after
charge-sharing correction (CSC) for both LF/HF-CZT detectors are presented in Figure 9.
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Figure 8. The results of a 2D synchrotron X-ray mapping of the small 250 µm array at 40 keV, for
(a) the LF-CZT and (b) HF-CZT detectors. The changes in the photopeak energy are confined near
the inter-pixel gaps because of charge-sharing effects, which are more severe for the LF-CZT detector.
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Figure 9. Spectroscopic results after the correction of the charge-sharing and fluorescence crosstalk
events (after CSC). The raw energy spectra (black lines) and the corrected spectra (blue lines) for
(a), (c) the LF-CZT and (b), (d) HF-CZT detectors are shown. The energy resolution of the HF-CZT
detector was slightly improved after correction.

As is clearly shown, the shared events are aptly detected and corrected in both de-
tectors. However, while the raw and corrected spectra for the LF-CZT detector have the
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same energy resolution (1.8 keV FWHM at 59.5 keV), improvements in the energy reso-
lution (1.4 keV versus 1.8 keV FWHM at 59.5 keV) characterize the corrected spectra for
the HF-CZT detector. This result highlights the better collection properties of the HF-CZT
detectors near the gaps between the pixels.

4. Conclusions

The spectroscopic performance and the charge-sharing properties of low-flux LF-THM
CZT and high-flux HF-THM CZT pixel detectors are presented. The detectors, characterized
by the same geometrical layout, allow high-bias voltage operation (5000 V/cm) and similar
performances, with interesting room-temperature energy resolutions from <2 keV FWHM
up to 122 keV. Despite the same charge-sharing percentages between the pixels, different
charge-collection properties in sharing events are observed, highlighted by the presence
of different energy deficits in the spectra after CSA. The HF-CZT detectors show fewer
energy deficits after CSA, due to their better charge-collection properties near the inter-pixel
gap, as confirmed by the micro-scale X-ray mapping. These results can be justified by
the presence of a better electric field line distribution near the inter-pixel gap in HF-CZT
detectors. Finally, the result of our successful correction of these energy deficits in both
detectors is presented. This shows dramatic improvements in both the energy recovery and
the energy resolution for HF-CZT pixel detectors.
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