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Abstract: We present an overview of a beam-based approach to ultra-wide band (UWB) tomographic
inverse scattering, where beam-waves are used for local data-processing and local imaging, as an
alternative to the conventional plane-wave and Green’s function approaches. Specifically, the method
utilizes a phase–space set of iso-diffracting beam-waves that emerge from a discrete set of points
and directions in the source domain. It is shown that with a proper choice of parameters, this set
constitutes a frame (an overcomplete generalization of a basis), termed “beam frame”, over the entire
propagation domain. An important feature of these beam frames is that they need to be calculated
once and then used for all frequencies, hence the method can be implemented either in the multi-
frequency domain (FD), or directly in the time domain (TD). The algorithm consists of two phases:
in the processing phase, the scattering data is transformed to the beam domain using windowed
phase–space transformations, while in the imaging phase, the beams are backpropagated to the
target domain to form the image. The beam-domain data is not only localized and compressed,
but it is also physically related to the local Radon transform (RT) of the scatterer via a local Snell’s
reflection of the beam-waves. This expresses the imaging as an inverse local RT that can be applied to
any local domain of interest (DoI). In previous publications, the emphasis has been set on TD data
processing using a special class of localized space–time beam-waves (wave-packets). The goal of
the present paper is to present the imaging scheme in the UWB FD, utilizing simpler Fourier-based
data-processing tools in the space and time domains.

Keywords: inverse scattering; imaging; wave propagation; beam summation methods

1. Introduction

Inverse scattering deals with determining the shape and the composition of an un-
known object from measurements of the scattering field data due to a known illumination.
This area has a wide range of medical, geophysical, oceanographical, industrial, etc., appli-
cations, using electromagnetic, acoustic, elastic, or seismic waves [1–5]. Inverse scattering
problems are, in general, non-linear and highly ill-posed, hence accurate solutions typically
require iterative schemes and are limited to rather small configurations in the order of
wavelengths. For large domains, practical algorithms rely on linearized weak scattering
formulations using the Born, Rytov, Physical optics, or other single scattering approxima-
tions [2,5] which linearize the relation between the target and the field and provide the
basis for diffraction tomography (DT) reconstruction [6].

Inverse scattering requires diversity and relies on the wave data in hand. Depend-
ing on the application, it may involve multiple excitation frequencies (or short-pulse
response) and/or several illumination directions. With the overall complexity of the prob-
lem, full utilization of the wave data is essential to formulate an efficient, robust, and
accurate algorithm.

Beam summation (BS) methods are when the wave field is expressed as a superpo-
sition of collimated beam waves. Here, we use the generic term “beam” for both the FD
formulations where the propagators are Gaussian beams, and for the TD formulations
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where the propagators are pulsed beams. This provides the proper physical basis for such
robust DT reconstruction. Like the plane-wave (PW) spectrum approach, the BS provides a
complete spectral basis which is required for DT reconstruction, yet unlike plane-waves,
the beam waves provide spatial resolution and they can easily and efficiently be propa-
gated in inhomogeneous media along ray trajectories. Unlike rays, on the other hand, they
provide a uniform spectral basis and are insensitive to geometrical optics transition regions.
Thus, beams provide a way to convert the wave problem to a ray-based skeleton.

BS methods can be classified into two classes (see review in [7,8]). The first class
addresses radiation from localized (point) sources by expressing the field as an angular
superposition of collimated beams that emerge radially from the source. This formulation
has been derived asymptotically [9,10], but later on it was formulated as an exact spectral
identity using complex source beams [11,12] and was also extended to the time domain
(TD) [12]. Consequently, it has been used in various applications of propagation, scattering,
and inverse scattering.

The other class addresses radiation from extended (aperture) sources, where the field
is expressed as a sum of beam propagators that emerge from a discrete phase–space lattice
of points and directions in the aperture. These formulations utilize local window (e.g.,
Gaussian) functions to transform the data to the beam domain, and then propagate the
data using beams. These formulations are utilized in the present work where we analyze
the data on the measurement aperture and then backpropagate it to the scatterer domain.
Early implementation of this approach was based on a Gabor series expansion of the planar
field [13–16] and therefore suffered from two major drawbacks: (a) The Gabor expansion
coefficients (the beam amplitudes) are notoriously non-local and unstable, and (b) the beam
lattice is frequency-dependent, hence a new lattice should be calculated at each frequency.
Both difficulties have been mitigated in the ultra-wide band phase–space beam summation
(UWB-PS-BS) method [17,18] which utilizes the overcomplete windowed Fourier transform
(WFT) frames. In linear algebra, a frame of an inner product space is a generalization
of a basis of a vector space to overcomplete sets. In signal processing, frames provide a
redundant, stable way of representing a signal, instead of the Gabor series. The formulation
is structured upon a frequency independent lattice of beams that emerge from a discrete
phase–space lattice of points and directions in the aperture, and utilizes iso-diffracting
Gaussian beams (ID-GB) whose propagation parameters are frequency independent. These
properties make this representation efficient for wideband applications and also allow an
extension of the theory to the time-domain (TD) [19].

A major step forward has been the proof in [20] that these phase–space sets of beams
constitute a frame not only in the aperture domains but actually everywhere in the propa-
gation domain. This implies that these beam basis functions may be used to expand not
only the sources and the field, but also any function of space and in particular the medium
inhomogeneities, a property that is being used in our beam-based inverse scattering theory.
The theory has been proved originally in the frequency domain (FD) [20] and then extended
to the TD in [21].

As noted above, it has been recognized long ago that BS provides the proper physical
basis for a robust DT reconstruction. Examples for point-sources configurations can be
found in [22–30]. For configuration where the data is measured over a wide aperture (see
Figure 1a), it is more suitable to use the extended sources approach noted above: see [31–37]
and [38–44] for medium reconstruction over a homogenous or inhomogeneous background,
respectively. Without going into detailed comparison, the main difference between the
methods is in the data representation phase (see [42] for a detailed comparison).
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Figure 1. Diffraction tomography and the K-space diffraction tomography identity in the spatial
and spectral domains. (a) The physical configuration. The unknown object O(r) is located between
two measurement planes. At z = z1 we have an array of sources/receivers, while at z = z2 we have
an array of receivers. The object is illuminated by the plane-wave (black arrows) of Equation (3)
propagating in the direction

◦
κi. In red we plot pulsed plane-wave illumination of Equation (3).

