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Abstract: The 6-min walk test (6MWT) is commonly used to assess a person’s physical mobility and
aerobic capacity. However, richer knowledge can be extracted from movement assessments using
artificial intelligence (AI) models, such as fall risk status. The 2-min walk test (2MWT) is an alternate
assessment for people with reduced mobility who cannot complete the full 6MWT, including some
people with lower limb amputations; therefore, this research investigated automated foot strike (FS)
detection and fall risk classification using data from a 2MWT. A long short-term memory (LSTM)
model was used for automated foot strike detection using retrospective data (n = 80) collected with
the Ottawa Hospital Rehabilitation Centre (TOHRC) Walk Test app during a 6-min walk test (6MWT).
To identify FS, an LSTM was trained on the entire six minutes of data, then re-trained on the first
two minutes of data. The validation set for both models was ground truth FS labels from the first
two minutes of data. FS identification with the 6-min model had 99.2% accuracy, 91.7% sensitivity,
99.4% specificity, and 82.7% precision. The 2-min model achieved 98.0% accuracy, 65.0% sensitivity,
99.1% specificity, and 68.6% precision. To classify fall risk, a random forest model was trained on
step-based features calculated using manually labeled FS and automated FS identified from the first
two minutes of data. Automated FS from the first two minutes of data correctly classified fall risk for
61 of 80 (76.3%) participants; however, <50% of participants who fell within the past six months were
correctly classified. This research evaluated a novel method for automated foot strike identification
in lower limb amputee populations that can be applied to both 6MWT and 2MWT data to calculate
stride parameters. Features calculated using automated FS from two minutes of data could not
sufficiently classify fall risk in lower limb amputees.

Keywords: 6MWT; 2MWT; foot strike detection; amputee; LSTM; random forest; fall risk classification;
artificial intelligence; smartphone

1. Introduction

The six-minute walk test (6MWT) is a sub-maximal movement assessment used to
evaluate aerobic capacity and mobility [1]. The 6MWT was originally developed for those
with chronic respiratory or cardiovascular disease [2] but is now used to assess a number
of populations, commonly older adults, people who have suffered a stroke, people with
Parkinson’s disease, and lower limb amputees [3–6]. The test is brief and requires minimal
set up and space (minimum 12 m) [7]. Participants are allowed to walk with mobility
aids, stopping is allowed if needed, and distance walked moderately correlates with more
complex aerobic capacity tests, such as VO2 max, minimizing the burden for patient and

Sensors 2022, 22, 1749. https://doi.org/10.3390/s22051749 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051749
https://doi.org/10.3390/s22051749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7025-7501
https://orcid.org/0000-0003-4693-2623
https://doi.org/10.3390/s22051749
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051749?type=check_update&version=2


Sensors 2022, 22, 1749 2 of 10

clinician [8–12]. However, some people are unable or unwilling to complete a 6MWT due
to limited mobility. The two-minute walk test (2MWT) is a similar assessment to the 6MWT
but only requires two minutes of walking. Distances walked during a 2MWT correlate well
with distance walked during a 6MWT, so the 2MWT is a viable alternative [13–15].

Recent research has sought to extract richer information from 2MWT and 6MWT using
artificial intelligence (AI). The Ottawa Hospital Rehabilitation Centre (TOHRC) Walk Test
app collects acceleration, angular velocity, and orientation data from a smartphone during
walking. These smartphone signals can then be used to automatically detect foot strikes
(FS). FS detection is a necessary step in gait analysis because a FS defines the start and end
of a gait cycle and can be used to calculate stride parameters such as step time and cadence.
Capela et al. [16] demonstrated that smartphone signals collected using the TOHRC Walk
Test app could be used as input data in a rule-based algorithm to identify FS and calculate
stride parameters for a 2MWT or 6MWT in able-bodied participants. Capela et al. [17]
further examined that, when applied to 6MWT smartphone data of healthy older adults,
the rule-based algorithm identified FS with 99.9% accuracy. With the TOHRC Walk Test
App, stride parameters are calculated immediately after completion of the walk test to
provide real-time reporting to a clinician. However, when a similar rule-based algorithm
was applied to lower limb amputee gait data, accuracy decreased to 87.0% and offline error
correction was required [18]. Amputee gait differs markedly from healthy adults, which
can make it difficult for AI algorithms to automatically detect steps.

