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Abstract: Soil moisture content (SMC) plays an essential role in geoscience research. The SMC can
be retrieved using an artificial neural network (ANN) based on remote sensing data. The quantity
and quality of samples for ANN training and testing are two critical factors that affect the SMC
retrieving results. This study focused on sample optimization in both quantity and quality. On
the one hand, a sparse sample exploitation (SSE) method was developed to solve the problem of
sample scarcity, resultant from cloud obstruction in optical images and the malfunction of in situ
SMC-measuring instruments. With this method, data typically excluded in conventional approaches
can be adequately employed. On the other hand, apart from the basic input parameters commonly
discussed in previous studies, a couple of new parameters were optimized to improve the feature
description. The Sentinel-1 SAR and Landsat-8 images were adopted to retrieve SMC in the study
area in eastern Austria. By the SSE method, the number of available samples increased from 264 to 635
for ANN training and testing, and the retrieval accuracy could be markedly improved. Furthermore,
the optimized parameters also improve the inversion effect, and the elevation was the most influential
input parameter.

Keywords: soil moisture content; artificial neural network; sample optimization; synthetic aperture
radar; optical remote sensing image

1. Introduction

The soil moisture content (SMC) refers to the volume of water present in the gaps
between surface soil granules. The SMC is a critical parameter for investigating and pre-
dicting the factors associated with climate change. It also plays a key role in various fields
of science such as ecology, hydrology, and agriculture [1–3]. However, the measurement
and acquisition processes of SMC are pretty challenging. Although conventional measure-
ment methods, such as time-domain reflectometry and gravimetric technique, may yield
relatively precise SMC values at monitoring sites, they can hardly provide soil moisture
information in the case of large areas, making it difficult to describe the spatial heterogene-
ity pattern of soils. In addition, such field measurements require a considerable workforce
and lead to the deterioration of the local soil environment [4]. Remote sensing (RS) tech-
niques have been rapidly developed in recent decades, featuring fast data acquisition and
low effort consumption in their application to land surface investigation. Among other
RS techniques, synthetic aperture radar (SAR) has been proven to be promising. Apart
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from such optical sensors, the SAR can collect ground surface information even at night
and under cloudy weather conditions. The competitive penetrating power and the direct
relationship between SMC and the SAR observations also make the estimation of SMC
much more reliable [5]. Researchers have fully exploited this advantage; therefore, the SAR
has been extensively employed for SMC retrieval [6–9].

Regarding microwave data, theoretical and semi-empirical models have been estab-
lished for SMC estimation, such as the integral equation model (IEM) [10], advanced
integral equation model (AIEM) [11], Oh model [12], Dubois model [13], Michigan mi-
crowave canopy scattering model (MIMICS) [14], water-cloud model (WCM) [15], and
tau–omega model [16]. In applying these microwave models, considering the impact of
land surface vegetation on microwave RS data [17], the effect of vegetation should be
accurately quantified for a more precise SMC estimation. Because optical RS data are more
sensitive to land surface vegetation, the combination of optical and microwave detection has
emerged as an intuitive approach. Instead of deploying a single model for SMC retrieval,
researchers have attempted to modify the original models by integrating them with optical
information, hence carrying out tasks such as synergistic SMC inversion using both optical
and SAR images [18–21]. Zhang et al. [22] built a radar backscattering coefficient database
based on advanced integral equation model (AIEM) simulation, eliminated the vegetation
effect using the WCM, and acquired the SMC by minimizing the difference between the
observed bare soil backscattering coefficient and the simulated one. Han et al. [23] put
forward a model-coupling method using GF-3 and GF-1 data by incorporating a series of
models and achieved high-precision soil moisture mapping. Khabazan et al. [24] compared
the capabilities of the IEM, Oh model, and Dubois model for surface soil moisture retrieval
with C-band and L-band data to analyze the different conditions of vegetation land cover
systematically. Overall, the application of theoretical and semi-empirical models can help
represent the physical transmission processes more accurately. However, there are evident
drawbacks. Most of the models stated above have complex structures and variables. Deter-
mining the values of some of these variables, such as the surface roughness and vegetation
water content, requires laborious field experiments, and precise outcomes can hardly be
ensured [23,25].

As a non-linear empirical model, the artificial neural network (ANN) can build an
implicit relationship between input data and output targets, and it has been proven effective
for SMC retrieval [26]. Studies on SMC estimation using ANNs with microwave and optical
RS data have been conducted. For example, Baghdadi et al. [27] combined Radarsat-2
and Landsat data and inputted them to an ANN for simultaneous SMC and leaf area
index estimation; the merits and demerits of radar data in dual- and full-polarization
modes were also highlighted. El Hajj et al. [28] mainly focused on agricultural areas and
depicted high-resolution SMC maps of bare and vegetation-covered farmlands using the
backscattering coefficient and normalized difference vegetation index (NDVI) as input
parameters. El Hajj et al. [29] combined “vegetation descriptors” derived from optical
images and backscattering coefficients as ANN training and testing samples, and three
different inversion configurations were compared in terms of their performances.

As we know, samples are the key elements of ANN. To obtain ideal retrieval results,
both the quantity and quality of the samples for ANN training and testing should be
guaranteed. That is to say, not only should the sample pool be large enough, but also
the input parameters of the samples should be inclusive of the features that are helpful
to accurate SMC retrieval. As for the quantitative optimization, sufficient samples are
conducive to improving the training accuracy and representing various geographical
situations [30–32]. In many previous studies, when choosing samples, it was often required
that the data of each monitoring site in the entire research area be “complete” at one specific
time, entailing remote sensing images and in situ measurements of sound quality [28,33–35].
However, such conditions are hard to meet.