The scattered field is measured on the zj planes. (b) The DT identity of (8). The plane-wave
spectrum of the scattered field ˆ̃us

j (ξ) is mapped to values of Ō(K) over a shifted Ewald sphere

K = k(
◦
κj −

◦
κi). The data measured on the j = 1, 2 planes are illustrated by red dashed and blue

solid-line hemispheres, respectively.

In this work we review the beam-based local inverse scattering theory derived
in [36,37], which is based on the frame-based UWB-PS-BS theory discussed above. As noted
there, the theory is structured on a frequency-independent phase–space sets of beams that
constitute frames everywhere in the propagation domain. This beam frame formulation
enables the expansion of both the medium inhomogeneities and the scattering data with the
same set of beam-basis functions, thus enabling a direct inversion over the beam domain.
In previous publications, the emphasis has been set on TD data processing using special
localized space–time beam-waves (wave-packets). This requires somewhat sophisticated
mathematics and processing tools. In the present paper, on the other hand, we utilize a
simpler FD Fourier-based data-processing approach followed by an integration over the
relevant frequency band. The paper makes extensive references to equations or figures
in [36,37]. Therefore, to simplify the presentation, we refer to them by the prefixes I and II,
respectively.

The advantages of our beam-based DT over the conventional DT approach are:

a. Data localization: The phase–space processing of the scattered data extract the local
direction of arrival. The phase space representation of the data is therefore localized
along well defined trajectories corresponding to the local direction and time of arrival
from the relevant regions in the target domain.

b. Under the Born approximation, the beam-wave scattering mechanism by the medium
inhomogeneities is described by local Snell’s reflections from the local stratification,
which is related to the local Radon transform (LRT) of the medium inhomogeneities
(Section 5 in [36]).

c. As follows from the discussion in items a and b, the phase space data is directly related
to the LRT of the medium inhomogeneities about a given region.

d. The beam-based imaging enables local imaging within a given domain of interest
(DoI) by considering only the data that correspond to beams that pass through or near
the DoI. This not only reduces the problem complexity, but also reduces the noise
level, since data and noise arriving from other regions are a priori filtered out.
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e. The beam-based imaging enables backpropagation and imaging over a non-homogeneous
background.

The presentation below starts in Section 2 with a review of the main concepts in DT.
We proceed in Section 3 by reviewing elements of the beam representation, and in particular
of the UWB-PS-BS and the BF concept. The beam-based DT is presented in Section 4, where,
as discussed above, we emphasize the multi-frequency data processing as opposed to the
more complicated TD processing used in [36,37]. The presentation ends in Section 5 with a
practical description of the algorithm, including the choice of the various parameters and
numerical examples.

2. UWB Diffraction Tomography in the Spectral Plane-Wave Domain: A Review

This section reviews the conventional plane-wave DT algorithms. Referring to the
configuration in Figure 1a, we consider the two alternative schemes: The angular diversity
scheme where the data is measured for several illumination directions

◦
κi at a given fre-

quency (Section 2.3), and the frequency diversity scheme where the data is measured over
a wide frequency band for a single illumination direction

◦
κi (Section 2.4). The frequency

diversity scheme may also be performed using a short-pulse illumination and calculated
directly in the TD [45] (see also I– Section 3-B in [36]).

2.1. Problem Description—Physical Configuration

The physical configuration is illustrated in Figure 1a, where the object is located
between two measurement planes, at z = z1 < 0 and at z = z2 > 0. We assume a 3D
coordinate frame r = (x, z) where the z-coordinate is normal to the measurement planes,
and x = (x1; x2) are the transversal coordinates. The data is collected over a wide frequency
band Ω ∈ [ωmin, ωmax]. The theory is presented here in the FD, but we also discuss the
TD formulation for completeness and clearer interpretation. Field constituents in these
domains are related via the temporal Fourier transform

û(ω) =
∫

dt u(t) eiωt, (1)

where FD constituents are tagged by an over-hat .̂
The unknown object is embedded in a uniform background wavespeed v0 and as-

sumed to be lossless and non-dispersive. It is described by the unknown wavespeed v(r),
and we define the “object function”

O(r) = (v0/v(r))2 − 1 (2)

(see Equation (7)).
The scattering data may be collected as a function of frequency using time-harmonic

plane-wave excitation, or directly in the TD utilizing short-pulse plane-wave. These
excitations are given by

ûi(r, ω) = F̂(ω)eik
◦
κi ·r, ui(r, t) = F(t− v−1

0
◦
κi · r), (3)

where F̂(ω) is the source spectrum and k = ω/v0 is the wavenumber. The incident wave
propagates in the direction

◦
κi = (ξi, ζ i) = sin θi cos φi ◦x1 + sin θi sin φi ◦x2 + cos θi ◦z, (4)

with (θi, φi) being the polar angles with respect to the z axis, and over-circles denote
unit vectors.
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The scattered fields measured over the zj planes, j = 1, 2 are denoted as ûs
j (x, ω) (see

Figure 1a). The PW spectral representation of ûs
j (r) is defined via

ˆ̃us
j (ξ) = e±ikζzj

∫
d2x ûs

j (x)e
−ikξ·x, ζ =

√
1− ξ · ξ, Im ζ ≥ 0. (5)

where lower and upper signs correspond to j = 1 and 2, respectfully. We added the e±ikζzj

phase term in (5) in order to normalize the spectral PWs to the z = 0 plane instead of z = zj
planes.

Note that we use here the frequency normalized spectral coordinates ξ = kx/k which
are related to the PW direction via ξ = (ξ1, ξ2) = sin θ(cos φ, sin φ), where (θ, φ) are the
conventional spherical angles with respect to the z-axis so that the scattered PWs propagate
in the unit vector direction

◦
κj = (ξ,∓ζ) = (sin θ cos φ, sin θ sin φ, cos θ), j = 1, 2. (6)

The spectral ranges |ξ| < 1 and |ξ| > 1 define the propagation spectrum and evanescent
spectrum, respectively. Typically, DT formulations are restricted only to the propagation
spectrum data (see discussion after Equation (9)).