Juneau et al. [19] developed a novel long-short term memory (LSTM) deep learning
approach for automated FS detection in lower limb amputees. The LSTM was trained on
filtered smartphone signals collected from the TOHRC Walk Test app during a 6MWT.
FS and non-FS events were classified with 99.0% accuracy, using offline error correction.
Stride parameters calculated from the automated FS were equivalent to manually labeled
results for most participants. Stride parameters are not an outcome measure that is typically
available from a 6MWT, demonstrating that clinical outcome measures can be calculated
using automated FS from 6MWT data.

Lower limb amputees typically have greater instability and higher variability during
walking than healthy older adults, leading to elevated risk of falling [20]. Due to this, people
may prefer to complete a 2MWT instead of a 6MWT. However, the deep learning automated
FS approach has not yet been validated with 2MWT data. The LSTM FS identification
model described in [19] was originally trained on data from a 6MWT; however, it is possible
that a new algorithm specific to 2MWT data is required. Therefore, this study evaluated
LTSM FS identification accuracy on 2MWT data after the model was trained on signals from
a 6MWT or signals from a 2MWT, stride parameters were compared between automated FS
and manually labeled FS, and fall risk classification was assessed using step-based features
from automated and manually labeled FS. A successful 2MWT model would enhance the
range of applications for this smartphone-based assessment approach, thereby enhancing
access and immediacy of movement-based analyses for people with physical disabilities.

2. Materials and Methods
2.1. Recruitment and Participants

A convenience sample of 93 transtibial, transfemoral, and bilateral lower limb am-
putees were recruited from the University Rehabilitation Institute (Ljubljana, Slovenia) and
gave informed consent for this study (Table 1). This research was approved by the Ethic
Committee of the University Rehabilitation Institute, Slovenia (# 46/2018) and re-approved
for an additional 30 participants (# 27/2019).

Each participant’s self-reported fall history was used to classify participants as no fall
risk or fall risk. Participants were considered a fall risk if they reported falling at least once
in the past six months prior to testing. The inclusion criteria were: transtibial or higher
amputation; ability to walk with single cane, two crutches, or without any walking aids;
minimum of six months post-amputation; had a functional prosthesis; no wounds on the
residual limb; and was willing to participate. Excluded trials were due to unknown fall risk
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status (8 participants) and cell phone affixed to the side of the hip instead of lower back
(5 participants).

Table 1. Participant characteristics.

Characteristic Value

Age (years) 64.2 ± 12.2 (19–90)

Sex

Male 63 (78.8%)
Female 17 (21.2%)

Fall risk status

Fall risk 27 (33.8%)
No fall risk 53 (66.2%)

Level of amputation

Transtibial 72 (90.0%)
Transfemoral 3 (3.8%)
Bilateral (transtibial) 5 (6.2%)

Time since amputation (years) 15.7 ± 18.0 (0–65)

Ambulatory aid use

No aids 42 (52.5%)
Double crutches 25 (31.3%)
Single cane/crutch 12 (15.0%)

Note: Data are presented as mean ± SD (range) or number (percentage).

2.2. Data Collection

Each participant completed a 6MWT along a 20 m hallway with an Android smart-
phone affixed to the posterior pelvis (Figure 1). The 6MWT was video recorded using
a second Android smartphone for each participant. The TOHRC Walk Test app collected
smartphone acceleration (m/s), angular velocity (rads/s), and smartphone orientation at
an average of 50 Hz [17].

