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Abstract: Laryngeal high-speed videoendoscopy (LHSV) is an imaging technique offering novel
visualization quality of the vibratory activity of the vocal folds. However, in most image analysis
methods, the interaction of the medical personnel and access to ground truth annotations are required
to achieve accurate detection of vocal folds edges. In our fully automatic method, we combine video
and acoustic data that are synchronously recorded during the laryngeal endoscopy. We show that the
image segmentation algorithm of the glottal area can be optimized by matching the Fourier spectra of
the pre-processed video and the spectra of the acoustic recording during the phonation of sustained
vowel /i:/. We verify our method on a set of LHSV recordings taken from subjects with normophonic
voice and patients with voice disorders due to glottal insufficiency. We show that the computed
geometric indices of the glottal area make it possible to discriminate between normal and pathologic
voices. The median of the Open Quotient and Minimal Relative Glottal Area values for healthy
subjects were 0.69 and 0.06, respectively, while for dysphonic subjects were 1 and 0.35, respectively.
We also validate these results using independent phoniatrician experts.

Keywords: vocal disorders; laryngeal high-speed video; image segmentation; acoustic recordings of
voice; signal processing; multimodal sensing

1. Introduction

Regular assessment of the health of the human voice is important for the accurate
detection of voice disorders with varied etiology. Exposure to the risk factors of voice
disorders is increasing in the contemporary world. It is estimated that about a third of
workers in industrialized societies use voice as their main work tool. UK figures report
that over five million workers are routinely affected by voice impairment, at an annual cost
of around £200 million [1]. In recent decades, constant advancements in technology and
virtualization of life have rendered voice crucial for communication, particularly in the case
of individuals for whom it is a primary tool of trade and who are exposed to excessive vocal
loading, e.g., actors, singers, coaches, teachers, call-center workers, etc. Professional voice
users report to otolaryngological and phoniatric outpatient clinics with common problems.
Due to voice overload, the vocal folds may be affected and deformed by pathological
abnormalities causing malfunction of the entire speech apparatus [2]. Incorrect phonation
caused by excessive muscular activity may lead to loss of voice. The most common effect
of abnormal phonation (hyper-phonation) is pathological changes that appear in the form
of nodules, polyps, and the weakening of the arytenoid or thyroarytenoid muscles [3].

Precise assessment of voice disorders with the aid of modern technology enables a
structural and functional assessment of the larynx. Vibrations of the vocal folds play an
essential role in voice production [4]. During the periodic oscillation of the vocal folds,
the area between the vocal folds, called the glottal area, changes, which results in periodic
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interruption of the expiratory airflow through the glottis. Oscillation disturbance affects
voice quality. Therefore, an accurate assessment method of vocal fold vibrations is crucial
for the early diagnosis and treatment of various pathologies of the larynx [5]. Innovative
instrumental methods are steadily gaining importance in otolaryngological and phoniatric
studies of voice disorders [6].

Currently, the diagnosis of voice disorders can be facilitated by computer-based
processing methods that enable the computation of many diagnostically meaningful pa-
rameters [7]. The most common diagnostic methods rely on acoustic voice measurements
during sustained production of vocal sounds, termed phonation [8–10]. The parameters
characterizing voice quality can be computed from microphone recordings of the produced
voice [10,11], subglottal neck-surface accelerometer-based force measurements [12–14], or
with an electroglottograph—an apparatus measuring the amount of electricity that passes
through the larynx [15].

Recently, it has been stressed that direct visualization of laryngeal glottal structures
and phonatory function in the clinical setting is essential to assess larynx pathologies.
Therefore, in the last decades, an increasing number of scientific studies have reported
new developments in advanced methods of digital processing and analysis of images
of vibrating vocal folds [2,16,17]. There are three basic techniques of image collection:
laryngovideostroboscopy, videokymography, and laryngeal high-speed videoendoscopy
(LHSV).

Videokymography is a high-speed imaging method depicting one horizontal line
transverse to the glottis. The successively collected line of pixels stacked (from top to
bottom) into a matrix is presented in real-time on a standard monitor revealing a graphical
representation of the spatial position of the vocal folds over time [18,19].

The most common visualization method used in clinical practice is laryngovideostro-
boscopy (LVS) [11], although it does have significant limitations because visualizing a
single vibration cycle of the vocal folds requires recordings taken from tens or hundreds of
images from a sequence of consecutive cycles. Thus, vibration disorders of intermittent
nature cannot be adequately detected, which has a detrimental effect on the quantitative
analysis of LVS images.

LHSV is the tool that provides the most precise insight into the function of the larynx
during sound production. High-speed digital imaging of the oscillating vocal folds enables
visualization of the true frame-by-frame movement of the vocal folds during sound pro-
duction. However, this imaging technique requires the application of an advanced and
expensive system that allows thousands of images to be recorded per second.

Recently, extensive research has been carried out in the field of a quantitative assess-
ment of the glottal cycle using laryngeal high-speed digital imaging [16,20]. However, the
main research problem encountered in these studies has been the development of automatic
image analysis methods for segmenting the images of the larynx so that the boundaries of
the vocal folds and consequently the glottal area could be reliably detected in each LHSV
frame. If the segmentation process is inaccurate, the time- and size-related parameters
characterizing the kinematics of the vibrating vocal folds will have little clinical relevance
for the otolaryngologist and phoniatrician [21,22]. A detailed list of these parameters is
provided in our previous study [11]. For a more in-depth review of related work, see
Section 2.

In this work, we propose:

• an original method for automatic segmentation of the laryngoscopic images registered
with LHSV based on the fusing of time-synchronized data modalities coming from the
acoustic measurements of the produced voice and LHSV recordings.

• incorporation of the spectral domain data of the acoustic signal to control and optimize
the segmentation algorithm of the LHSV images of the larynx during phonation.

We propose a novel approach to segmenting images of the moving objects to find
other, non-medical applications. We demonstrate that it is effective in segmenting images
of the vibrating vocal folds, and phoniatricians positively evaluated our results. The main
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advantage of our method is that it allows automatic segmentation of LHSV images without
the need for trial and error in the search for optimal segmentation parameters.

The paper is structured as follows. In Section 2, we review recent studies related to
the analysis of LHSV images. Section 3 describes the apparatus used to record LHSVs
and introduces the medical cases of voice pathologies considered in this study. Section 4
explains the proposed method of automatic segmentation of LHSV images and presents
the results that verify it in Section 5. The potential of the presented approach is appraised
in the discussion in Section 6. Finally, overall conclusions from the presented study are
formulated in Section 7.