2.2. The DT Identity

According to the weak scattering (first Born) approximation of the Lippmann–Schwinger
integral equation, the scattered field can be expressed as [5]

ûs(r) = k2
∫

V
d3r′ûi(r′)O(r′)Ĝ(r, r′), (7)

where Ĝ = eik|r−r′ |

4π|r−r′ | is the 3D Green’s function in the uniform background. This approxima-
tion is valid if O(r) � 1 and in addition kLOmax < 1, where L is the spatial support of O
and Omax is its maximal value.

Inserting (7) into (5) and using the spectral representation of Ĝ, we obtain (I-7),

ˆ̃us
j (ξ) '

k
−2iζ

Ō(K)
∣∣∣
K=k(

◦
κj−

◦
κi)

|ξ| < 1, (8)

where
◦
κj and

◦
κi are given by (6) and (4), and

Ō(K) =
∫

d3r O(r)e−iK·r, K = (K1, K2, Kz), (9)

is the K-space distribution of O(r). Equation (8) is referred to as the DT identity. It relates
the scattering data in the

◦
κj directions to values of Ō(K) at the points K = k(

◦
κj −

◦
κi).

As illustrated in Figure 1b, these points define a K-space sphere with radius k that is
centered at K = −k

◦
κi, which is referred to as the shifted Ewald sphere. Note from (6) that the

left and right hemispheres (plotted as red and blue, respectively) correspond to data from
the zj measurement plane with j = 1, 2, respectively.

The DT identity above applies only to the propagation spectrum |ξ| < 1. Adding
the evanescent spectrum may improve the resolution. However, the contribution of the
evanescent spectrum is exponentially weak and hence has a low signal to noise ratio. In ad-
dition, backpropagating this data to form the image amplifies the noise level exponentially.
For these reasons, the evanescent spectrum contribution is usually neglected except for
near field imaging schemes.

In view of the DT identity, one may obtain a full K−space coverage of the object
function by measuring the scattering response for several illumination directions or several
frequencies [2,5]. These alternative schemes are reviewed in the following sections.
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2.3. Object Reconstruction via Angular Diversity

The angular diversity approach is illustrated in Figure 2a. Changing the illumination
directions

◦
κi while keeping the operational frequency k constant changes the centers of

the shifted Ewald sphere and provides a different coverage of the K space. Aggregating
the response for several illumination directions recovers Ō(K). Note that for lossless (real)
objects, Ō(K) = Ō∗(−K), so that only half of the K-space needs to be recovered.

` K
z

K
x

 (K)O

(a)

` K
z

K
x

 (K)O
transmission modereflection mode

k
max

k
min

(b)

Figure 2. K-space reconstruction. (a) Angular diversity reconstruction: Changing the direction of
illumination

◦
κi and measuring the transmitted data only provides a coverage of the K−space within

a sphere of radius
√

2k [5]. (b) Frequency diversity reconstruction: Changing the excitation frequency
for a single illumination direction

◦
κi provides coverage of the K− space as indicated. The figure is

plotted for
◦
κi =

◦
z.

As one observes from Figure 2a, the transmitted data on z2 recovers the K-space
distribution of the object in a sphere of radius

√
2k about the origin. Thus, the object may be

recovered using only transmitted data, as long as k is chosen to be large enough to provide
full coverage of Ō(K). Note that in the limit of k→ ∞, the transmitted data hemispheres
in Figure 2a reduce to planar surfaces normal to

◦
κi that pass through the origin, thus

providing the K-space representation of conventional X-ray tomography [46].
One option to reconstruct O(r) is to recover Ō(K) and then apply the inverse Fourier

transform of (9). This approach requires interpolation of the data from the shifted Ewald
spheres to a Cartesian K-domain grid [47], and therefore requires a large number of illumi-
nations.

The “filtered backpropagation” reconstruction algorithm [6,47] overcomes this diffi-
culty by circumventing the need to recover Ō(K) and operating, instead, directly on the
scattering data. In this approach, the scattering data is multiplied by a spectral filter and
then back-propagated to the object domain. This reconstruction approach is analogous to
the X-ray tomography filtered backprojection algorithm of [48], where the filtered data is
back-projected along straight lines.

2.4. Object Reconstruction via Frequency Diversity (UWB Tomography)

In the frequency diversity approach, the data is collected over a wide frequency
spectrum Ω ∈ [ωmin, ωmax] for a fixed illumination direction. This can be done either
in a frequency by frequency approach or by using a short-pulse illumination. As noted
earlier, in this paper we emphasize the multi-frequency approach. The readers are referred
to I–Section 3-B in [36] for the TD formulation, which has an important cogent physical
interpretation, but is not utilized here.

As illustrated in Figure 2b for illumination along the positive z axis, changing the
illumination frequency changes the radius of the shifted Ewald sphere. One observes that
the reflected data recovers the K-space distribution of O inside a π/4 cone with an axis
along the negative Kz axis and base radii between kmin and kmax, while the transmitted
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data recovers the complementary K-space part. As noted before, only half of the K-space
is needed to recover the real function O. Otherwise, several illumination directions are
required. More illuminations also add robustness.

As follows from Figure 2b, the reflection data on the z1 plane mainly recovers the
object variations along the z axis, while the transmitted data on the z2 plane recovers the
transversal variation (see also Snell’s law interpretation in I-Section 3-B in [36]. Thus, for
quasi-stratified media with weak transversal variations, it may be sufficient to measure
only the reflected data on the z1 plane, but may not be sufficient for objects with a
large transversal variations. Another limitation is the missing data for |Kz| < 2kmin (see
Figure 2b), while the missing data for |Kz| > 2kmax can be measured by using higher
frequencies. As follows from Figure 2b, several illumination directions may increase the
transversal resolution and also add data at small |K|. Note also that the maximal axial
resolution for the case of normal incidence is δz = π/kmax.