2.3. Pre-Processing
2.3.1. Filtering and Signal Processing

Raw accelerometer data, gyroscope data, smartphone orientation, and timestamps
were exported for pre-processing and were imported into MATLAB 2020b. Since smart-
phone signals have a variable sampling rate, each signal was re-interpolated at 50 Hz for
a total of 18,049 data points per signal per participant over the 6MWT. Signals were then fil-
tered with a fourth-order zero-lag Butterworth low pass filter with a 4 Hz cut-off frequency.

To determine if the automated FS detection model from [19] can predict FS in 2MWT
data, a simulated 2MWT dataset was created. The first two minutes of the 6MWT trial
was determined to replicate most closely that of a 2MWT, so the first two minutes of each
participant’s trial was exported for a total of 6000 data points per participant.

2.3.2. Manual Ground Truth Labeling

Two assistants manually identified and labeled ground truth steps prior to model
training. The two class labels were label 0 (no foot strike) and label 1 (foot strike) and
were identified using the following procedure. Linear acceleration signals over time were
graphed and anterior–posterior (AP) acceleration signal peaks were identified (Figure 2).
Usually, FS events correspond with AP acceleration peaks that are followed by a peak in
vertical acceleration. Acceleration signals matching this pattern were visually identified
and a FS event was recorded at the timestamp of AP signal peaks immediately followed by
a vertical signal peak. Timestamps were confirmed using participant video. An agreement
of the two assistants was required in cases where the AP peak was not well defined or in
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cases of multiple peaks to select the most appropriate location for the FS event. All other
timestamps were therefore labeled as “no foot strike”.
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Figure 1. Experimental set-up: smartphone on posterior pelvis.

2.4. Foot Strike Classification Models

An LSTM deep learning approach was developed and evaluated for automated FS
detection in [19]. The model was written and evaluated in Python 4.2. The LSTM layer
was imported from Keras [21] and several hyperparameter combinations were evaluated.
The LSTM from [19] with the best performance was subsequently used for this analysis.
The LSTM had 100 hidden nodes in the LSTM layer, the dense layer had 50 hidden nodes,
a batch size of 64 and a dropout value of 0.4 were used. Smartphone orientation, XYZ
coordinates for raw and linear acceleration (m/s2), and angular velocity (rads/s) from the
full 6MWT and the first two minutes of walk test data were the input data.

Smartphone signals were formatted into data windows prior to model input. Each
window spanned 15 frames (0.3 s) before the class label to 15 frames after the label. For
the first 15 data points, 30 frames after the class label were used. Similarly, the previous
30 frames were used for the final 15 data points. The 31-frame window size (i.e., 15 before,
labeled frame, 15 after) was selected to minimize the likelihood of multiple FS events
occurring within the same window of signal data.

The LSTM FS identification model was trained on the full six minutes of data (6M-
FS model) and then re-trained on the first two minutes from the 6MWT, to approximate
a 2MWT trial (2M-FS). The validation set for both models was ground truth labels from the
first two minutes of data (i.e., the same set to enable direct FS comparison between models).
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Figure 2. Filtered smartphone signals over time. Medio-lateral acceleration (yellow curve), vertical
acceleration (red curve), and anterior–posterior (AP) acceleration (green curve) were used to identify
ground truth foot strikes. Typically, foot strikes correspond with an AP acceleration peak followed by
a vertical acceleration peak. Video recording of the trial was used to confirm the timestamp of foot
strikes. Vertical blue lines indicate frames manually identified as ground truth labels.

2.5. FS Model Evaluation

Five-fold cross validation was used to evaluate performance of both FS models. A tem-
poral tolerance of ±2 frames (±0.04 s) was used to match ground truth manually labeled
FS with predicted class labels. Evaluated metrics were sensitivity, specificity, accuracy, and
precision.

Stride parameters were calculated using both manually labeled and automated FS.
The difference between step time, stride time, and cadence from each group was calculated.
These differences were compared to the minimal detectable change (MDC) for each stride
parameter. Since MDC was not available for lower limb amputee gait, stride parameter
MDC for healthy older adults was used [22–24].