2. Related Works

In recent years, a majority of the image analysis techniques of the vocal folds phonation
process have relied on LHSV recordings [23–25] because the information from images of
the oscillating vocal folds recorded at a rate of approximately 4000 frames per second
(fps) provides a greater tracking precision of the movements of the vocal folds [26]. In
particular, thanks to a very short image acquisition process, the problem of the movement
of the laryngoscope with respect to the larynx, which tends to complicate algorithms for
the analysis of the laryngostroboscopic images, is minimized. That is a great technological
advancement compared to laryngovideostroboscopic techniques, which involve long image
acquisition time, e.g., up to 20 s, and reconstruction of a single vibration cycle of the
vocal folds from many consecutive vibration periods. Moreover, laryngovideostroboscopic
techniques enable the visualization of real-time kinematics of transient vibration disruptions
that tend to accompany some important voice disorders [27].

However, whichever image acquisition technique is applied, quantitative analysis
of laryngovideoscopic images requires complex image analysis methods and additional
adjustment, e.g., the settings of the parameters used in the segmentation algorithms need to
be established to achieve reliable results [28]. In particular, the first step in the quantification
of vocal vibration kinematics is a segmentation of the glottal area, i.e., the region between the
vocal folds, in each consecutive image of an LHSV sequence. Should that segmentation step
be flawed, any further parameters characterizing geometric and time-related parameters of
the VF movement will be inaccurate.

The development of a reliable image segmentation method of the larynx is a major
challenge for automated computer algorithms for the following reasons [29]:

• a single view two-dimensional projection of a three-dimensional anatomic structure of
the glottis is recorded; in particular, not all details of the elastic deformations of the
vocal folds during the vibration cycle can be viewed,

• the point light source coming from the laryngoscope illuminates different anatomical
regions of the glottis with nonuniform intensity,

• the position of the laryngoscope with respect to the glottis is different in each laryngeal
examination, e.g., the distance and the viewing angle of the camera,

• the ground truth information about the glottal area can be collected only from subjec-
tive inspections and manual delineations of an expert doctor or a phoniatrician; for
a very large number of images, the task is effort and time-consuming, and what is
more, a special user interface needs to be developed to enable clinicians to precisely
delineate the glottal area.

One of the most advanced approaches to the analysis of LHSV images was presented
in [30]. The authors employed the Kalman filter to estimate the kinematic sequence of each
of the vocal folds’ edges to predict the contact force during their collision. Researchers
in [31], on the other hand, defined the region of interest (ROI) containing the image of the
glottal area by analyzing the average intensity variations both in the columns and in the
rows of the images.

In [32], a novel method was proposed for automatic glottis segmentation in endoscopic
high-speed videos. ROI detection was done using the Fourier descriptors and a threshold-
ing method combined with a level set algorithm, incorporating the prior glottis shape. The
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level set method is a numerical technique closely related to the active contour framework
used to trace shapes of selected figures and identify dependencies among them based on the
energy minimization criterion. Another advanced segmentation method utilizing the level
set based curve evolution for vocal folds segmentation was proposed in [33]. However, the
authors noted that the method required subjective parameter tuning and was unsuitable
for fully automated analysis of the vocal fold movements during phonation.

It should be noted that most of the developed methods that have been proposed for
segmentation of glottal images are designed for specific image recording conditions and
work properly only for local databases of videos collected at institutions, hospitals, or health
centers, and thus require manual validation (especially in the case of new registrations).
Designing an algorithm that would yield satisfactory results for any given laryngoscopic
video registration of the vocal folds during voice production (phonation) is a complex task.

There is a group of image segmentation approaches that use continuity conditions
derived from image sequences and extend the analysis into the time domain, e.g., by
adapting a Geodesic Active Contour model defined in three dimensions and formulating
continuous and variational energy minimization problems. The 3D surface is automatically
evaluated through an algorithm optimizing the forces derived from the image and the
surface shape (curvature and continuity), which minimizes the hypothetical energy func-
tional [34]. Other methods adopt a Canny edge detector preceded by a 3D mean curvature
filtering process [26].

Several methods have been proposed to validate the vocal folds image segmentation
results with ground truth, based on calculating a metric of similarity between human- and
machine-generated results [35]. The main problem related to objective evaluation is the
necessity of generating ground truth, which is subjective and requires considerable time
and effort [35].

A recent paper [36] tested different configurations of deep convolutional long-short-
term memory networks were tested for automatic segmentation of the glottis and vocal
folds in endoscopic LHSVs. The best-performing network was selected for extensive
testing on a large set of LHSVs. Interestingly, the long-short-term memory architecture
allowed the modeling of the spatial and temporal features of the vibrating vocal folds. This
machine learning approach enabled fully automated quantification of the vibrations of the
vocal folds. Nevertheless, the network required 13,000 LHSV frames to train the network.
High segmentation precision was achieved, resulting in Dice coefficients values used for
quantifying the segmentation results exceeding 0.85.

Other very recent work concerns the determination of the effect of incorporating
features derived from vocal fold vibration transitions into acoustic boundary detection [37],
comparative analysis of rapid videolaryngoscopy images and sound data [38], and a
computer model for the study of unilateral vocal fold paralysis [39]. Interestingly, a method
for detecting COVID-19 by analyzing vocal fold vibrations has also been proposed [40]. The
presented literature review concludes that most image segmentation algorithms require a
particular validation procedure to prove their accuracy. However, we have noted that a
properly selected image segmentation technique combined with correlated acoustic analysis
allows us to objectify the delineated contour of the vocal folds and provide a compliance
parameter, which is crucial for quantitative image-based segmentation results of the glottal
area. In our seminal work, we proposed such an image segmentation method [41]. The
method is based on comparing the segmentation result with the synchronously collected
acoustic registration during the patient’s phonation of the vowel /i:/. This paper expands
on the first study and validates the results on a set of LHSV recordings for normophonic
and dysphonic voices. Previous work was tested on only a few cases and did not include a
broader discussion of the results and clinical interpretation by phoniatricians. In this study,
we also fully automate this method by automatically detecting the glottal folds region of
interest (RoI).
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3. Materials and Recordings of LSHV

The laryngeal recordings were carried out at the Department of Otolaryngology, Head
and Neck Oncology, Medical University of Lodz.