The object can be reconstructed using an inverse transform of Ō(K). However, for the
same reasons discussed in Section 2.3, a filtered backpropagation approach is preferable.
Backpropagation can be calculated in several alternative ways. For simplicity, we present
here the spectral integration approach. Given the scattering data ûs(x, ω) over the zj planes,
the backpropagated fields into the z > z1 and z < z2 regions are given by (see (5))

ûb
j (r) =

(
k

2π

)2 ∫
|ξ|<1

d2ξ ˆ̃us
j (ξ)e

ik(ξ·x∓ζz), (10)

where we restrict the integration to the visible spectrum |ξ| < 1.
The “imaging field,” or the “filtered backpropagated field” corresponding to the data

on the j = 1, 2 plane is given by (II-2)

Îj(r, ω) = v−1
0 k−2 ◦κi · ∇[e−ik

◦
κi ·rûb

j (r, ω)]. (11)

The corresponding “partial images” are obtained by summing over the relevant frequency
band (II-3)

Ŏ(r) = 2Re
1
π

∫ ∞

0
dω Îj(r, ω). (12)

If the data is given on both planes, then the “complete image” is given by

Ŏ(r) = Ŏ1(r) + Ŏ2(r). (13)

The features of O(r) that are described by Ŏj have been discussed above in connection
with Figure 2b. As noted there, in many situations it is sufficient to recover only Ŏ1.

The derivation of the filtered backpropagation imaging algorithm in (10)–(12) is done
by inserting the Born approximated data of (8) into (10).

3. Mathematical Background on the UWB-PS-BS
3.1. The Windowed Fourier Transform (WFT) Frame Representation of the Field

As noted in the introduction above, the phase–space beam summation representation
is based on the theory of WFT frame expansion of the field. Following [17], the theory is
presented here in the context of radiation into the half-space z > 0 in a 3D coordinate space
r = (x, z), x = (x1, x2), due to a time harmonic field û0(x, ω) defined over the plane z = 0.

The WFT frame set {ψ̂µ(x, ω)} is defined by (Equation (22)] [17])

ψ̂µ(x, ω) = ψ̂(x−mx̄)eiknξ̄·(x−mx̄), (14)
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with ψ̂ being a localized window function (typically a Gaussian, see more details below)
and µ =

(
m, n

)
being a 4-index. The frame elements are localized about the spatial (x) and

spectral (ξ) phase space lattice

(xm, ξn) = (mx̄, nξ̄) = (m1 x̄, m2 x̄; n1ξ̄, n2ξ̄), (15)

where (x̄, ξ̄) defines the lattice unit cell. As will be shown, the points (xm, ξn) define the
beams’ initiation points and propagation directions (see Equation (21) below). To constitute
a frame, the set above needs to fully cover the phase space, i.e., the unit cell area should be
less than 2π, implying that

kx̄ξ̄ = 2πν, (16)

with ν < 1 being the overcompleteness parameter and the limit ν = 1 define the critically
complete limit. As will be shown in Section 3.2 below, the frame over completeness provides
a local and stable representation of the field (Equation (13) [17]), with it also being used to
derive an UWB representation of the field (see Equations (Equations (33)–(35) [17]))).

The WFT frame can be used to expand û0(x) in the form

û0(x) = ∑
µ

âµ ψ̂µ(x). (17)

In view of the overcompleteness, the coefficients set
{

âµ
}

is not unique. A particularly
convenient set with a minimum `2 norm is obtained by using the dual frame

{
ϕ̂µ(x)

}
which has the same structure as

{
ψ̂µ
}

in (15) except that the mother window ψ̂(x) is
replaced by the dual mother window ϕ̂(x). The resulting canonical coefficient set is given
by (Equation (23) [17]).

âµ =
〈
û0(x), ϕ̂µ(x)

〉
(18)

where
〈

f , g
〉
=
∫

f g∗ is the conventional L2 inner product in the transverse coordinate
x. The canonical coefficients âµ in (18) are readily identified as the local spectrum of û0(x)
windowed with respect to ϕ̂µ about the phase–space points

(
xm, ξn

)
.

Generally, ϕ̂ should be calculated numerically, for a given ψ̂ and lattice
(
x̄, ξ̄
)
. How-

ever, if the lattice is sufficiently overcomplete, (ν . 1/3) ϕ̂ ∝ ψ̂ can be approximated by
(Equation (11) [17])

ϕ̂(x) ≈ ν2ψ̂(x)/‖ψ‖2. (19)

There are mainly two reasons to prefer the use of this highly overcomplete parameter
regime, even though it implies a larger number of terms in the phase–space expansion
(17): (i)—as follows from (19), in this parameter regime ϕ̂ is localized both spatially and
spectrally, so that the expansion (17) comprises local and stable coefficients. (ii)—ϕ̂ is given
analytically via (19) and does not have to be to calculated numerically. Reason (ii) is critical
for UWB problems where ϕ̂ needs to be found for each ω.

The radiated field in z > 0 is obtained now by replacing ψ̂µ(x) in Equation (17) by
beam propagators (Equation (24) [17])

û(r) = ∑
µ

âµ Ψ̂
+

µ (r), (20)

Ψ̂+
µ (r) =

(
k

2π

)2 ∫
d2ξ ˆ̃ψµ(ξ)eik(ξ·x+ζz). (21)

Ψ̂+
µ (r) are identified as the fields that are radiated forward into z > 0 by ψ̂µ(x). In (21),

ˆ̃ψµ(ξ) = ˆ̃ψ(ξ − ξn)e−ikξ·xm is the PW spectrum (5) of ψ̂µ(x), with ˆ̃ψ(ξ) being the spectrum
of the “mother window” ψ̂(x). If ψ̂(x) is wide on a wavelength scale, then Ψ̂+

µ (r) behave
like collimated beams, emerging from the points xm over the z = 0 plane and directions
◦
κn = (ξn, ζn) = (sin θn cos φn, sin θn sin φn, cos θn) with ζn =

√
1− |ξn|2.
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3.2. UWB Considerations

In general, the applications in hand require UWB excitations. Following [17], we use
the following frequency-scaling of the WFT frame set that renders the theory amenable for
UWB field representations:

(1) Frequency independent beam skeleton: As implied from Equation (16) above, the beam
lattice should be recalculated for each frequency. For efficient UWB representations, it is
required to have the same beam lattice

(
xm, ξn

)
over the entire frequency band. In view of

(16), this requirement implies (Equation (10) [21])

ν(ω) = νmax
ω

ωmax
, ω ∈ [ωmin, ωmax], (22)

with νmax being the value of ν at ωmax, so that ν < νmax for all ω < ωmax. Typically, we use
νmax = 1/3 (see discussion in (25) below).