2.6. Post-Processing

In [19], periods of repeated FS predictions corresponding with a single AP acceleration
peak were observed in the preliminary data. This was also observed for the model trained
on 2MWT data. Predicted FS labels were post-processed in MATLAB 2020b to correct for
model prediction errors, including extra FS predictions and missed steps. Extra predictions
were removed by identifying instances where two or more consecutive FS classifications
occurred. The start and end of periods of consecutive predictions were located and the
peak AP acceleration within the band was identified. The FS event corresponding to the AP
peak was selected and all other predictions in this period were removed. To identify missed
steps, periods where the duration between two consecutive steps was greater than 1.5 times
the previous step were identified. An adaptive locking period was applied and searched
for potential missed steps. Within the adaptive locking period, the AP acceleration peak
was identified, and a FS was inserted at this timestamp. Final cleaned predictions were
used for feature calculations.
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2.7. Feature Calculations and Fall Risk Classification

A random forest machine learning model developed by Daines et al. [25] was used for
amputee fall risk classification. Smartphone acceleration and angular velocity signals were
used to calculate step-based feature sets, one using automated FS from the 6M-FS model,
one using automated FS from the 2M-FS model, and a comparator set using manually
labeled FS. In total, 62 features were extracted for each feature set (Table 2). Once features
were extracted for each step, the minimum, maximum, mean, and standard deviation
were calculated over all included steps for a total of 248 features (62 features multiplied by
4 statistics) per data set.

Table 2. Feature list.

Temporal Descriptive Statistics Frequency Domain Features

Cadence Minimum ML Quartile FFT ML
Step time right Minimum AP Quartile FFT AP
Step time left Minimum Vert Quartile FFT Vert
Stride time Maximum ML Quartile FFT Tilt

Symmetry index Maximum AP Quartile FFT Rotation
Maximum Vert Quartile FFT Obliquity

Mean ML Maximum FFT ML
Mean AP Maximum FFT AP
Mean Vert Maximum FFT Vert
Mean Tilt Maximum FFT Tilt

Mean Rotation Maximum FFT Rotation
Mean Obliquity Maximum FFT Obliquity

Range Tilt Standard Deviation FFT ML
Range Rotation Standard Deviation FFT AP
Range Obliquity Standard Deviation FFT Vert

Standard Deviation ML Standard Deviation FFT Tilt
Standard Deviation AP Standard Deviation FFT Rotation
Standard Deviation Vert Standard Deviation FFT Obliquity
Standard Deviation Tilt Peak Distinction FFT ML

Standard Deviation Rotation Peak Distinction FFT AP
Standard Deviation Obliquity Peak Distinction FFT Vert

RMS ML Peak Distinction FFT Tilt
RMS AP Peak Distinction FFT Rotation
RMS Vert Peak Distinction FFT Obliquity
RMS Tilt REOH ML

RMS Rotation REOH AP
RMS Obliquity REOH Vert

REOH Tilt
REOH Rotation
REOH Obliquity

Symmetry index: symmetry in right and left limb step times [26]. AP: anterior–posterior; ML: medio-lateral; RMS:
root-mean square; FFT: fast Fourier transform; REOH: ratio of even/odd harmonic frequencies.

3. Results

A total of 12,308 foot strikes were identified and labeled in the first two minutes of walk
test data, accounting for 3.06% of total output labels (402,000). Table 3 displays foot strike
classification confusion matrices for the 6M-FS and 2M-FS models. The 6M-FS accuracy
was 99.2%, sensitivity was 91.7%, specificity was 99.4%, and precision was 82.7%. The
2M-FS accuracy was 98.0%, sensitivity was 65.0%, specificity was 99.1%, and precision was
68.6%. The 2M-FS model FS classification was poor, with 35% of steps missed. Therefore,
further analysis of stride parameters and fall risk classification was not possible using foot
strikes from the 2M-FS model.
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Table 3. Foot strike classification.