Twenty-two subjects participated in the study, 7 males and 15 females (see Table 1).
Eleven of the participants had normophonic voice (denoted N1–N11), whereas 11 were
patients (denoted D1–D11) with voice disorders (dysphonia) caused by glottal insufficiency
due to incomplete glottal closure. The age of the normophonic group (7 females and
4 males) ranged from 27 to 65 years, with a mean age of 46. The dysphonic group consisted
of 8 females aged 26–64 (with the mean of 47 years) and 3 males aged 57–71 years (the
mean = 65). Among the dysphonic patients, only the two oldest men experienced no
professional vocal loading.

Table 1. Summary of patients participating in the study by gender and normophonic/dysphonic
subjects.

Patients Normophonic Dysphonic

Males 7 4 3
Females 15 7 8

Total 22 11 11

For all subjects, after a routine Ear, Nose, and Throat (ENT) examination, the imaging
recordings of the larynx were performed using an LHSV system. In the normophonic
patients, the LHSV examination showed no significant deviations in the regularity and
symmetry of vocal folds vibrations, mucosal wave, and glottal closure (Figure 1).

Figure 1. Images of the glottis for the normophonic subject N3 for the maximum opening (a) and
maximum closing (b) of the vocal folds correspondingly.

However, in three of the examined normophonic women, the imaging of the larynx
revealed slightly incomplete glottal closure only in the 1/3 posterior part of the glottis,
which did not affect their voice quality. In the dysphonic patients, disturbances of vocal
fold vibrations and incomplete closure of the glottis during phonation were observed. The
Glottal Closure Types (GTs) were described according to the guidelines of the Committee
on Phoniatrics of the European Laryngological Society (ELS) [5], in the following way: type
A is rectangle/longitudinal glottal closure, B—hourglass, C—triangle, D—V-shaped, and
E—spindle-shaped. An illustration of these types of glottal closure is shown in Figure 2.

Figure 2. Classification of glottal closure types: (A) rectangle/longitudinal, (B) hourglass, (C) triangle,
(D) V-shaped, (E) spindle-shaped.



Sensors 2022, 22, 1751 6 of 23

In the dysphonic subjects, the most commonly occurring abnormality was the spindle-
shaped glottal closure. In 8 of the dysphonic patients, the spindle-shaped glottal gap along
the entire membranaceous part of the glottis during the closed phase of the glottal cycle
was observed (see, e.g., Figure 3). They complained of several voice-related problems:
permanent hoarseness, vocal fatigue, and periodic voicelessness/aphonia. In one of the
patients who reported periodic vocal fatigue, the longitudinal glottal closure (little incom-
pleteness of glottal closure in the 1/2 posterior part of the glottis during the closed phase
of the glottal cycle) was observed (Figure 4). One of the dysphonic subjects presented only
a minimal spindle-shaped glottal gap in 1/3 middle part of the glottis (Figure 5).

Figure 3. Images of the glottis for dysphonic patient D8 with severe glottal insufficiency for the
maximum opening (a) and maximum closing (b) of the vocal folds correspondingly.

Figure 4. Images of the glottis for dysphonic patient D5 with longitudinal glottal insufficiency for the
maximum opening (a) and maximum closing (b) of the vocal folds correspondingly.

Figure 5. Images of the glottis for dysphonic patient D4 with minimal spindle-shaped glottal insuffi-
ciency for the maximum opening (a) and maximum closing (b) of the vocal folds correspondingly.

The vocal fold function was assessed during sustained phonation of vowel /i:/ at a
pitch and loudness comfortable for the subject. Simultaneously to the LHSV imaging, a
synchronized acoustic recording of the voice produced during phonation was done. The
recordings were repeated several times for each of the examined subjects.

The laryngeal images were recorded with a high-speed laryngeal camera from Diag-
nova Technologies with a 2/3-inch progressive CCD sensor with a camera shutter connected
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to an external microphone that synchronously recorded the acoustic wave generated by the
vocal folds during the phonation. The image capture rate of the camera was 3150 images
per second. The images were digitized at a resolution of 480 × 400 pixels. The inherent
geometric lens distortions were corrected with calibration methods based on pixel coordi-
nate remapping [35]. The light source was a 15 W laser with special spectral characteristics
to achieve excellent visualization of the glottal tissue. The light from the illuminator was
transferred to the endoscopic optics via an optical fiber. The camera was equipped with
an electronically controlled lens allowing for manual or automatic image focusing. The
Fiegert-Endotech ø12.4/7.2 endoscope used in the laryngeal recordings together with the
assembled complete laryngeal high-speed system is shown in Figure 6a,b shows a diagram
of how the laryngoscope is positioned in the larynx during the examination. Simultane-
ously to the LHSV recording, a synchronized acoustic recording of the voice produced
during the sustained phonation of vowel /i:/ was done. The microphone we used for
the voice recordings was an electret microphone MK602762PC featuring 20 Hz–16,000 Hz
bandwidth. The relative distance between the microphone and the subject during the
recordings was approximately 30 cm. The acoustic wave signal was sampled at a sampling
rate of 22,050 Hz [36].

Figure 6. Photograph of the LHSV recoding system with the 70-degree rigid scope, attached light
source, and a microphone. The box on the lowest shelf of the rack is the endoscope’s light source,
and the box on the middle shelf is a high-speed camera offering acquisition of up to 4000 images per
second (a), a diagram showing the position of the laryngoscope during laryngeal examination (b).

For the recording rate of the high-speed laryngeal images at 3150 frames per second,
the camera captured approximately 200 images during one oscillation cycle of the VFs. This
image frame rate was approximately 7 times slower than the sampling rate (22,050 Hz) of
the acoustic signals, i.e., 7 acoustic audio samples were recorded during the acquisition of
one LHSV image. In further analysis, the acoustic signal was down-sampled (as further
explained in Section 4) to properly match its sampling rate to the image acquisition rate.
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4. Automatic Segmentation Method of LHSV Images

The recorded LHSV RGB image sequences were converted to grayscale images using
the standard formula [42]: Grayscale = 0.299R + 0.587G + 0.114B, where R, G, B are the red,
green, and blue color components, respectively. Then, each image frame from the LHSV
sequence was rotated so that the main axis along the glottal area was positioned vertically.

