
sensors

Article

Deep Learning and Transformer Approaches for UAV-Based
Wildfire Detection and Segmentation
Rafik Ghali 1 , Moulay A. Akhloufi 1,* and Wided Souidene Mseddi 2

����������
�������

Citation: Ghali, R.; Akhloufi, M.A.;

Mseddi, W.S. Deep Learning and

Transformers Approaches for UAV

Based Wildfire Detection and

Segmentation. Sensors 2022, 22, 1977.

https://doi.org/10.3390/s22051977

Academic Editor: Chiman Kwan

Received: 13 February 2022

Accepted: 1 March 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Perception, Robotics and Intelligent Machines Research Group (PRIME), Department of Computer Science,
Université de Moncton, Moncton, NB E1A 3E9, Canada; rafik.ghali@ept.rnu.tn

2 SERCOM Laboratory, Ecole Polytechnique de Tunisie, Université de Carthage, BP 743, La Marsa 2078, Tunisia;
wided.souidene@ept.rnu.tn

* Correspondence: moulay.akhloufi@umoncton.ca

Abstract: Wildfires are a worldwide natural disaster causing important economic damages and
loss of lives. Experts predict that wildfires will increase in the coming years mainly due to climate
change. Early detection and prediction of fire spread can help reduce affected areas and improve
firefighting. Numerous systems were developed to detect fire. Recently, Unmanned Aerial Vehi-
cles were employed to tackle this problem due to their high flexibility, their low-cost, and their
ability to cover wide areas during the day or night. However, they are still limited by challenging
problems such as small fire size, background complexity, and image degradation. To deal with the
aforementioned limitations, we adapted and optimized Deep Learning methods to detect wildfire
at an early stage. A novel deep ensemble learning method, which combines EfficientNet-B5 and
DenseNet-201 models, is proposed to identify and classify wildfire using aerial images. In addition,
two vision transformers (TransUNet and TransFire) and a deep convolutional model (EfficientSeg)
were employed to segment wildfire regions and determine the precise fire regions. The obtained
results are promising and show the efficiency of using Deep Learning and vision transformers for
wildfire classification and segmentation. The proposed model for wildfire classification obtained an
accuracy of 85.12% and outperformed many state-of-the-art works. It proved its ability in classifying
wildfire even small fire areas. The best semantic segmentation models achieved an F1-score of 99.9%
for TransUNet architecture and 99.82% for TransFire architecture superior to recent published models.
More specifically, we demonstrated the ability of these models to extract the finer details of wildfire
using aerial images. They can further overcome current model limitations, such as background
complexity and small wildfire areas.

Keywords: wildfire detection; fire classification; fire segmentation; vision transformers; UAV; aerial
images

1. Introduction

Forest fire accidents are one of the most dangerous risks due to their frightening loss
statistics. The fires cause human, financial, and environmental losses, including the death
of animals and the destruction of wood, houses, and million acres of land worldwide. In
2021, forest fires have occurred in several countries such as the European Union countries,
the US (United States), central and southern Africa, the Arabian Gulf, and South and North
America [1]. They affect 350 million to 450 million hectares every year [2]. In the western
US alone, the frequency of wildfires and the total area burned increased by 400% and
600%, respectively, in the last decade [3]. In addition, approximately 8000 wildfires affected
2.5 million hectares each year in Canada [4].

Generally, wildfires are detected using various sensors such as gas, smoke, temper-
ature, and flame detectors. Nevertheless, these detectors have a variety of limitations
such as delayed response and small coverage areas [5]. Fortunately, the advancement
of computer vision techniques has made it possible to detect fire using visual features
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collected with cameras. However, traditional fire detection tools are being replaced by
vision-based models that have many advantages such as accuracy, large coverage areas,
small probability of errors, and most importantly the ability to work with existing camera
surveillance systems. Through the years, researchers have proposed many innovative
techniques based on computer vision in order to build accurate fire detection systems [6–9].

In recent years, Unmanned Aerial Vehicles (UAV) or drone systems were deployed in
various tasks such as traffic monitoring [10], precision agriculture [11], disaster monitor-
ing [12], smart cities [13], cover mapping [14], and object detection [15]. They are also very
practical and well developed for wildfire fighting and detection. UAV-based systems help
with precise fire management and provide real-time information to limit damage from fires
thanks to their low cost and ability to cover large areas whether during the day or night
for a long duration [16,17]. The integration of UAVs with visual and/or infrared sensors
help in finding potential fires at daytime and nighttime [18]. Furthermore, fire detection
and segmentation showed impressive progress thanks to the use of deep learning (DL)
techniques. DL-based fire detection methods are used to detect the color of wildfire and its
geometrical features such as angle, shape, height, and width. Their results are used as inputs
to the fire propagation models. Thanks to the promising performances of DL approaches
in wildfire classification and segmentation [19], researchers are increasingly investigating
this family of methods. The existing methods use input images captured by traditional
visual sensors to localize wildfire and to detect the precise shape of fire; they achieved
high results [20–22]. However, it is not yet clear that these methods will perform well in
detecting and segmenting forest fire using UAV images, especially in the presence of various
challenges such as small object size, background complexity, and image degradation.

To address these problems, we present in this paper a novel deep ensemble learn-
ing method to detect and classify wildfire using aerial images. This method employs
EfficientNet-B5 [23] and DenseNet-201 [24] models as a backbone for extracting forest
fire features. In addition, we employed a deep model (EfficientSeg [25]) and two vision
transformers (TransUNet [26] and TransFire) in segmenting wildfire pixels and detecting
the precise shape of fire on aerial images. Then, the proposed wildfire classification method
was compared to deep convolutional models (MobileNetV3-Large -Small [27], DenseNet-
169 [24], EfficientNet-B1-5 [23], Xception [28,29], and InceptionV3 [29]), which showed
excellent results for object classification. TransUNet, TransFire, and EfficientSeg are also
evaluated with U-Net [28].