For one thing, the use of optical images is associated with contamination from clouds,
thick fogs, and mists [36], which may lead to a shortage of optical RS data. For another,
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there are temporal discrepancies between in situ measurements in a study area because
instrument malfunctions make it impossible to acquire data of some parts of the monitoring
sites in specific periods, which may also lead to the shortage of in situ data [37]. Therefore,
gathering enough samples for ANN training and testing is difficult. As for qualitative
optimization, it is of importance to determine the input parameters of ANN. In previous
studies, some common variables, including the radar incidence angle, VH/VV backscat-
tering coefficients, and NDVI, were investigated about the effectiveness of being used as
inputs of the ANN for SMC retrieval [27,33]. In fact, in addition to these commonly consid-
ered ones, variables about other factors, such as local land use, topography, and phenology,
can also be influential in local soil moisture and deserve to be given close attention.

To address the problem of quantitative optimization, a novel sparse sample exploita-
tion (SSE) method was proposed, whereby a part of the samples that were otherwise
excluded could be sufficiently utilized and incorporated into the SMC retrieval proce-
dure. To address the problem of qualitative optimization, we extended the array of input
parameters of ANN for SMC retrieval. Apart from the radar incidence angle, VH/VV
backscattering coefficients and NDVI, which were included in this paper as the basic input
parameters, parameters such as LST, land cover type, elevation, slope, and data acquisition
time, are likewise considered as the inputs of ANN in this paper. The sensitivity of SMC
retrieval to these parameters was discussed.

The rest of this paper is organized as follows. In Section 2, the study area and raw
data involved in this study are introduced in detail. In Section 3, the methodology of the
SSE is described, the array of input parameters is specified, and the entire ANN-based
SMC retrieval process is demonstrated. In Section 4, the results are discussed regarding
the retrieval accuracy improvement brought by the SSE and the respective influences of
the ANN input parameters and their combinations on SMC retrieval. Finally, Section 5
presents the conclusions drawn from the study results.

2. Study Area and Dataset
2.1. Study Area and Ground Truth Data

The study area is located in the eastern part of Austria (Figure 1). Compared with the
Eastern Alps region in the middle and west of the country, the topography in the study
area is flatter, but hilly terrain still exists. The winter is often cold, but temperatures can
be relatively high in summer, and the continental climate features dominate, thus, the
precipitation tends to be low [38]. The ground surface is prevalently covered by vegetation,
and land use types mainly comprise cropland, forest, and grassland. The croplands are
rainfed, and the staple crops are wheat and corn. Closed forests feature in the study area,
with the fractional vegetation cover (FVC) > 0.4. The principal tree species contain oak,
hornbeam, and beech. As for the hydrological conditions, surface water in this region is
closely related to the groundwater [39].

Ground truth data come from The International Soil Moisture Network (ISMN), which
was implemented in 2009 aiming exclusively to validate and calibrate SMC retrieval with
RS techniques. The data are qualitatively controlled after collecting them from the networks
and then distributed on the website portal (https://ismn.geo.tuwien.ac.at/, accessed on
20 January 2022) [40,41]. This study selected monitoring sites from WEGENERNET and
GROW, two soil moisture networks in Austria. The WEGENERNET network is situated
in Styria State with nine monitoring sites, and the GROW network is located in Lower
Austria State with 13 monitoring sites. WEGENERNET is a durable network with relatively
continuous SMC data acquisition dating from 2007. We adopted data from January 2016 to
May 2020 for our research. In contrast, for GROW, the data were available only between
May 2017 and June 2019 in an intermittent manner. The SMC data at a depth of 0–5 cm
was chosen considering the detecting ability of remote sensing techniques used in this
study. Table 1 shows the coordinates (latitude and longitude), the network, and each site’s
land cover type. As the ground truth data, the SMC observations were recorded with

https://ismn.geo.tuwien.ac.at/
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acquisition times in accordance with the corresponding acquisition times of the SAR images
(described below).

Table 1. Information of monitoring sites in the study area.

# Lat. and
Long. Network Landcover # Lat. and

Long. Network Landcover

1 46.91691◦ N
15.78112◦ E WEGENERNET farmland 12 48.15202◦ N

15.15303◦ E GROW farmland

2 46.97232◦ N
15.81499◦ E WEGENERNET farmland 13 48.15257◦ N

15.15104◦ E GROW farmland

3 46.99726◦ N
15.85507◦ E WEGENERNET farmland 14 48.15356◦ N

15.14857◦ E GROW farmland

4 46.98299◦ N
15.87115◦ E WEGENERNET farmland 15 48.15403◦ N

15.15299◦ E GROW farmland

5 46.93296◦ N
15.90710◦ E WEGENERNET farmland 16 48.15474◦ N

15.14844◦ E GROW farmland

6 46.93291◦ N
15.92462◦ E WEGENERNET grassland 17 48.15562◦ N

15.14804◦ E GROW farmland

7 46.97970◦ N
15.94122◦ E WEGENERNET grassland 18 48.15645◦ N

15.14799◦ E GROW farmland

8 46.92135◦ N
16.03337◦ E WEGENERNET farmland 19 48.15709◦ N

15.13658◦ E GROW farmland

9 46.93427◦ N
16.04056◦ E WEGENERNET farmland 20 48.15725◦ N

15.15149◦ E GROW farmland

10 48.15117◦ N
15.15417◦ E GROW farmland 21 48.15804◦ N

15.14731◦ E GROW farmland

11 48.15179◦ N
15.15424◦ E GROW farmland 22 48.18776◦ N

15.98071◦ E GROW grassland

Figure 1. Location of the study area and monitoring sites.