6M-FS 2M-FS

Foot Strike No Foot Strike Foot Strike No Foot Strike

Foot strike 11,283 1025 Foot strike 8006 4302
No foot strike 2361 386,010 No foot strike 3672 383,200

Automated FS, identified using the 6M-FS model, and manually labeled FS from
the first two minutes of data were used to calculate stride parameters. The average and
standard deviation difference between manual and automated FS stride parameters were
calculated and compared to MDC values for these outcomes (Table 4).

Table 4. Average and standard deviation (in brackets) difference between manual and automated foot
strike stride parameter outcome measures for the 6M-FS model. MDC = minimum detectable change.

Automated FS MDC

Step time (s) 0.045 (0.11) 0.042
Stride time (s) 0.044 (0.09) 0.772

Cadence (steps/min) −28.91 (37.19) 8.44

Fall risk analysis was completed with foot strikes during the first two minutes of data,
identified using the 6M-FS model, and the Daines et al. fall risk model [25] (Table 5). In
total, 61 of 80 participants were correctly classified (76.3% accuracy, 48.1% sensitivity, 90.6%
specificity). Classification using features from manually labeled FS resulted in 63 out of
80 participants correctly classified (78.8% accuracy, 51.9% sensitivity, 92.5% specificity).

Table 5. Fall risk classification confusion matrices for automated and manual foot strike
(FS) identification.

Automated FS Manual FS

Fall Risk No Fall Risk Fall Risk No Fall Risk

Fall risk 13 14 14 13
No fall risk 5 48 4 49

4. Discussion

This research had two outcomes, FS identification and fall risk classification. The
automated LSTM FS identification approach from [19], when trained on smartphone signals
from six minutes of data and applied to two minutes of data, identified FS and non-FS
events with 99.2% accuracy. When an LSTM was trained on smartphone signals from only
the first two minutes of data and applied to two minutes of data, FS identification was poor
(35% of steps missed), even after offline post-processing for error correction. The LSTM
trained on six minutes of data outperformed the LSTM trained on two minutes of data in
all FS identification performance metrics.

Further investigation into the results of the LSTM trained on two minutes of data
(i.e., 2M-FS) revealed that, for 23 participants (~34% of participants), fewer than 50% of the
average number of FS were detected. Furthermore, 7 of these 23 participants had fewer
than 10 total steps detected by the LSTM. There were no identifiable similarities between
these participants, and this sub-group included both people who were fall risk and people
who were not at risk of falling. In this case, stride parameter analysis and step-based
feature calculation for fall risk classification for these participants would not be feasible
since most features are based on stride analysis. Therefore, to complete stride parameter
analysis and fall risk classification for all participants, only automated FS identified in the
first two minutes of data by the 6M-FS model was used.

LSTM is a deep learning approach that is often trained on large datasets of sequential
data. Deep learning approaches are more complex than decision trees and other machine
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learning approaches and can often perform with higher accuracy on large datasets. How-
ever, deep learning often requires a greater amount of labeled data to prevent overfitting
when training [27]. This could explain why the LSTM trained on the full six minutes of
walk test data had better FS identification than the LSTM trained only on the first two
minutes of walking; two minutes of walking for each participant was not enough data for
an LSTM to isolate FS events.

Step time, stride time, and cadence were calculated using automated FS from the 6M-
FS model and using manually labeled FS from the first two minutes of data. The difference
in stride time between automated FS and manually labeled FS calculations from the first
two minutes of data was within the MDC for healthy older adults, while step time and
cadence were outside of the MDC for healthy older adults. MDC for healthy older adults
was used as a comparator since these values do not exist for lower limb amputees. Average
step time and stride time for automated FS were both within approximately 0.04 s of the
manually labeled FS, suggesting step time and stride time calculated using automated FS
are comparable to manually labeled FS for most participants.