An important pre-processing step of the analysis of laryngeal images is to identify the
region of interest (ROI), i.e., the region containing the vocal folds. We applied an efficient
way of locating the ROI based on calculating the total image variation quantity as proposed
in [31]. This quantity is obtained by calculating the sum of the absolute differences of image
brightness in successive image frames. Thus, rapid changes in image brightness (e.g., due
to moving vocal folds) will yield large values of this quantity. We define this quantity as
the total variation map TV(x, y) calculated over a sequence of frames as follows:

TV(x, y) =
N−1

∑
t=0
|I(x, y, t + 1)− I(x, y, t)| (1)

where: I(x, y, t)—is the intensity function of the image at spatial coordinates x, y, and t
denotes the frame index t = [0, 1, . . . , N − 1] of N analyzed images from the LHSV sequence.
Points of TV(x,y) map assume large values for those image locations where there is a large
variability of image brightness for consecutive images of an LHSV sequence. The map
serves to locate the ROI for further image analysis. Figure 7 presents the obtained heat map
based on the established ROI.

Figure 7. The image of the glottis of a normophonic subject (a) and the corresponding total variation
image (b), as defined in Equation (1), represented as a heat map (the larger the variation, the warmer
the color of the map).

The most important element of the quantitative assessment of the phonatory process
is the automated localization of the vocal fold edges during voice production. When VF
edges are correctly detected, a glottovibrogram, Glottal Area Waveform (GAW), Glottal
Gap Waveform (GGW) can be constructed. These representations provide a complete
characterization of the kinematics of the vocal folds boundaries. From these representations,
numerous geometric parameters of the glottal area shape and its variation over time can be
calculated. The definitions of the parameters used in this study can be found in Appendix A.
Additionally, a more complete set of parameters characterizing glottal area geometry used
to quantify other laryngeal pathologies is defined in our previous work [11].

The image processing pipeline is shown in Figure 8 and is as follows.
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Figure 8. The processing pipeline of recorded LHSV images and synchronously recorded voice signal
during sustained phonation of vowel /i:/.

The color image of the glottis (Figure 9a) captured by the high-speed camera is con-
verted into a greyscale image, then the region of interest is selected, and the edges of the
vocal folds are detected (Figure 9b). Based on this, the glottal area, i.e., the space between
the vocal folds, is determined (Figure 9c). The GAW is the signal representing instanta-
neous variations of the glottal area in time (Figure 9e). From the GAW, one can calculate
geometric and time-related parameters characterizing the oscillation process of the VF, e.g.,
the minimum and maximum values of the glottal area [11].

The GGW is the signal representing instantaneous variations in the width of the gap
between the VFs computed at predefined levels of the glottis. From the GGW, one can
calculate the closing and opening periods of the VFs during a vibration cycle [11].
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Figure 9. Representations of the LHSV image: (a) laryngeal image of the glottis, (b) detected contour
of the glottal boundary, (c) glottal area, (d) the glottovibrogram, (e) the glottal area waveform.

The glottovibrogram, on the other hand, is a spatio-temporal map illustrating time
variations of the width of the glottal gap at different levels of the glottis. The glottovi-
brogram shown in Figure 9d depicts a map in which the columns represent time and
rows correspond to the glottal width along the anterior-posterior length of the glottis. The
instantaneous glottal gap width is represented by pixel brightness in the glottovibrogram
map.

In this work, we propose an automatic method for detecting VF edges based on the
combined analysis of the data derived from LHSV recordings and synchronously recorded
acoustic signals. We show that the segmentation algorithm can be optimized by the spectral
data of the acoustic signal without the need to refer to ground truth information.

The underpinning idea of the method shown in Figure 10 is to pool candidate seg-
mentations of the glottal images for a large set of segmentation parameters. Then, select
the best segmentation result by finding the best match between the pool of Fourier ampli-
tude spectra computed from the glottovibrograms and the Fourier amplitude spectrum
computed for the synchronously recorded acoustic signal.

The applied segmentation method of the glottal image is based on a simple image
thresholding method, as follows:

IO(x, y) =
{

0 i f med∝(x, y)− I(x, y) < β
1 i f med∝(x, y)− I(x, y) ≥ β

(2)

where:
x, y—pixel coordinates of the monochrome image,
I—image recorded during the phonation process,
IO—binary image containing the thresholding result,
medα(x,y)—median value computed at image coordinates x, y for pixels in a block size

α × α,
α—the first segmentation parameter, i.e., the block size of the median filter,
β—the second segmentation parameter.
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1 

 

 

Figure 10. Diagram explaining the designed method of the segmentation of glottal images where, in
the search for the best segmentation results, the Fourier spectra derived from the pool of segmented
LHSVs are compared to the Fourier spectra of the acoustic recording.

Parameter α specifies the block size of the median two-dimensional filter, and parame-
ter β acts as a threshold value for the subtraction result between the image pixel I(x,y) and
median filtered pixel med(x,y) at coordinates x, y. Note that the parameter α determines the
strength of the median filter medα(x,y), i.e., the larger the filter window size (larger α), the
stronger the smoothing effect the filter will have. Then, according to Equation (2), from this
filtering result, the image content I(x,y) is subtracted. We can interpret this operation as
removing the constant component from the image, computed for the image window size
defined by parameter α. The remaining image data, i.e., devoid of the constant component,
is thresholded at a level determined by the parameter β. The outcome of this segmentation
method is a binary image consisting of pixels that are assigned values 0 (corresponding to
the minimum pixel brightness) and 1 (corresponding to the maximum pixel brightness).

This segmentation method is applied for a pool of segmentation parameters α and β.
As a result, we obtain M = α × β segmentation results in Figure 10. Parameters α, β assume
integer values in the range of [1, 255]. The task is to select from the M segmentation results
the one that best fits the glottal area.
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We propose the following multistep automatic procedure for selecting the best seg-
mentation result for an LHSV recording consisting of N images of the glottis (refer to a
graphical illustration of this method in Figure 10):

1. Compute a pool of M sequences of binary images; each sequence consists of N binary
images obtained by segmenting LHSV images by applying the selected parameter
combination (α, β) of the segmentation procedure as defined in Equation (1).

2. For each of M sequences for the selected parameters (α, β), compute the glottovibro-
gram gα,β(t, l), where t—is the discrete time coordinate (the horizontal axis) and l—is
the level along the glottal length (the vertical axis).