(2) Iso-diffracting propagators: We use iso-diffracting (ID) Gaussian windows which are
scaled with frequency in the form (Equation (27) [17])

ψ̂ID(x) = e−k|x|2/2b, k > 0, (23)

where b > 0 is a frequency independent parameter. Inserting (23) into (21) and evaluating
the integral one finds that the resulting propagators are ID-GBs, with b being the collimation
distance. The ID designation of these Gaussian beams is due to the fact that their collimation
distance b is frequency independent. This property implies that the beam propagation
parameters are frequency independent even in inhomogeneous medium. Furthermore,
when transformed into the TD, they give rise to ID-Pulsed beams (ID-PB) which are space
time wave-packets that maintain their wave-packet structure even through propagation
in inhomogeneous medium [49]. Explicit expressions for the corresponding phase–space
beam propagators of (26) in free space are given in (Equations (28)–(29)) [17].

Typically b is chosen by the molder and depends on the application (see discussion
in the numerical example below), but also should satisfy the condition kminb� 1, which
implies that the beams are highly collimated over the entire frequency band.

(3) Snug frame: The frame is optimal (or snug) when the frame elements are matched to
the phase–space lattice (x̄, ξ̄) (in the sense that they should provide a balanced phase–space
coverage). This requirement implies the relation b = x̄/ξ̄ [17]. Combining this condition
with (16) one obtains (Equation (A2) [21]),

(
x̄, ξ̄

)
=

√
2πνmax

kmax

(
b1/2, b−1/2). (24)

(4) Simple expression for the dual frame function: In view of (19) we have for νmax = 1/3
(Equation (A3) [21]),

ϕ̂ID(x) '
ν2

max

πbk2
max

k3 ψ̂ID(x), ω < ωmax. (25)

Over this regime ϕ̂ is spatially and spectrally localized, and leads to a stable and localized
expansion coefficients [17].

The properties above yield an efficient multi-frequency representation where the
phase–space lattice and propagation parameters should be calculated only once for all
frequencies in the band. These advantages also allow a simple transformation of the beam
representation to the TD [19,21].
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3.3. The Beam Frame Theorem

Following (21), we define the set of forward and backward propagators {Ψ̂±µ (r)}
(compare Equation (21))

Ψ̂±µ (r) =
(

k
2π

)2 ∫
|ξ|<1

d2ξ ˆ̃ψµ(ξ)eik(ξ·x±ζz), |ξn| ≤ ξ0 < 1. (26)

where the parameter ξ0 is typically chosen close to 1. Note that this subset includes only
“propagating beams” whose spectrum, which is localized around ξn, is located in the
propagating spectrum range |ξ| < 1. We denote this subset by the index µP. Inserting the
ID Gaussian windows of (23) into (26) and evaluating the integrals asymptotically one
readily identifies Ψ̂±µ as forward and backward ID-GB that propagate from z = ∓∞ to ±∞

in the directions
◦
κ±n = (ξn,±ζn) = (sin θn cos φn, sin θn sin φn, cos θn) (see Figure 3), while

for z = 0 they converge to the PS lattice of Section 3.1 as illustrated in Figure 3.

(a) Ψ+
µ (b) Ψ−µ

Figure 3. The forward/backward propagating beam frames Ψ±µ . (a) The forward and (b) the
backward beam frames Ψ±µ . The BFs are illustrated by the hatched arrows. The ellipses correspond to
the pulsed-beam-frames that are used in the TD formulations and are not considered here (see [21]).

As has been established by the beam frame theorem in [20], the beam-sets
{

Ψ̂±µ (r)
}

µP
constitute frames (hence referred to as “beam frames” (BF)) at any z = const. plane over
the Hilbert space HP of functions whose spectrum is bounded in the propagation domain
|ξ| < ξ0, with the set {Φ̂±µ (r)} being the dual frames. The propagators Φ̂±µ have the same

form as Ψ̂±µ in (26), except that ˆ̃ψµ are now replaced by ˆ̃ϕµ. Note that in view of (25), Φ̂±µ
are proportional to Ψ̂±µ .

It follows from the beam frame theorem that any function over HP may be expanded
by the BF. This observation is very important in the context of inverse scattering since it
implies that both the scattered field and the medium are expanded on the same basis.

An important special case of the above is when the BF are used to expand forward or
backward propagating wave-fields û±(r). In view of the theorem, u+ may be expanded
using Ψ̂+

µ , and u− may be expanded using Ψ̂−µ , but the physically meaningful choice is to
expand u± using Ψ̂±µ , respectively, viz (Equation (32) [20])

û±(r) = ∑
µ∈µP

Â±µ Ψ̂±µ (r), (27)

where the summation includes only “µP propagating” frame-beams with no evanescent
spectrum. As has been established by the expansion coefficient invariance theorem
in [20], Â±µ may be calculated by projecting û±(r) on the dual frame Φ̂±µ (r) over any
z = z′ plane, giving the same result, i.e., (Equation (33) [20])

Â±µ =
〈
û±(r), Φ̂±µ (r)

〉∣∣∣
z′
=
〈
û±(x), ϕ̂±µ (x)

〉∣∣∣
z=0

(28)
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where the last expression describes the canonical WFT coefficients of (18) evaluated over
the z = 0 plane.

Finally we note that in [21], the BF theorem has been extended to the TD using ID-
PB propagators.