2.2. Remote Sensing Data

The optical RS data employed in this study was obtained by the Landsat-8 satellite.
Onboard the Landsat-8 satellite were two sensors, namely operational land imager (OLI)
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and thermal infrared sensor (TIRS), which help obtain multi-band data in the form of
visible and infrared spectra with a fine resolution. We chose Landsat-8 images considering
the synchronization of optical and land surface temperature data. The Landsat-8 images
were utilized to extract optical data and calculate land surface temperature by the thermal
infrared band. In this study, OLI-TIRS Level-1 images, downloaded from the United States
Geological Survey (USGS) data archive (https://earthexplorer.usgs.gov/, accessed on
20 January 2022), were selected. The span period was from January 2016 to April 2020,
and the spatial resolution of the images was 30 m. Based on the method described in
Section 3.1, images were selected as long as they covered at least one monitoring site that
was clear and without cloud obstruction on the date of image acquisition. The optical
RS data were then subject to preprocessing procedures, including radiometric correction,
FLAASH atmospheric correction, and band calculation. Finally, the NDVI and LST values
in the monitoring sites were derived and recorded.

The microwave RS data employed in this study came from the Sentinel-1 satellite.
Sentinel-1 provides VH and VV polarization modes C-band images with relatively high
spatiotemporal resolution and radiometric accuracy. The imaging data played a crucial part
in dynamic hydrological processes and SMC monitoring [42–46]. Here, the interferometric
wave (IW) mode images were utilized with a spatial resolution of 10 m and a revisit period
of 6 days. The images were downloaded from https://search.asf.alaska.edu/ (accessed
on 20 January 2022) by courtesy of the Alaska Satellite Facility (ASF). We chose Sentinel-1
images of the study area based on their acquisition times to ensure that the radar and optical
data were approximately synchronous in pairs. The temporally nearest microwave image
was selected for each optical image collected already. It was confirmed that the acquisition
times of the microwave images were less than five days away from the acquisition times of
their optical counterparts. Furthermore, we checked the intervals between the acquisition
times of each microwave image and their corresponding optical image to ensure that no
precipitation event had occurred during the gaps. Subsequently, the microwave images
underwent preprocessing as well. The preprocessing procedures included multi-looking,
filtering, topographical correction, geocoding, and radiometric calibration. Finally, the
backscattering coefficients in the VH and VV polarization modes of each monitoring site
were derived, and the radar incidence angles were recorded.

Table 2 shows the acquisition times of the RS data used in this study. The dates of the
radar and optical images were given in pairs.

Table 2. Acquisition times of RS images used in the study.

# Dates of
Radar Images

Dates of
Optical Images # Dates of

Radar Images
Dates of

Optical Images # Dates of
Radar Images

Dates of
Optical Images

1 18 January 2016 18 January 2016 24 24 June 2017 22 June 2017 47 3 February 2019 4 February 2019
2 26 January 2016 27 January 2016 25 31 July 2017 31 July 2017 48 27 February 2019 27 February 2019
3 30 March 2016 31 March 2016 26 11 August 2017 9 August 2017 49 23 March 2019 24 March 2019
4 18 April 2016 16 April 2016 27 4 November 2017 4 November 2017 50 30 March 2019 31 March 2019
5 23 April 2016 23 April 2016 28 20 November 2017 20 November 2017 51 16 April 2019 16 April 2019
6 4 July 2016 5 July 2016 29 5 December 2017 6 December 2017 52 27 April 2019 25 April 2019
7 12 July 2016 12 July 2016 30 24 February 2018 24 February 2018 53 2 May 2019 2 May 2019
8 23 July 2016 21 July 2016 31 21 April 2018 22 April 2018 54 18 May 2019 18 May 2019
9 29 August 2016 29 August 2016 32 28 April 2018 29 April 2018 55 3 June 2019 3 June 2019

10 22 September 2016 23 September 2016 33 31 May 2018 31 May 2018 56 14 June 2019 12 June 2019
11 29 September 2016 30 September 2016 34 2 July 2018 2 July 2018 57 19 June 2019 19 June 2019
12 16 October 2016 16 October 2016 35 18 July 2018 18 July 2018 58 27 June 2019 28 June 2019
13 1 November 2016 1 November 2016 36 26 July 2018 27 July 2018 59 4 July 2019 5 July 2019
14 9 November 2016 10 November 2016 37 2 August 2018 3 August 2018 60 14 August 2019 15 August 2019
15 3 December 2016 3 December 2016 38 19 August 2018 19 August 2018 61 2 September 2019 31 August 2019
16 14 December 2016 12 December 2016 39 30 August 2018 28 August 2018 62 8 October 2019 9 October 2019
17 20 January 2017 20 January 2017 40 19 September 2018 20 September 2018 63 20 October 2019 18 October 2019
18 5 February 2017 5 February 2017 41 28 September 2018 29 September 2018 64 1 November 2019 25 October 2019
19 9 March 2017 9 March 2017 42 6 October 2018 6 October 2018 65 5 January 2020 6 January 2020
20 2 April 2017 3 April 2017 43 22 October 2018 22 October 2018 66 9 March 2020 10 March 2020
21 9 April 2017 10 April 2017 44 30 October 2018 31 October 2018 67 2 April 2020 2 April 2020
22 27 May 2017 28 May 2017 45 11 November 2018 7 November 2018 68 10 April 2020 11 April 2020
23 13 June 2017 13 June 2017 46 15 November 2018 16 November 2018 69 26 April 2020 27 April 2020

https://earthexplorer.usgs.gov/
https://search.asf.alaska.edu/
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2.3. Auxiliary Data