3. For each of M glottovibrograms, compute the Fourier spectrum along L rows of the
glottovibrogram and sum the results:

Fα,β( f ) =
1
N

L−1

∑
l=0

N−1

∑
t=0

gα,β(t, l)e−j 2πt
N f (3)

where:
gα,β(t, l)—the point of the glottovibrogram map computed for a parameter set (α, β),
Fα,β( f )—Fourier coefficients of the glottovibrogram,
f —frequency,
N—the number of analyzed consecutive LHSV images,
L—the number of levels at which the glottal length is represented, i.e., the number of

rows of the glottovibrogram.

4. Compute the Fourier spectrum of the acoustic recording s(t) performed synchronously
with the LHSV recording:

S( f ) =
1
N

N−1

∑
t=0

sd(t)e−j 2πt
N f (4)

where:
S( f )—Fourier coefficients of the acoustic recording,
sd(t)—downsampled (decimated) acoustic signal (as explained below),
f frequency,
N the number of acoustic samples (after down-sampling).
Note that the down-sampling of the acoustic signal is necessary before the glottovibro-

gram Fourier spectra and the acoustic spectra computed in Equations (3) and (4) can be
compared. The acoustic signal is down-sampled by a factor of 7, i.e., from the sampling
rate of 22,050 to the sampling rate of 3150, which is equal to the acquisition frame rate of
the LHSV sequence. Before down-sampling, the acoustic signal is low-pass filtered using
4-th order Butterworth filter with a cut-off frequency fc = 1500 Hz to meet the sampling
theorem condition that the maximum frequency components of the sampled signal cannot
exceed half of the sampling rate.

5. For each combination of parameter values (α, β) compute the cost function dα,β to
compare the modulus of the glottovibrogram spectra and the modulus of the acoustic
spectra:

dα,β =
N/2−1

∑
f=0

∣∣∣∣Fα,β( f )
∣∣− |S( f )|

∣∣ (5)

where:
|·|—denotes the modulus of the Fourier coefficients.

6. Find a parameter set (α*, β*) for which the cost function is minimum:

argmindα,β = (α∗, β∗) (6)
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7. Select the best segmentation result of the glottal image according to the criterion (6),
obtained for parameters (α*, β*).

The values of the cost function dα,β computed for a set of parameters (α, β) are shown
in Figure 10 in the form of a grayscale image where the value of the cost function is
represented by pixel brightness. An asterisk denotes the minimum of the cost function. The
example of the best fit of the Fourier amplitude spectra is shown at the bottom of Figure 10.

We should note that the proposed method involves a high computational cost due to the
optimization process in which the best set of segmentation parameters (α*, β*) is selected. This
optimization method requires the computation of N × N = 255 × 255 = 65,025 segmentations
of each image frame from the LHSV recording. Then, for a series of segmented images,
the corresponding glottovibrograms must be constructed. Their Fourier spectra have to
be calculated. Then, these spectra have to be compared one by one with the spectrum of
the recorded acoustic signal, and the best fit between them has to be selected. We estimate
the proposed method’s computation time to segment a single LHSV recording consisting
of 256 images to be approximately 5 min for a PC equipped with an Intel i7 processor.
However, mapping the proposed algorithm, which consists of multiple independent com-
putational threads, to the Graphical Processing Units (GPU) would significantly mitigate
this shortcoming of the algorithm.

The image processing and analysis algorithms and acoustic signal processing algo-
rithms were developed in Python and C++ programming languages using open libraries,
i.e., NumPy, SciPy, Matplotlib, and OpenCV. For time-critical methods (e.g., computing
the median of a subset of pixel values), the C++ programming language was used to
create Python bindings. We used the Spyder Integrated Development Environment for
programming in Python.

5. Results

The proposed method was tested on the LHSV recordings collected from 11 individuals
with normochromic voices and 11 with pathological voices, i.e., glottal insufficiency. During
the LHSV recordings, the requirement was to record the voice signal simultaneously during
phonation of vowel /i:/. Both the video and acoustic recordings were pre-processed
according to the procedures described in Section 4 to make them suitable for computing
the Fourier spectra, i.e., the pool of glottovibrograms was computed for a set of candidate
segmentation parameters (α, β) and the acoustic recordings were down-sampled to match
the sampling rate of the signal (fs = 22,050 Hz) to the frame rate of the LHSVs (fv = 3150 Hz).

In Figure 11, we show an example segmentation results for the normophonic subject
N2 obtained for six random selections of parameter values (α, β) and one segmentation
obtained for a parameter set (α*, β*), i.e., that minimizes the cost function defined in
Equation (5).

Figure 11. Plot of the cost function map dα ,β , (left panel) and example image segmentation results
(right panel) obtained for the normophonic subject N2. The segmentation results are obtained for
parameters (α, β) and assigned different numbers in the cost function plot. The best segmentation
result is shown in a thick box on the left side of the right panel and marked with the number 1.
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5.1. Phoniatrician Validation of the Obtained Results

The complexity of the vocal fold anatomical structure makes it difficult to provide
objective ground-truth annotations that would enable quantitative evaluation of the estab-
lished vocal fold edge positions during phonation.

Our attempt to use a graphics tablet to delineate vocal fold boundaries on LHSV
images was labor-intensive and not very precise. The drawn lines in many segments had
to be corrected, and the result was not satisfactory in most cases. Thus, this method of
obtaining ground truth from phoniatricians for annotation of vocal fold boundaries did not
work.

Therefore, a different approach using the capabilities of the proposed image segmenta-
tion method was used, in which a large pool of candidate segmentation was computed. Our
automatic segmentation method searched for the minimum of the cost function defined
by Equation (5) to determine the optimal segmentation result. We asked phoniatricians
to perform a similar task on a preselected set of image segmentation results, i.e., to select,
according to their clinical experience, the segmentation results that best match the vocal fold
boundaries. Then we compared our results with the indications of phoniatricians. Below is
a more detailed explanation of our approach to validating the segmentation results.

For each of the 22 examined LHSV recordings for both groups of individuals (normo-
phonic subjects and patients with glottal insufficiency), we prepared a set of 60 different
segmentation results obtained for different parameter values (α, β) where only one seg-
mented image was obtained for the parameters (α*, β*), i.e., the one that was selected as
the best according to the minimum condition of the cost function Equation (5). Then, for
the set of 60 segmented images computed for each of the LHSV recordings, we asked
two independent expert phoniatricians to select the best three image segmentation results
corresponding to the best detection of the location of the vocal fold edges. The set of
60 segmented images of the glottis selected for evaluation was obtained for 60 pairs of
segmentation parameters (α, β) selected from the cost function map (see sample map in the
left panel of Figure 11). The coordinates of these parameters in the cost function form a
matrix of 6 × 10 regularly spaced points in the rectangular neighborhood of the parameters
(α*, β*) corresponding to the minimum of the cost function dα ,β.