4. UWB Beam-Based Diffraction Tomography: Multi-Frequency Formulation

The beam frame concept provides a framework to formulate the beam-based inverse
scattering algorithm. Using the BFs, we may use the same set of beam basis functions to
expand both the scattering data and the medium (actually, the sources that are induced due
to the medium heterogeneities). As illustrated in Figure 4, the inverse problem is thereby
described by the local interaction between the beam amplitudes and the unknown object.
As noted in the introduction, optimal localization is obtained in the time-domain formula-
tion, using localized space–time wave-packets. This, however, requires somewhat sophis-
ticated processing tools [21]. In the present section we present only the multi-frequency
formulation that utilizes conventional FD data-processing tools followed by integration
over all the frequencies. The readers are referred to [36,37] for the TD interpretation.

induce 
sources 

q̂(ω ,r')

x

z'  plane

z
κ̊

i

û
i

(a) Induced sources

x

z'  plane

z

(b) The BF representation of the scattering wave

Figure 4. The scattering mechanism within the propagating frame formulation. The incident field
that propagates through the medium (see subplot (a)) gives rise to induced sources. At each z = const.
plane, these sources are expanded by the forward/backward propagating BFs, giving rise to the
forward/backward scattered fields depicted in subplot (b) in blue and red, respectively.

4.1. The Inversion Algorithm

Given the scattering data over the zj planes, the BF representation of the scattering
fields into the z ≶ zj half spaces are given by (see (27))

ûs
j (r, ω) = ∑

µ∈µP

Âj
µ(ω)Ψ̂∓µ (r, ω), z ≶ zj, (29)

where, as before, upper and lower signs correspond to j = 1 and j = 2, respectively.
The expansion coefficients calculated via (28),

Âj
µ(ω) =

〈
ûs

j (x, ω), Φ̂∓µ (r, ω)
∣∣
zj

〉
. (30)

Following the discussion after (7), these coefficients extract the local PW spectrum of
the scattering data. Note that, as was done in the PW spectrum of Equation (5), the scatter-
ing WFT operation normalizes the scattering on the zj planes to their phase centers on the
z = 0 plane. The coefficients in (30) are referred to as the beam-domain data.
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The backpropagated fields ûb
j (r, ω) are obtained by extending (29) as is to z ≷ zj (see

(II-9)). The “imaging fields” are then calculated by inserting (29) into Equation (11). In view
of the local structure of the Ψ̂∓µ propagators, we obtain the explicit expression (II-11)

Îj(r) '
2

iω
e−ik

◦
κi·r ∑

µ

Âj
µ(ω) cos2(γ∓n

2
)

Ψ̂∓µ
(
r, ω), (31)

where γ∓n represents the angle between the illumination direction − ◦κi and the beam direc-
tion

◦
κ

j
µ (which actually depends only on n. Finally, the reconstructed object is calculated

via (12) and (13). For full details, the reader should refer to Appendices II-A,B.

4.2. Interpretation within the Born Approximation

In order to gain insight into the structure of the beam-domain data, we insert the Born
approximation of the scattered field in (7) into (30). The resulting relation between O(r)
and the beam data is given by (I-21)

Âj
µ(ω) '

〈
O(r), Λ̂j

µ(r, ω)
〉

V
, Λ̂j

µ(r, ω) = k/2i cos θne−ik
◦
κi·rΦ̂∓µ (r, ω), (32)

where the integration covers the entire scatterer domain. Thus, within the Born approxi-
mation, the data is described as projections of O(r) on the beam axis, using the projection
kernels Λ̂j

µ(r, ω). As shown in I-Section 5-B in [36], this projection extracts the local
stratification of O along the beam axis at an angle γ∓n defined in (31). This implies that
the scattering amplitudes Âj

µ are obtained from Snell’s reflections due the stratification
components in O(r) along the µ beam axis, so that strong amplitudes are obtained only
for those µ (locations and directions) that correspond to the stratification of O(r) along the
µ beam axis. Note that (32) is the local generalization of (7), where the BF basis is used
instead of the conventional Green’s function that radiates in all directions.

Further localization along the beam axis is provided by using the TD formulation in
(I-27)-(I-32). However, as noted earlier, the TD formulation is not presented here since our
goal in this paper is to present the pragmatic and practical formulation in the FD where all
the operations are based on Fourier-type integrals. The readers are referred to [36,37] for
more details on the TD formulations.

To further explore the FD beam data representation, we consider the spectral represen-
tation of Âj

µ. Substituting (5) into (30) and changing the order of integrations, Âj
µ can be

expressed as (I-22)

Âj
µ '

(
k

2π

)2 ∫
d2ξ

ik
2ζ

ˆ̃ϕ∗µ(ξ)Ō(K)
∣∣∣
K=k(

◦
κj−

◦
κi)

. (33)

The expression is the local alternative to the plane-wave-based DT identity in (8). It is

recognized as
◦
κ
±
n samples of the value of Ō(K) over the shifted Ewald sphere defined in

(9). The spectral width of these samples is that of ˆ̃ϕµ(ξ).

5. Numerical Examples

In this section, we demonstrate the beam-based DT algorithm through a numerical
example. We begin with a step-by-step summary of the algorithm, including guidelines for
choosing the parameters.

5.1. A Step by Step Summary of the Algorithm

Phase I—the experimental setup

1. We consider a realistic case where the object is illuminated by an array of M indepen-
dent point transducers over the z1 plane, as illustrated in Figure 5a. We illustrate here
only the reflected data on the z1 plane, since in many applications (e.g., geophysics)
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the transmission field cannot be measures, and in some cases this data is not needed
(see discussion in Section 2.4). If, however, the transmitted data at z2 is available, then
the receiver array considerations are similar.

2. The data is measured by exciting the sources one at a time by short pulse F(t) that
spans the desired frequency band Ω ∈ [ωmin, ωmax] as needed to obtain the desired
K−space coverage. The result is an M×M data matrix Us

pq(t) describing the response
at the p receiver due to an excitation by the q source.

3. The data is sampled at the proper Nyquist rate and then converted to the FD via
FFT, giving rise to the data matrix Ûs

pq(ω). Before the calculation, the time-series
are padded by zeros to avoid aliasing of the final image when it is generated by
integration over all the frequencies. Note that in some applications, Ûs

pq(ω) may be
measure directly in the FD.

4. The response to time-harmonic PW excitations at different angles is synthesized from
Ûs

pq(ω) by q-stacking the array data with proper phase terms. The result provides the
PW data to the phase–space beam-based processing.
One may also calculate the time-harmonic PW spectrum of the scattered field via
p-stacking with proper phase terms. The result is an M × M data matrix ˆ̃Us

p′q′(ω)

describing the p′ spectral PW due to an excitation by the q′ incident PW. As noted ear-
lier, before we do the stacking, the array dimensions should be zero- padded to avoid
aliasing of the final image when the images are generated by spectral integrations.