The auxiliary data contained a digital elevation model (DEM) and land cover prod-
uct. This study used DEM from Shuttle Radar Topography Mission (SRTM) downloaded
from the USGS website (http://gdex.cr.usgs.gov/gdex/, accessed on 20 January 2022).
The slope data were then derived from DEM using the “Slope” tool integrated into the
ArcMap 10.5 software. Both the elevation and slope of each monitoring site were extracted
and recorded. We obtained land cover data referring to “Global Land Cover with Fine
Classification System at 30 m” (GLC_FCS30) downloaded from http://data.casearth.cn/
(accessed on 20 January 2022). The land cover types of the monitoring sites were collected.
Because of the evident attenuation effect of dense vegetation canopies on C-band radar
backscattering [47,48], we eliminated the monitoring sites located in the forests. Consid-
ering the subsequent operations of ANN training and testing, the land cover types were
transformed into numerical data. “Cropland” and “Grassland” were substituted with “1”
and “2,” respectively.

2.4. Sample Pool

After the processing procedures, the data were used to form a collection of samples.
If one monitoring site had “complete” data on one particular date, with optical RS data,
microwave RS data, auxiliary data, and in situ SMC measurement all accessible, then the
corresponding sample will be assembled. Each sample can be considered a 10-dimensional
vector, comprising 9 parameters derived from RS and auxiliary data and one ground-truth
SMC observation (specified below in Section 3.2). The samples were placed in the sample
pool (635 in aggregate) and ready to be designated as training/validation/testing datasets
in the subsequent ANN training and testing processes.

3. Methodology
3.1. Sample Quantity Optimization: Sparse Sample Exploitation

In this section, the SSE method is put forward in detail. In essence, the SSE is a sort
of data expansion technique over the time scale. By taking full advantage of the available
images and observations, it manages to gather more samples derived over a wider time
frame, thereby transferring more valuable information into the sample pool, and helping to
accomplish SMC retrieval with higher precision. Briefly, the SSE involves 2 steps:

1. For dates when the sky above the study area is clear and no in situ observation is
absent, all the samples are recorded in the sample pool.

2. For dates when the study area is partially blocked by clouds or in situ observations
are absent, the “sparse samples” with available optical, microwave data, and ground
truth observations are recorded similarly in the sample pool.

To illustrate this method straightforwardly, we take Figure 2 as an example. In Figure 2,
the images are the optical RS images covering the region of interest on six different dates,
namely d1, d2, . . . , d6. Points A, B, C, and D denote the locations of the monitoring sites,
of which the RS data and in situ SMC observations are expected. The points in pink
indicate that in situ data are available, whereas the points in yellow indicate that in situ
data are missing.

Figure 2. Schematic of sample collection process of SSE method.

http://gdex.cr.usgs.gov/gdex/
http://data.casearth.cn/
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As for d1, the image is cloud-free, and every monitoring site has its SMC observations;
hence, the samples derived from the four sites are all valid for the sample pool. For d2 and
d3, the clouds start to interfere. For the traditional sample-picking method mentioned in
previous studies, data in these dates should be dismissed because optical RS data corre-
sponding to specific sites are unavailable, and not all sites have complete data. However, it
can be found that points such as C in the image of d2 and A and B in the image of d3 are
clear in optical RS images and can still yield complete data. The samples corresponding to
these points are designated as “sparse samples.” For the SSE method, these samples are
considered to be included in the sample pool.

Similarly, for d4, d5, and d6, when point B has no available in situ SMC observation
due to, hypothetically, instrument power failure, the data from point B are consequently
eliminated. For the traditional sample-picking method, the whole data in these dates will
again be abandoned due to the data’s incompleteness. For the SSE method, however,
because samples can still be formed from the complete data of points A, C, D on date d4
and D on date d5, these samples are thus collected in the sample pool. On date d6, no
sample can be collected.

Table 3 lists the comparison of sample selection via the traditional and SSE methods.
It is evident that for the traditional method, the quantity of samples is severely limited,
owing to the requirement of data completeness in the entire study area when collecting
samples. Therefore, the samples from the four points in d1 will be the only valid ones. In
contrast, the SSE method manages to enlarge the sample pool by making full use of the
sparse samples. In this study, a total of 635 samples can be collected by the SSE method, but
only 264 out of the 635 samples can be collected if the traditional method is implemented.

Table 3. Comparison of samples selection via traditional method and SSE method based on Figure 2.

Date d1 d2 d3 d4 d5 d6

traditional
method ABCD - - - - -

SSE method ABCD C AB ACD D -

3.2. Sample Quality Optimization: Input Parameter Selection

For more accurate SMC retrieval results, the combination of inputs of the ANN is
supposed to contain enough variables to represent the main features [32]. In addition to
these commonly discussed parameters, including radar backscattering coefficient, radar
incidence angle, and NDVI, some other SMC-related variables, such as data acquisition time,
land surface temperature, elevation, slope, and the land cover type, are worth considering
as well.