Importantly, for each of the recordings, the phoniatricians’ selection of the best three
segmentation results included the segmentation obtained for the parameters (α*, β*). An-
other notable observation is that the selection done by each of the phoniatricians differed
very little, regardless of whether they were concerned for the normophonic subjects or
patients with glottal insufficiency (see Figure 12, for an example of segmentation results
selected by phoniatricians).

Figure 12. Example segmentations of the glottic images selected by the phoniatricians:
images (a–c) are for the normophonic subject N10; (d–f) is for the patient I5 with glottal insuffi-
ciency; images (a) and (d) are the results obtained for the optimum segmentation parameter set
(α*, β*) minimizing cost function (5).
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5.2. Calculation of Geometric and Time-Related Parameters for the Segmented LHSV Images

The designed algorithms described in this work make it possible to determine the
position of VFs edges in terms of function minimization tasks. The obtained and validated
segmentation results make it possible to compute several indices that quantitatively charac-
terize the kinematics of the vocal fold vibrations (the definition of the indices is given in
Appendix A). The presented solution is the basis for an objectified and quantitative analysis.
The values of the computed indices for the examined subjects are summarized in Table 2.

Table 2. Geometric and time-related parameters for the segmented LHSV images in normophonic
subjects and dysphonic subjects with glottal insufficiency.

Patient
Number

Closing
Quotient

Open
Quotient

Speed
Quotient MRGA 1

Normophonic

N1 0.36 0.81 1.25 0.23

N2 0.36 0.61 0.72 0.05

N3 0.37 0.65 0.76 0.00

N4 0.48 0.81 0.69 0.09

N5 0.42 0.67 0.62 0.01

N6 0.49 0.78 0.57 0.22

N7 0.40 0.76 0.90 0.01

N8 0.13 0.26 1.08 0.00

N9 0.45 0.69 0.53 0.17

N10 0.38 0.66 0.74 0.06

N11 0.49 0.77 0.59 0.20

Dysphonic

D1 0.49 1 1.04 0.33

D2 0.53 1 0.89 0.60

D3 0.54 1 0.85 0.52

D4 0.49 1 1.04 0.52

D5 0.55 0.92 0.67 0.01

D6 0.47 0.92 0.96 0.03

D7 0.47 0.95 1.02 0.30

D8 0.48 1 1.08 0.69

D9 0.49 1 1.04 0.40

D10 0.52 1 0.92 0.35

D11 0.53 0.93 0.77 0.05

p-values 1.3 × 10−3 7.1 × 10−5 0.04 0.01
1 Minimal Relative Glottal Area.

The study confirms that it is possible to calculate quantitative parameters describing
vocal fold vibratory characteristics based on the computer segmentation of LHSVs. The
quotients Closing Quotient (CQ), Open Quotient (OQ), and Speed Quotient (SQ) were
computed based on the obtained glottovibrograms, and their values depended directly
on the accuracy of image segmentation. Table 2 presents the values of the CQ, OQ, SQ
calculated for the middle part of the glottis. The rationale for taking that approach is
that most of the dysphonic patients (subjects 9/11) presented with the largest incomplete
glottal closure in the middle segment of the glottis, classified as type E: spindle-shaped GTs
according to ELS. Thus, the segmentation results are essential for accurate quantification of
the VF oscillations. Moreover, according to [42], vibrations in the medium segment of the
glottis play a major role in normal voices. The pathology assessment at this point is the
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most important in glottal insufficiency (complete lack of closure at this position). Thus, OQ
calculated in the medium segment of the glottis is a meaningful parameter for this type of
voice.

Please also see the box-and-whisker plot in Figure 13, showing the spread of the
calculated quotient values. The boxes are drawn from first quartile Q1 to third quartile
Q3 with a horizontal line within the box to denote the median. Out of the calculated
quotients, the CQ and OQ assumed significantly different values in the normophonic
and the dysphonic group (Figure 13). Moreover, the median values of OQ and MRGA
quotients for healthy subjects were 0.69 and 0.06, respectively, while for dysphonic subjects
were 1 and 0.35, respectively. Nevertheless, the differences for all calculated quotients for
normophonic and dysphonic subjects were significant. See the bottom row in Table 2 with
p-values calculated by applying the non-parametric Mann–Whitney U test to the calculated
quotients for normophonic and dysphonic subjects. Note that all p-values are less than 0.05.

Figure 13. Box-and-whisker plots of calculated quotients for normophonic and dysphonic subjects.
The upper and lower boundaries of the boxes indicate first quartile Q1 to third quartile Q3, respec-
tively, while the boundary of the lower whisker denotes the minim value in the data set and the
upper whisker boundary denotes the maximum value in the data set.

See Figure 14 illustrating clear discrimination of the two examined groups of subjects
for MRGA, CQ, and OQ quotients. The collected data can be further used to build a larger
database, e.g., from multiple phoniatric clinics, and apply machine learning algorithms [43]
to discriminate normophonic and dysphonic patients robustly based on the calculated
quotients.

Figure 14. 3D plot for indices MRGA, OQ, CQ illustrating good discrimination of the normophonic
subjects (green dots) and patients with glottal insufficiency (red dots).
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The OQ assumed the highest values for the patients with the spindle-shaped glottal
gap along the entire membranaceous part of the glottis. The OQ in those patients reached
the value of 1.00, confirming that their vocal folds remained open throughout the phonation
cycle. Similarly, for those subjects, the MRGA characterizing the ratio between minimum
and maximum glottal area in the glottal cycle assumed large values (median 0.35), which
confirmed a lack of the glottal closure. In the normophonic subjects, the MRGA reached
small values (median 0.06), reflecting complete vocal fold closure along the entire length of
the glottis.

6. Discussion

Computer image analysis techniques have brought about major advances in medical
diagnosis based on quantified analysis of biomedical images of different modalities. In
this respect, the analysis of biomedical images of moving tissue is particularly challenging.
The human vocal folds vibrate with a frequency exceeding 200 Hz in the case of women.
Real-time monitoring of this complex physiological phenomenon makes great demands on
image recording systems. Recently, researchers’ interest in laryngeal high-speed recordings
has gained on the previously popular stroboscopic recordings as they required longer
recording times and suffered from the inability to reproduce irregular phonatory functions
of the vocal folds. Thanks to thousands of images recorded per second, high-speed cameras
offer real-time insight into the movement of the oscillating vocal folds. Determination of
vocal fold vibrations during the phonatory function of the larynx is a crucial element in
the diagnosis of the clinical type of voice disorders. The LHSV technique is an innovative
diagnostic tool used to visualize larynx kinematics. It offers an unprecedented quality of
real-time visualization of VF phonatory movement [44].