5. As illustrated in Figure 5a, the spectral information that can be covered by the array is
determined by the size of the array and by the target range R. The size of the array
should be chosen to provide sufficient spectral coverage of the target. In general, R
should be within the Fresnel zone of the array, i.e., R� (Dζ i)2/λ. Note also that due
to the finite size of the array, one should avoid the array transition zone illustrated in
Figure 5a.

6. The array elements inner spacing should, in general, satisfy the Nyquist sampling
rate kd = π. However, since the target range satisfies kR� 1, it is only required that
the phase difference between adjacent elements will be small, yielding a sparser array
with d <

√
π

8kmax
R.

z

x

z
1

-D/2

D/2

r

θ 0

R

transition region

(a)

z

x

O(r )

D/2

-D/2
θ max
i

z
1

DoI

(b)

Figure 5. Guidelines for choosing the experimental setup. (a) The size of the array should be wide
enough to provide a plane-wave illumination at the target range R. The scan angle is limited in order
to be sufficiently far for the end-point diffraction zone. (b) For local imaging, only the part of the
object inside the DOI should satisfy the conditions above.

Phase II—Constructing the phase space lattice
The next step is to set up the phase–space lattice and choose the expansion parameters
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1. Choosing the beam parameter b: As discussed in Section 3.2, the ID Gaussian
windows in (23) are fully determined by the parameter b. The considerations of
choosing b were widely studied in [21,36] for the application of local inverse scattering.
This parameter balances between the beam collimation length and the beamwidth.
We choose b to be on the order of the DoI domain so that the beams are collimated
throughout the DoI while being small enough for transversal resolution.

2. The phase–space lattice: The guidelines for constructing the UWB beam lattice are
discussed in Section 3.2. As discussed there, we choose νmax = 1/3 which balances
between stable expansion frame and moderate over-completeness (relatively small
number of elements). The optimal values for (x̄, ξ̄) are given by (24).

3. The phase–space propagators: The frame elements
{

Ψ̂±µ (r), Φ̂±µ (r)
}

are calculated
via (26). For the Gaussian windows (23), the results are ID-GB propagators (see
explicit expressions in (Appendices A,C [21]).

4. Limited physical data: We need to consider only beams whose initiation point xm
are supported by the array size. The maximal value of ξn is determined by the scan
angle. If, for example, the scan angle is 60◦, then |ξn| <

√
3

2 .

Phase III—Calculating the beam data

1. Calculating the expansion coefficients: The coefficients Âj
µ are calculated via (30).

2. Filtering out low amplitude data: As discussed in Section 4.2, the beam data is
related to the local Snell’s reflections of the beams by the local stratification in O(r),
which in turns are determined by the LRT of O(r). We therefore threshold low
amplitude beams at a level of 40 dB.

Phase IV—Local reconstruction via beam backpropagation

1. Beam backpropagation within the DoI: Next, following Section 4.1, we backprop-

agate the beams whose amplitudes Âj
µ are larger than the threshold set above. We

consider only the beams passing through the DoI (see Figure 6) or no further than 3
beam-widths away from the DoI (this distance is consistent with an effective threshold
of 40 dB).

2. The image: The imaging fields are calculated via (31), and finally the image is
calculated via Equations (12)–(13).

z

x

z
1

 DoI

Figure 6. An overview of the local inversion algorithm. The beam expansion of the scattered field
is plotted as gray arrows. Only those covering the array are plotted. The scattering data is then
transformed to beam amplitudes by stacking the receivers data via (30), as schematized by the black
ellipses. Only beams with high amplitude are considered and backpropagated via (31). The image in
the DoI (black rectangle) is obtained by aggregating the contribution of beams that pass inside the
DoI (red beams).
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5.2. Example A: A Smooth and Quasi Stratified Medium. UWB Reflection Mode Data

The medium is plotted in Figure 7a in a 2D coordinate frame r = (x, z), with the DoI
being the 20× 20 black rectangle. For simplicity we normalize all space-units such that the
background wave-speed is v0 = 1. Note that the contrast is relatively large with values of
Omax = ±0.44. Note that this example is one of those treated in [37] (see Figure 6, but here
the processing is done in the multi-frequency domain as outlined above.

The medium is dominated by stratification along the z direction, hence its K-space
distribution is localized near the Kz axis (see discussion below). Referring to the discussion
in Section 2.4, it can be recovered using UWB reflection data on the z1 plane. We therefore
use illumination by a z-propagating time-harmonic PW with frequencies in the band
Ω =

[
0.1, 1

]
. The exact data is generated using method of moments (MoM) simulations.

We record only the reflected data over an array of receivers located at z = −150 with
|x| < 250 with inter-element spacing d = 1.15 π (larger than the Nyquist distance).

We set b = 50, such that the beams are collimated inside the DoI, while maintaining
kminb � 1 as required for collimation after (23). Using also kmax = 1 and νmax = 1/3 we
obtain from (24) (x̄, ξ̄) = (9.71, 0.194). The resulting BF propagators

{
Ψ̂±µ (r), Φ̂±µ (r)

}
are

calculated via (Equations (C1)–(C5) [21]).
Next we calculate the beam-domain data Âj

µ via (30). The reconstructed object inside
the DoI is found using the reflected data imaging field Î1(ω) of (31) where we consider only
backpropagated beams whose µ axis passes inside the DoI, and then integrating over all
frequencies as in (12). The reconstructed medium is illustrated in Figure 7b. As can be seen,
the reconstructed object matches well with the object inside the DoI. To better quantify the
image results, in Figure 8 we plot cross-sectional cuts of the object at x = 0 and at x ± 6.

(a) Object (b) Reconstructed object

Figure 7. Example A: (a) The original (a) and the reconstructed (b) object functions. The DoI is
illustrated by the black rectangle.
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(b) x = 6
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(c) x = −6

Figure 8. Example A: Comparison of the results along cross sectional cuts parallel to the z-axis.