1. Data acquisition time: the data acquisition time was strongly correlated to the surface
soil hydraulic conductivities [49]. Meanwhile, the phenological traits of vegetation
follow a circulation of alteration on an annual basis [50,51], which plays an essential
role in vegetation effect elimination during the process of SMC retrieval in vegetation-
covered areas.

2. Land surface temperature (LST): previous studies have proven the correlation of
variation between the SMC and temperature vegetation dryness index (TVDI) [52,53].
The synergy of LST and vegetation indices (such as NDVI) on SMC retrieval has also
been stressed [54–56].

3. Elevation and slope: soil moisture was closely related to the local topographical
heterogeneity. The landscape shapes physically controlled the hydrological processes
and SMC time stability [57,58], with upland water moving to the groundwater and
lowland water coming from the groundwater, and water content increasing from the
top to the bottom of a slope in a non-linear pattern [59,60].

4. Land cover type: the land use was analyzed as a factor influencing soil hydraulic
attributes and SMC distribution. For example, human activities such as grazing,
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plowing, and urban development impact the macropores and the continuity of the
macropore network of soil, thus altering the mode of local soil water supply and SMC
distribution [49,61].

By referring to these existing studies, we here selected 9 parameters derived from
the RS and auxiliary data, namely the data acquisition time (month), radar incidence
angle (θ), VH backscattering coefficient (σVH), VV backscattering coefficient (σVV), NDVI,
LST, elevation, slope, and land cover type, as inputs of the ANN. The acquisition of the
parameters was explained in the previous sections, and we introduced the ordinal number
of the data acquisition month to present the data acquisition time for the ANN calculations.

Furthermore, to investigate the effects of the input parameters and their combinations
on SMC retrieval, a total of 7 scenarios were considered, as shown in Table 4. In Scenario 0,
all the 9 parameters were taken into account; in Scenario 1, the 4 commonly discussed
parameters, i.e., θ, σVH, σVV, and NDVI, were included as the basic inputs; in Scenario 2–6,
the other 5 parameters were added individually into the basic input parameters. By
comparing the SMC retrieving results of these scenarios, the sensitivity of SMC to specific
input parameters was assessed and analyzed.

Table 4. Scenarios of input parameter combinations for ANN SMC retrieval.

Scenario Input Parameters

0 θ, σVH, σVV, NDVI, month, LST, elevation, slope, land cover
1 θ, σVH, σVV, NDVI
2 θ, σVH, σVV, NDVI, month
3 θ, σVH, σVV, NDVI, LST
4 θ, σVH, σVV, NDVI, elevation
5 θ, σVH, σVV, NDVI, slope
6 θ, σVH, σVV, NDVI, land cover

3.3. ANN and SMC Retrieval

After selecting data using the SSE method and determining input parameters, a group
of samples was obtained. The ANN approach was then adopted to retrieve the SMC. The
ANN is the abstraction of the neural network of human brains from the perspective of
data processing. With the nodes of neurons connected sequentially, the ANN is organized
into a layered structure. As the data are inputted to the ANN, neurons perform weighted
computations and pass on the results to other neurons until reaching the output layer,
which yields the final result [31,62]. In terms of SMC estimation, the ANN approach
provides a better solution than conventional theoretical and semi-empirical models owing
to its capacity for describing non-linear relationships [63].

Moreover, the independence of the ANN from a priori knowledge and radiative
transfer information relieves the estimation process of explicit physical mechanism and
complicated parameters, and the parameters or combinations involved can be more flexi-
ble [64,65]. Figure 3 shows the flowchart of the SMC retrieval process developed in this
study, with all 9 input parameters mentioned above utilized. Here, a feed-forward percep-
tron model was employed, and the ANN has a 3-layer structure comprising input, hidden,
and output layers.
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Figure 3. Flowchart of the SMC retrieval by ANN.

The number of neurons in the hidden layer is another essential characteristic. Too few
or too many neurons may lead to underfitting or overfitting, thus affecting the accuracy of
SMC retrieval [66]. In this study, 10 neurons were contained in the hidden layer, determined
through a trial-and-error method. The SMC ground-truth observations were set as outputs.
Next, both the inputs and outputs were normalized to 0 to 1 based on their respective range
of values. The normalization procedure can improve the training speed and help prevent
the outcomes from getting stuck in local minimums to a certain extent [66].

The samples in the sample pool were randomly partitioned into training, validation,
and testing datasets in proportions of 80%, 10%, and 10%, respectively, for the following
ANN training and testing. The purpose of ANN training was to iteratively modify the
weights of correlation between the inputs and outputs thus that the differences can be mini-
mized. The training process was accomplished with training samples as well as validation
samples. The validation samples here were aimed at ensuring the generalization capacity
of the ANN and avoiding overfitting during the training process [64]. The Levenberg–
Marquardt method was chosen as the training algorithm. This method provides an optimal
solution for a certain minimizing problem [67]. Numerous iterations were conducted in
search of an optimal solution during the training process, and the maximum number of
iterations was set as 1000. The training process was stopped either when the generalization
capacity of the ANN began to level off, which indicates that more training processes cannot
improve the accuracy, or when the maximum number of iterations was reached. The testing
process was performed with the testing samples by comparing the ground truth SMC with
the estimated SMC derived from the corresponding inputs using the trained ANN. The
training and testing processes were conducted in MATLAB, and the well-trained ANN was
deployed for SMC mapping in the entire study area.