Fall risk classification was performed using a random forest model trained on step-
based features calculated from automated FS identified in the first two minutes of data by
the 6M-FS model. While the random forest correctly classified 76.3% of all participants and
over 90% of non-fall risk participants, only 13 out of 27 (48.1%) fall risk participants were
correctly classified. This means that ~52% of people who had fallen in the past six months
were mistakenly classified as not being at risk of falling. In a clinical setting, this could
translate to patients not being referred for further testing and a delay in the implementation
of fall intervention strategies. These results indicated that step-based features from a 2MWT
cannot be recommended for fall risk classification in lower limb amputees without further
model development. Further refinement of the fall risk model using data from a 6MWT
could improve classification results to a clinically usable standard.

It is important to consider that this study used the first two minutes of a 6MWT to
approximate a 2MWT. When observed in a clinical setting, some people begin walking
at a comfortable pace with a typical gait pattern, but more gait deviations and instability
become apparent as they continue walking. People may also walk faster if they know they
only have to walk for two minutes instead of six minutes. This may explain why fall risk
classification was worse when features were calculated from two minutes of data than
six minutes of data; the signals collected during the first two minutes of data were not
sufficient to differentiate fall risk participants and non-fall risk participants.

It is possible that data from the full six minutes may not be required to differentiate
fallers from non-fallers. In previous fall risk classification research, random forest models
trained on signals from 6MWT trials focused on signal data during turns only. For example,
Drover et al. [28] classified fall risk in older adults from 6MWT data collected from multiple
sensors with 77.3% accuracy, 66.1% sensitivity, and 84.7% specificity and noted that turn
data improved all classification metrics. In addition, Daines et al. [25] used turn data from
6MWT trials in lower limb amputees with 81.3% accuracy, 57.2% sensitivity, and 94.9%
specificity, however, manual FS and turn identification was required. Future research could
examine if features calculated from automated FS during turns from 2MWT (and 6MWT)
would improve fall risk classification. Additionally, differences in gait characteristics that
distinguish fallers and non-fallers may become more apparent as the test progresses. Step-
based features calculated from automated FS during the final minutes of the walk test could
be analyzed as a possible improvement on the fall risk classification model. Future studies
could also investigate other gait-based features that may better differentiate fallers from
non-fallers in a shorter walk test.

Fall risk information is not normally available from 2 or 6MWT, so this is promising
for the future development of an AI-enhanced TOHRC Walk test app for use in lower limb
amputees without requiring separate models integrated into the smartphone application
for each walk test. Stride parameters can be automatically calculated from the automated
FS for either a 6MWT or 2MWT immediately after completing the walk test with reasonable
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confidence. A model for fall risk classification could be integrated into a future application
and applied to 6MWT data, however, it is not recommended for 2MWT data.

5. Conclusions

Foot strike identification is essential to define the gait cycle and calculate stride pa-
rameters. AI tools for clinical analysis (e.g., fall risk classification) rely on proper gait
segmentation to calculate step-based features. This research determined that a smartphone
app can provide accelerometer and gyroscope signals during a 6MWT or 2MWT for AI-
based analyses to automatically determine foot strikes. The FS identification model used
a LSTM deep learning approach trained on six minutes of data, with this model being
applicable for identifying FS in both six minutes of data and two minutes of data with
at least 99% accuracy. However, a model only trained on the first two minutes of data
had poor foot strike identification results, thereby not supporting use of this approach for
outcome measurement.

Step and stride time calculated using automated FS in the first two minutes of data
identified by the 6M-FS model of smartphone data were equivalent to manually labeled FS
for most participants, indicating that the 2MWT stride outcomes measurements could be
viable for clinical analysis. Integration of this FS detection model into the TOHRC Walk
Test app could allow for immediate stride parameter analysis in lower limb amputees after
completing a 6MWT or 2MWT. However, fall risk classification using step-based features
calculated from automated FS is not recommended for the 2MWT.
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