Nevertheless, the task of image segmentation, whose goal is to detect and track the
edges of the vocal folds, remains a difficult computational problem. Many approaches
have been recently proposed for solving this problem, with those involving deep neural
networks trained on laryngeal images of healthy subjects and patients with voice disorders
showing the greatest promise. Although very successful such approaches require tens
of thousands of training examples of laryngeal images to achieve image segmentation
precision comparable to manual segmentations [38]. However, as the authors of this paper
conclude, comparing these results with other approaches is not possible due to the lack
of a suitable reference data set. One of the drawbacks of machine learning methods is
that the results they produce lack explanatory power, and the segmentation decisions are
hidden within the deep structure of the neural network. Nevertheless, advances in machine
learning techniques towards explaining neural network decisions are ongoing and can
certainly offer powerful tools for image recognition with explanatory features.

We have proposed a novel approach in which we control the image segmentation
algorithm with data derived from acoustic recordings collected synchronously with the
video capture of the phonatory process. It needs to be noted that the recorded acoustic
signal is filtered by the vocal tract [45–48] and does not directly reflect the mechanical
oscillation of the vocal folds. However, owing to the Fourier spectral representation, the
fundamental frequency of the vibrations can be clearly outlined. During the phonation of
vowel /i:/, the acoustic signal after computing its amplitude Fourier spectrum consists
of the fundamental frequency and formants characterizing the acoustic properties of the
vocal tract (as shown in Figure 10). It is worth noting that the harmonic corresponding
dominates such a spectrum to the fundamental frequency.

The basis of our method is the assumption that the best fit between the amplitude
Fourier spectra of the acoustic signal and the spectra derived from the glottovibrogram
will occur when the sequence of segmented images reflecting vocal folds movements is
represented by the harmonic identical to the frequency of vibration of the vocal folds, i.e.,
the fundamental frequency. In the case of dominance of other frequencies in the segmented
images, i.e., different from the fundamental frequency, large values of the cost function
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(5) were obtained, indicating incorrect segmentation of the vocal folds, i.e., detection of
laryngeal anatomical structures that do not represent the movement of the vocal fold edges.

We recognize that the study is not without its limitations: the method has only been
tested not on a large number of recordings, and only one type of voice disorder involving
glottal insufficiency was considered in the study. However, the video material was carefully
selected under the supervision of phoniatricians, who selected the most important and
representative cases for our study. At present, due to the limitations of COVID, we cannot
collect video material on a larger scale that could include representative groups, particularly
in terms of gender, age, and health status.

Moreover, it should be noted that it is possible to develop image segmentation methods
other than ours that might give even better segmentation results. Our primary intention
was rather to show the potential of our original approach to the problem of segmenting
images of moving objects for those cases where other sources of data of different modalities
are available and can be used to optimize the image segmentation process.

In subjects with voice disorders, impairments in vocal fold oscillations affect the acous-
tic quality of their voice. It should be noted that there are three main vocal fold dynamical
features that foster normophonic/euphonic voice: vocal fold oscillations are assumed to be:
(1) symmetric, (2) periodic, and (3) exhibit a closed state during oscillations [6]. Incomplete
glottal closure during the phonatory function of the larynx is associated with vocal fatigue
and a breathy voice. However, it is assumed that slightly insufficient dorsal glottal closure
should be regarded as normal, particularly in women [49]. The study confirms that three
of the examined women with normophonic voice observed incomplete glottal closure in
the 1/3 posterior part of the glottis with no effect on voice quality. Other types of glot-
tal insufficiency were considered pathological. In the examined dysphonic subjects, the
spindle-shaped glottal closure (type E according to the guidelines of ELS) was observed
the most frequently (9 patients). Its distinctive features were the bowed shape of the vocal
fold edges and a lack of glottal closure in the inter-membranaceous part of the glottis,
resulting from the asthenic or atrophied vocal muscles and mucosa in the vocal folds. Such
structural modifications lead to increased glottal air leakage and a breathy, weak voice.
Professional vocal loading and aging (presbyopia) are considered to be the most frequent
factors predisposing to this kind of glottic dysfunction [49–51]. Our results concur with
their study. The patients in our study who experienced the following voice symptoms:
vocal fatigue, weakness of voice, or voicelessness, mainly included professional voice users
with long-term vocal loading. In turn, the two oldest male participants with no experience
of professional vocal loading had clinically diagnosed presbyphonia.

Furthermore, the application of LHSV enabled the determination of the parameters
OQ, CQ, SQ, and MRGA from the variations of the GGW in consecutive LHSV images.
These parameters, characterizing incomplete glottal closure, have been found meaningful
in assessing vocal fold vibrations, particularly vocal apparatus’ insufficiency, as reported
in recent studies [52]. Such evaluations are important in clinical voice assessment, e.g.,
in objective diagnosis and monitoring the results of an administered therapy [53]. Deter-
mination of the computed parameters makes it possible to parametrize dysfunctions of
the glottis, including asthenia of the internal muscles of the larynx affecting vibrations
of the VFs. One of the most relevant indexes is the OQ representing the duration of the
open phase in relation to the total glottal cycle. The OQ is considered a good measure for
comparing normophonic subjects with patients suffering from glottal insufficiency.