3.4. Statistical Metrics

The retrieval accuracy was evaluated using 2 statistical metrics: the root-mean-square
error (RMSE) and the correlation coefficient (r), which can be expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(
SMCi − ˆSMCi

)2 (1)
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r =
∑n

i=1
(
SMCi − SMC

)( ˆSMCi − ˆSMC
)

√
∑n

i=1
(
SMCi − SMC

)2
√

∑n
i=1

(
ˆSMCi − ˆSMC

)2
(2)

where SMCi and SMC represent the ith sample’s ground-truth and mean ground-truth
SMC values of the relevant samples; ˆSMCi and ˆSMC represent the ith sample’s estimated
SMC value and the mean estimated SMC values of all the relevant samples, respectively.
The RMSE and r were calculated based on the training, validation, and testing results.

4. Results and Discussion
4.1. Evaluation of Overall Accuracy

First, the overall accuracy of the ANN was evaluated. All the 635 samples were used
and divided into training, validation, and testing datasets. The training/testing process
was conducted once, with all nine parameters being involved as the inputs of the ANN
(Scenario 0 in Section 3.2). Figure 4 shows the scatter plots of the SMC estimation results for
the training, validation, testing datasets, and the entire samples. The correlation coefficient
(r) values were also given above each plot. The results were promising, with the testing
dataset r and overall r reaching 0.85. Table 5 shows the corresponding RMSE values, which
seem favorable, with RMSE values of 0.048 m3m−3, 0.054 m3m−3, and 0.052 m3m−3 on the
training, validation, and testing datasets, respectively. The ground-truth SMC values range
from 0.024 to 0.477 m3m−3 with an average value of 0.336 m3m−3, whereas the estimated
SMC values ranged from 0.039 to 0.470 m3m−3 with the average value of 0.335 m3m−3.
In comparison with the work conducted by Alexakis et al. [33], our study quantitatively
expanded the sample pool and qualitatively improved the accuracy of SMC retrieval, with
the testing dataset r rising from 0.508 to 0.848 and the overall r rising from 0.803 to 0.850.

Figure 4. Scatter plots of SMC estimations for training (a), validation (b), testing dataset (c), and the
entire samples (d). Corresponding correlation coefficients are placed above each plot.
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Table 5. RMSE values on training, validation, and testing datasets.

Dataset Training Validation Testing

RMSE (m3m−3) 0.048 0.054 0.052

4.2. Evaluation of SSE Method

The effectiveness of the proposed SSE method was evaluated by comparing the SMC
retrieval results with and without sparse sample exploitation. Concerning the study
by Holtgrave et al. [68], considering that different schemes of the random division of
training/validation/testing datasets might give rise to different SMC retrieval outcomes,
we repeated the ANN training/testing process 50 times to assess the average SMC retrieval
performance. Since the accuracy of the testing datasets was more worthwhile in terms of
the ANN performance, only the statistical metrics on the testing datasets were discussed
in the remainder of the paper. Similarly, all nine parameters were set as the inputs of the
ANN (Scenario 0 in Section 3.2). Table 6 lists the average RMSE and r values on the testing
datasets for SMC retrieval with and without the SSE method.

Table 6. Statistical metrics on testing dataset for SMC retrieval with and without the SSE method.

Without SSE With SSE

RMSE (m3m−3) 0.090 0.068
r 0.635 0.736

The results indicate a striking increase in the SMC retrieval accuracy when introducing
the SSE method, with the RMSE decreasing from 0.090 m3m−3 to 0.068 m3m−3 and r
increasing from 0.635 to 0.736. The main reason could be the efficient utilization of the
dismissed samples in the images where optical or in situ data were partially missing,
and the sample pool could consequently be expanded. For the empirical SMC retrieval
methods, such as ANN, large samples were required during the training process. Thus, the
precise relationship between the inputs and outputs could be established [69]. Although
the SSE did not conventionally ensure that all the monitoring sites had identical time
series of data acquisition, it nonetheless enlarged the sample capacity by gathering more
samples derived over a broader period. Meanwhile, the information provided by these
samples could be made full use of, and the features of the training dataset were enriched,
consequently enhancing the representativeness of the samples as well as the stability of the
ANN. Therefore, the training precision of the ANN was improved.

4.3. Sensitivity Analysis of Input Parameters

As mentioned in Section 3.2, several scenarios were considered for the sensitivity
analysis of different input parameters. Table 7 shows scenarios 1–6 of input parameter
combinations and their statistical metrics for SMC retrieval. During the sensitivity analysis,
all the 635 samples were employed. Similarly, the ANN training/testing process was
repeated 50 times after random divisions of each scenario’s training/validation/testing
datasets. The mean statistical metrics on the testing dataset representing the average
performances were evaluated. As listed in Table 7, the first scenario was the combination
of basic input parameters, including the VH/VV backscattering coefficients, NDVI, and
radar incidence angle. For the rest of the scenarios, the data acquisition time, LST, elevation,
slope, and land cover were added individually to the basic combination.
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Table 7. Scenarios of different input parameter combinations and corresponding performances of
SMC retrieval. Ticks indicate that the parameters are chosen as input scenarios systems.