The sources of error are readily seen in the K−space distribution of the original and
reconstructed media in Figure 9. Note that the imaging algorithm has recovered most of
the object’s K−space, except for the region around |K| ≈ 0. As discussed in Section 2.4, this
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missing data is due to the low frequency cutoff kmin = 0.1 in the data. The main drawback
of the “UWB reflection mode inversion” schemes is the missing transversal spectrum
components and the |K| → 0 components, (which are small in this example). In general,
one may try to recover this data by using transition mode data (z2) but in many applications
this data is not available. Alternatively, one may use several illumination directions which
are synthesized from the array data via the method outlined in Phase I of Section 5. These
additional illuminations are also used to reduce the reconstruction noise, as explored in
II-Section 6 in [37]. The readers are referred to other examples in [36,37,42–44,50].

-5 0 5

k
z

10-3

-2

-1

0

1

2

k x

10-3

(a) Object function

-5 0 5

k
z

10-3

-2

-1

0

1

2

k x

10-3

(b) Reconstructed object

Figure 9. Example A: Comparison of the K− space distributions of the original (a) and reconstructed
(b) objects.

5.3. Example B: An Object with Sharp Boundaries. Reflection and Transmission Data

The object shown in Figure 10a has sharp boundaries, strong transversal K components,
and a non-zero average (i.e., Ō(|K| = 0) 6= 0). As before, we consider a 2D problem with
r = (x, z) and normalize the space-units such that the background wave-speed is v0 = 1.

The source array is located on the z1 = −150 plane over |x| < 250, with inter-
element spacing d = 1.15π. Using this array, we may synthesize PW illumination over a
spectral range of ±60◦ (see discussion in Section 5, Phase I(1–4)). The frequency band is
Ω =

[
0.1, 1

]
. We consider both the reflection and transmission data over similar receiver

arrays at z1 = −150 and z2 = 150. The exact scattered data is calculated via the MoM.
For the beam processing we use b = 20, such that the beams are collimated inside the

DoI, while maintaining kminb� 1 as required for collimation after (23). Using also kmax = 1
and νmax = 1/3 we obtain from (24) (x̄, ξ̄) = (6.47, 0.32). The resulting BF propagators{

Ψ̂±µ (r), Φ̂±µ (r)
}

are calculated via (Equations (C1)–(C5) [21]).
Figure 10b depicts the reconstructed objects in the front (left) using a single PW

illumination at θi = 0 and reflection data at the z1 plane. As expected, the reflection data
provides good longitudinal resolution but poor transversal resolution (see Figure 2b). Note
also that the value of the reconstructed object function is approximately one half of the
true value due to the missing data at |K| = 0. As expected, the reconstruction of the object
outside the DoI is poor.

In Figure 10c we improved the resolution by using several illumination directions
(as one may expect by considering Figure 2a,b), yet the reconstruction still suffers from
poor transversal resolution and low value of the reconstructed object. These problems are
mitigated in Figure 10d where we used both the reflection and transmission data as in (13).
Further improvement can be made via iterative schemes [36,37,42–44,50].

Finally, in Figure 11 we demonstrate local imaging within different DoIs. Figure 11a
depicts the reconstruction of a cylinder at the front (left-top) using both reflection and
transmission data due to illumination at θi = 0. The reconstruction is a bit poorer than in
Figure 10d where we used several illumination directions. As expected, the reconstruction
outside this DoI is poor.
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(a) Object (b) Ŏ1—Single illumination reflection data

(c) Ŏ1—Several illuminations reflection data (d) Ŏ1 + Ŏ2—Several illuminations reflection and
transmission data

Figure 10. Numerical example B. (a) The object function. (b) Reconstruction using single illumination
and reflection data. (c) Reconstruction using several illuminations and reflection data. (d) Recon-
struction using several illuminations and reflection and transmission data. The DoI is illustrated in a
black rectangle.

Figure 11b depicts the reconstruction of a cylinder at the back (right-top). Since this
cylinder is poorly illuminated by normal incidence, we use here reflection and transmission
data from several illumination directions θi = ∓30◦,∓40◦. The reconstruction inside the
DoI is much better than in Figure 10. As before, the reconstruction outside this DoI is poor.

(a) Object (b) Ŏ1 - Single illumination reflected data

Figure 11. Numerical example B: Local reconstruction in different DoI’s (black rectangles). (a) Recon-
struction of a cylinder at the front using both reflection and transmission data due to illumination at
θi = 0. (b) Reconstruction of a cylinder in the back using both reflection and transmission data from
several illumination directions.
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6. Discussion and Conclusions

In this paper, we reviewed the local diffraction–tomography inversion scheme intro-
duced originally in [36,37]. The method is based on a local transformation of the scattering
data and local reconstruction using beam backpropagation. It is structured on the concept
of beam-frames (BFs). The BFs are a phase–space set of beam-waves that constitute local
basis functions (frames) over the propagation domain. As such, they provide an alternative
local basis for the global PW or Green’s function radiation integrals. We use the BFs to
formulate a local inversion algorithm as an alternative to the conventional approaches.
In this and other publications, we demonstrated and explored the advantages of the local
algorithm over the conventional PW and Green’s function DT algorithms:

1. Local imaging within a given domain of interest (DoI).
2. Reduced complexity since it accounts only for the beam basis-functions that cover the

DoI.
3. Reduced noise level since data and noise arriving from other regions are a priori

filtered out.
4. Backpropagation and imaging over a non-homogeneous background.

In previous publications [36,37] we have emphasized TD data processing, where the
beam waves are localized space–time wave-packets. This requires somewhat sophisti-
cated mathematics to construct the wave-packets and use them as signal processing tools.
The main advantage of the TD approach is the data localization and interpretation. In the
present paper, on the other hand, we utilized FD processing followed by an integration
over the relevant frequency band. The motivation has been to provide the reader with
more straightforward Fourier-based data-processing tools. We also provide the processing
tools and closed-form expressions for the local imaging formula, as well as step-by-step
guidelines for choosing the various scheme parameters. The method provides an efficient
UWB formulation where one has to calculate the beam lattice and propagators only once
and then use them for all the frequencies.
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