In [54], it was reported that in 96% of the patients with occupational voice disorders,
the value of the OQ was on average 0.98, while the mean OQ value in the normophonic
subjects took the value of 0.68. Moreover, in the dysphonic subjects, the MRGA, i.e., the
ratio between the minimum and the maximum glottal area in the glottal cycle, assumed
higher values than in the normophonic group (mean value 0.35 vs. 0.09) and quantified
the incompleteness of the glottal closure (glottal gap). These results are consistent with
our study and our earlier study [11] conducted on another group of patients. Analysis
of videolaryngostroboscopic images was used for characterizing incomplete glottal clo-
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sure. In another study [12], which used a high-speed video system to collect data from
healthy subjects only, the mean value of OQ was 0.66 ± 0.14 in females and 0.56 ± 0.1
in males. These results again are consistent with our study. Similarly, the results for the
mean value of SQ = 0.85 ± 0.21 obtained for the healthy female subjects are consistent
with our results SQ = 0.77 ± 0.21. Also, in [55], in line with the studies discussed above,
an elevated mean value of the OQ obtained for the patients with voice disorders was
OQ = 0.84 ± 0.16 compared to healthy subjects OQ = 0.84 ± 0.16. Interestingly, and in
contrast to the reviewed studies, in a recent work reporting an open platform for laryngeal
high-speed videoendoscopy [29], very high values of the OQ were obtained for healthy
subjects taking a mean value of 0.998. However, it was noted in [56] that singers might
develop a special mechanism for voice production, the so-called laryngeal mechanism, in
which OQ can reach high values exceeding 0.9.

However, it should be noted that comparisons of different studies using LHSV imaging
to quantify the vibration of the vocal folds should be made with caution [57]. In a recent
work [7], which provided a comprehensive review of the computer methods for quantifying
vocal folds vibration, the authors concluded that it is difficult to compare the effectiveness of
different methods due to the lack of publicly available databases designed for benchmarking
different laryngeal image analysis methods. This is because these studies use different
laryngeal image datasets, different image acquisition equipment, different assessment
methods, and individual performance metrics. Meaningful comparisons between different
studies require publicly available datasets and establishing a set of guidelines, preferably
developed by experts from different health centers. Finally, it is worth noting a novel
computational approach for spatial segmentation of high-speed laryngeal videoendoscopy
images in a connected speech presented in [58]. This approach aims to develop an LHSV-
based measurement of the vibratory characteristics of the vocal folds based on natural
speech production, as opposed to the traditionally used phonation examination protocol.

7. Conclusions

In this work, we have shown that it is possible to track the location of the edges
of the vibrating vocal folds in LHSVs in a way that does not require manual validation
or intervention by medical personnel. In particular, we have demonstrated that image
segmentation techniques can be optimized by utilizing data derived from synchronously
collected acoustic recordings during sustained phonation of vowel /i:/. By transforming
the glottovibrogram to the frequency domain and mapping it onto a one-dimensional
spectrum, we could compare it directly to the spectrum of the acoustic signal and build a
relevant cost function. The minimum of the cost function was the criterion by which the
best segmentation results were identified. Independent otolaryngology-phoniatrics experts
successfully validated these results.

We would like to strongly emphasize that the main value of our contribution, beyond
the segmentation method itself, is the automatic technique for optimizing image segmenta-
tion methods of video images of the moving vocal folds where segmentation parameters
can be defined, e.g., threshold value, size of the filtered neighborhood, etc.

It is important to note that most of the developed methods for segmentation laryngeal
images require manual tuning of many parameters to obtain acceptable image segmentation
results. Our method allows automatic segmentation of LHSV images without trial and
error in searching for optimal segmentation parameters. We hope that the proposed
approach, which considers acoustic modality, may inspire other researchers to use this
image segmentation technique.

The proposed method of segmentation of LHSVs enabled automated tracking of the
vocal fold edges during phonation. On that basis, we computed the corresponding glottovi-
brograms and GGWs that allowed us to further calculate a number of indices quantifying
pathological changes in the phonatory process. The current findings support the use of
this analysis method in clinical practice, which promotes LHSV as a reliable laryngeal
imaging tool. The calculated indices will allow clinicians to provide reliable measures to
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objectively assess laryngeal phonatory function. Quantitative assessment of vocal fold
vibratory disturbances characteristic for the glottal insufficiency may improve the diagnosis
of occupational voice disorders or presbyphonia. In recent decades these laryngeal diseases
have attracted clinical attention due to the increasing number of professional voice users
and the aging population in the modern world.

As indicated in the conclusion section, the proposed optimization procedure for the
image segmentation algorithm involves a high computational cost that can, however, be
mitigated by mapping the computations to GPU hardware.

Finally, we hope that the proposed method can trigger studies that will follow the
proposed path and further explore the approach in which the fusion of data from LHSVs
and acoustic recordings is used to optimize image analysis techniques aiding clinicians in
the diagnosis and quantification of voice disorders.
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Appendix A. Definitions of the Parameters Characterizing Vocal Folds Kinematics

Here, we define the parameters we compute to compare vocal fold kinematics for the
normophonic individuals and the patients with glottal incompetence. For a more detailed
description of those and other parameters characterizing the process of VF oscillation,
please also refer to our earlier publication [10].

1. The Open Quotient (OQ) is the proportion of the time during which the vocal folds
are open within the phonation interval [11,56–58]:

OQ =
toc + tcc + tco

T
(A1)

where: T—is the phonation cycle interval, toc—is the VFs closing phase duration, tcc—is
the duration of the vocal folds’ closed phase, and tco—is the duration of the VFs’ opening
phase. Note that for glottal incompetence, this quotient equals unity because the duration
of the closure of the VFs tcc = 0 (see Figure A1b). On the other hand, for the normophonic
voice, this quotient is less than unity because between the opening and closing phases,
there is a non-zero tcc duration for which the VFs are closed (see Figure A1a).

2. The Closing Quotient (CQ) is the ratio between the duration of the closing phase
and the phonation cycle interval [54,55]:

CQ =
toc

T
(A2)

https://tulodz-my.sharepoint.com/:f:/g/personal/pawel_strumillo_p_lodz_pl/Eni2ELdrtmBOh_ez4ul-asIBmaZr_5pcHjaYjZH8R5b_YA?e=d1OCwL
https://tulodz-my.sharepoint.com/:f:/g/personal/pawel_strumillo_p_lodz_pl/Eni2ELdrtmBOh_ez4ul-asIBmaZr_5pcHjaYjZH8R5b_YA?e=d1OCwL
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3. The Speed Quotient (SQ) is the ratio between the duration of the opening phase (tco)
and the closing phase (toc) [11,55]:

SQ =
tco

tocj
(A3)

4. The Minimal Relative Glottal Area (MRGA) is the ratio between the minimum area
of the glottal area (for the closure of the VFs) to the maximum area of the glottal area (for
the maximum opening of the VFs):

MRGA =
Amin
Amaxj

(A4)

Figure A1. Example glottal width waveforms for a normophonic subject (a) and a patient with glottal
insufficiency (b). The indicated time intervals are explained in the definitions of the parameters.
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