Scenarios

Input Parameters Statistical Metrics

Month σVH σVV NDVI LST Elevation Slope Land
Cover θ

RMSE
(m3m−3) r

1
√ √ √ √

0.089 0.588
2

√ √ √ √ √
0.078 0.637

3
√ √ √ √ √

0.084 0.616
4

√ √ √ √ √
0.070 0.689

5
√ √ √ √ √

0.083 0.639
6

√ √ √ √ √
0.091 0.599

4.3.1. Data Acquisition Time

Comparing scenarios 1 and 2: after the data acquisition time (i.e., the data acquisition
month in this study) was added as the input parameter, r increased from 0.588 to 0.637, and
RMSE declined from 0.089 m3m−3 to 0.078 m3m−3.

The influences of adding data acquisition time on each sample were investigated for
further analysis. For each sample participating in SMC retrieval, “accuracy improvement.”
Ii was proposed with the expressions below:

Ii = εibasic
− εinew (3)

εi_basic =
|SMCi − SMCi_basic|

SMCi
× 100% (4)

εi_new =
|SMCi − SMCi_new|

SMCi
× 100% (5)

where SMCi denotes the ground-truth SMC of the ith sample, SMCi_basic denotes the
estimated SMC of the ith sample with only basic input parameters as the ANN inputs, and
SMCi_new denotes the estimated SMC of the ith sample with a new parameter incorporated
into the basic ones as the ANN inputs. εi_basic and εi_new denote the corresponding relative
errors of the ith sample. Ii, the value of accuracy improvement is the difference between
the two errors. When Ii is positive, it means that the error of SMC retrieval with the new
input parameter is lower than that of SMC retrieval by basic input parameters, indicating
a real accuracy improvement of SMC retrieval; conversely, when Ii is negative, it means
adding the new input parameter in the ANN brings about a worse result. In addition, I
was used to denote the average accuracy improvement of corresponding i samples:

I = ∑
i

Ii (6)

Table 8 lists the results of accuracy improvement of SMC retrieval by adding data
acquisition time as the input parameter. Because of the distinctive phenological pattern
of cropland, we paid extra attention to the cropland samples. For all 635 samples, the
number of samples with Ii > 0 reached 372. Among these samples, 287 were cropland
samples, accounting for 77.2%. As for I, the average accuracy improvement of all samples
was 6.64%, whereas for cropland samples, the I was 5.66%, accounting for 85.2% of the
total gain. These results indicate that the addition of data acquisition time as the input
parameter improves the SMC retrieval performance of cropland samples, thus driving up
the retrieving accuracy of the entire samples.
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Table 8. Accuracy improvement by adding data acquisition time over total samples and cropland
samples.

Of All Samples Of Cropland
Samples

Percentage of
Cropland Samples

number of samples with Ii > 0 372 287 77.2%
I 6.64% 5.66% 85.2%

In fact, the season or data acquisition time was strongly correlated to the plant growth
condition and the corresponding SMC ground-truth data in the vegetation-covered regions.
Here, we chose three monitoring sites of which the SMC observations were continuous
and long-lasting, and the SMC time series are displayed in Figure 5. These SMC time
series generally present a periodic pattern of annual variation, respectively. For site #5,
SMC observations are high in winter and spring, begin to fluctuate in summer and keep
relatively low in August and September. For site #7, the fluctuations in summer were more
drastic, and sharp declines occurred around May in three consecutive years (2016, 2017,
and 2018). For site #9, the SMC variation is not so regular; however, some annual patterns,
such as the plateaus in February and March, the significant dips after summer, and the rises
in November, are still observable.

Figure 5. Ground-truth SMC time series of some monitoring sites: (a) Site #5 (cropland), (b) Site #7
(grassland), (c) Site #9 (cropland).
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Hence, as an input parameter, the data acquisition time contributes to a more delicate
description of the vegetation phenological features, and better SMC retrieval outcomes can
thus be obtained.

4.3.2. LST

Comparing scenarios 1 and 3: The addition of LST helped increase r to 0.616 and
decrease the RMSE to 0.084 m3m−3.

Sandholt et al. [53] defined the temperature vegetation dryness index (TVDI) as:

TVDI =
LST − LSTmin

LSTmax − LSTmin
(7)

where LSTmin and LSTmax are the minimum and the maximum land surface temperatures,
respectively, corresponding to a specific NDVI value in the LST-NDVI space. The correlation
of TVDI and SMC suggests the rationality of SMC retrieval with the synergy of NDVI
and LST.

After the addition of LST as the input parameter, for those samples with positive Ii, the
scatter plot of the relationship between TVDI and ground-truth SMC is shown in Figure 6,
and the negative correlation is evident.

Figure 6. Scatter plot of the relationship between TVDI and ground-truth SMC for those samples
with positive Ii after the addition of LST as the input parameter.

Furthermore, Schmugge [70] claimed that the soil’s surface temperature was the
function of both internal and external factors. The thermal conductivity and heat capacity,
which belonged to the internal factors, both increased with the rise of SMC. As a factor
reflecting the intensity of evapotranspiration, the spatial distribution of the LST varied
significantly with the land surface water.

In this study, the ANN managed to retrieve the SMC with higher accuracy with the aid
of the LST. This result was further proof for the conclusions made in the studies mentioned
above in Section 1.

4.3.3. Elevation and Slope

Comparing scenarios 1, 4, and 5: the retrieval accuracy improved remarkably after
incorporating the elevation into the input parameter pool. The r-value increased to 0.689,
and the RMSE decreased to 0.070 m3m−3. The slope promoted accuracy, with r up to 0.639
and RMSE falling to 0.083 m3m−3.

For further explanation, the accuracy improvement of those samples improving SMC
retrieval accuracy (Ii > 0) by virtue of incorporating topographic factors is illustrated in
Figures 7 and 8. Figure 7 displays the accuracy improvement by adding elevation as the
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input parameter for different samples of elevation and slope values. In contrast, Figure 8
indicates the accuracy improvement by adding slope as the input parameter in relation to
samples of different elevation and slope values. In each figure, samples are arranged in
descending order of their corresponding Ii

Figure 7. The accuracy improvement of samples by adding elevation as the input parameter. In (a),
the samples are categorized into three groups by elevation and (b) by the slope.
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Figure 8. The accuracy improvement of samples by adding slope as the input parameter. In (a), the
samples are categorized into three groups by elevation and (b) by the slope.

It can be observed from Figures 7 and 8 that, no matter for adding elevation or
adding slope as the input parameter, samples with relatively higher elevation (>500 m) and
steeper slope (>10◦) tended to yield better accuracy improvement results, with most of the
corresponding samples gathering in the left of the figures.

Previous studies claimed that local topographical heterogeneity reinforced the varia-
tion in the soil moisture distribution. Due to gravity and overland flow, locations with a
high elevation and steep slope were more prone to SMC change. In contrast, low and flat
locations were more inclined to SMC invariability [57,58,60,71]. Analogous to these studies,
the difference in the topography of our study area was noticeable enough to impact the soil
moisture distribution as well. Therefore, taking the elevation and slope into consideration
during SMC retrieval was rational.
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4.3.4. Land Cover Type

Comparing scenarios 1 and 6: when land cover type was considered an input param-
eter, the accuracy of SMC retrieval failed to improve as expected. Despite the existing
studies emphasizing the influences of land use on SMC distribution [72,73], the outcome
of ANN-based SMC retrieval with the assistance of land cover type did not show any
improvement. The r slightly increased to 0.599, whereas the RMSE rose marginally to
0.091 m3m−3. This was probably attributed to the poor land cover categorization of the
samples. In this study, after eliminating forest, the samples merely fell into two land cover
types; in practice, the ground-truth geographical conditions of the study area could be
quite intricate. The land cover categorization could not adequately improve the accuracy of
SMC retrieval, and a refined land cover map was required.

4.4. SMC Mapping

Figure 9 shows the map of the SMC retrieval outcome at a depth of 5 cm for the study
area on 6 October 2018. Considering the representativeness of the training samples, regions
of forests and high elevation (>500 m) were masked. In addition, the water bodies and
residential areas where no soil existed were masked as well. The gray patches indicate
masked regions. The soil moisture distribution was visually plausible based on the map,
with shades of blue and green (high SMC) mainly representing cropland and grassland,
while red or yellow ones (low SMC) representing relatively bare land.

Figure 9. Volumetric SMC mapping of the study area.

5. Conclusions

An ANN approach for SMC retrieval using microwave RS data (Sentinel-1 SAR images)
and optical RS data (Landsat-8 images) was demonstrated, and a novel SSE methodology
was proposed. With the SSE, the problem of data deficiency due to cloud contamination
in optical images and in situ instrument malfunction was resolved. Complete data were



Sensors 2022, 22, 1611 18 of 21

fully utilized in the ANN training/testing procedure, and the enlarged sample pool was
beneficial to SMC retrieval with high precision.

The sample volume could be increased from 264 to 635 by the SSE, and the SMC
retrieval accuracy was significantly enhanced. Regarding the average statistical metrics
corresponding to 50 ANN training/testing iterations, r increased from 0.635 to 0.736, and
the RMSE decreased from 0.090 m3m−3 to 0.068 m3m−3.

A couple of variables were newly considered about the inputs of ANN for SMC
retrieval. As for the sensitivity analysis of the ANN inputs, the parameters, such as the
elevation, slope, data acquisition time, LST, and the land cover type, influenced the SMC
retrieval accuracy to varying degrees. Among these parameters, the elevation had the
most significant impact on the results, as evidenced by the increase in the r-value from
0.588 to 0.689 and the decrease in the RMSE from 0.089 m3m−3 to 0.070 m3m−3. Other
parameters were also advantageous to SMC retrieval, except for the land cover type, which
barely promoted the accuracy due to the lack of refined land cover categorization. Notably,
overall, the SMC retrieval statistical metrics of Scenario 0, where all nine relevant input
parameters were considered (the situation “with SSE” discussed in Section 4.2), proved to
be much more favorable than those of the scenarios analyzed in Section 4.3. This signifies
that, to some degree, more relevant input parameters tend to improve retrieval accuracy.

The study results show that SSE is a promising method for ANN-based SMC retrieval.
However, certain limitations need to be addressed. Because study areas overseas are
beyond our reach and field surveys on topography and land cover are challenging to
implement, the inconsistency between ground truth data and RS data cannot be excluded.
The consequent biases in the SMC retrieval are inevitable. Moreover, the SMC mapping
lacks additional in situ data for further validation.

We plan to focus on sample exploitation over the spatial dimension in the future. In
other words, for study areas without sufficient samples for ANN training, synchronous data
from another site of geographical resemblance with sufficient samples will be considered
for SMC retrieval. The accuracy and conditions for the application of this method will
be investigated. Additionally, we intend to utilize state-of-the-art RS data from Chinese
satellites, such as GF-3 and GF-1, and explore their applicability in SMC retrieval problems.
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