More specifically, three main contributions were reported in this paper. First, a novel
DL method was proposed to detect and classify wildfire using aerial images in order to
improve detection and segmentation of wildland fires. Second, vision transformers were
adopted for UAV wildfire segmentation to segment fire pixels and identify the precise
shape of the fire. Third, the efficiencies of CNN methods and vision transformers are
demonstrated in extracting the finer details of fire using aerial images and overcoming the
problems of background complexity and small fire areas.

The remainder of the paper is organized as follows: Section 2 presents recent DL
approaches for UAV-based fire detection and segmentation. Section 3 describes the methods
and materials used in this paper. In Section 4, experimental results and discussion are
presented. Finally, Section 5 concludes the paper.

2. Related Works

DL approaches are employed for fire detection and segmentation using aerial images.
They proved their ability to detect and segment wildfires [6,20]. They can be grouped
into three categories: DL approaches for UAV-based fire classification, DL approaches for
UAV-based fire detection, and DL approaches for UAV-based fire segmentation.

2.1. Fire Classification Using Deep Learning Approaches for UAV Images

Convolutional Neural Networks (CNNs) are the most popular AI models for images
classification tasks. They extract feature maps from input images and then predict their
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correct classes (two classes in our case: Fire and Non-Fire). Three main types of layers,
which are convolutional layers, pooling layers, and fully connected layers, are employed to
build a classical CNN architecture:

• Convolution layers are a set of filters designed to extract basic and complex features
such as edges, corners, texture, colors, shapes, and objects from the input images.
Then, activation functions are used to add the non-linearity transformation. It helps
CNN to learn complex features in the input data. Various activation functions were
employed, such as Rectified Linear Unit (ReLU) function [30], Leaky ReLU (LReLU)
function [31], parametric ReLU (PReLU) function [32], etc.

• Pooling layers reduce the size of each feature map resulting from the convolutional
layers. The most used pooling methods are average pooling and max pooling.

• The fully connected layer is fed by the final flattened pooling or convolutional layers’
output, and the class scores for the objects present in the input image are computed.

CNNs showed good results for object classification and recognition [33]. Motivated
by their great success, researchers presented numerous CNN-based contributions for fire
detection and classification using aerial images in the literature, and these are summarized
in Table 1.

Table 1. Deep learning methods for UAV-based fire classification.

Ref. Methodology Smoke/Flame Dataset Accuracy (%)

[34] CNN-17 Flame/Smoke Private dataset: 2100 images 86.00
[35] AlexNet

GoogLeNet
Modified GoogLeNet
VGG13
Modified VGG13

Flame Private dataset: 23,053 images 94.80
99.00
96.90
86.20
96.20

[28] Xception Flame FLAME dataset: 48,010 images 76.23
[36] Fire_Net

AlexNet
Flame UAV_Fire dataset: 1540 images 98.00

97.10
[29] VGG16

VGG19
ResNet50
InceptionV3
Xception

Flame FLAME dataset: 8617 images 80.76
83.43
88.01
87.21
81.30

[37] Fog computing and simple
CNN

Flame Private dataset: 2964 images 95.07

[38] Fire_Net
AlexNet
MobileNetv2

Flame/Smoke Private dataset: 2096 images 97.50
95.00
99.30

Chen et al. [34,39] proposed two CNNs to detect wildfire in aerial images. The first
CNN contains nine layers [39]. It consists of a convolutional layer with Sigmoid function,
max-pooling layer, ReLU activations, Fully connected layer, and Softmax classifier. Using
950 images collected with a six-rotor drone (DJI S900) equipped with a SONYA7 camera,
the experimental results showed improvements in accuracy compared to other detection
methods [39]. The second includes two CNNs for detecting fire and smoke in aerial
images [34]. Each CNN contains 17 layers. The first CNN classifies Fire and Non-Fire, and
the second detects the presence of smoke in the input images. Using 2100 aerial images,
great performance (accuracy of 86%) was achieved, outperforming the first method and the
classical method, which combines LBP (Local Binary Patterns) and SVM [34]. Lee et al. [35]
employed five deep CNNs, which included AlexNet [40], GoogLeNet [41], VGG13 [42], a
modified GoogLeNet, and a modified VGG13 to detect forest fires in aerial images:

• AlexNet includes eleven layers: five convolutional layers with ReLU activation func-
tion, three max-pooling layers, and three fully connected layers;

• VGG13 is a CNN with 13 convolutional layers;
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• GoogLeNet contains 22 inception layers, which employ, simultaneously and in parallel,
multiple convolutions with various filters and pooling layers;

• Modified VGG13 is a VGG13 model with a number of channels of each convolutional
layer and fully connected layers equal to half of that of the original VGG13;

• Modified GoogLeNet is a GoogLeNet model with a number of channels of each convolu-
tional layer and fully connected layer equal to half of that of the original GoogLeNet.

GoogLeNet and the modified GoogLeNet achieved high accuracies thanks to data
augmentation techniques (cropping, vertical, and horizontal flip). They showed their
ability in detecting wildfires in aerial images [35]. Shamsoshoara et al. [28] proposed
a novel method based on the Xception model [43] for wildfire classification. Xception
architecture is an extension of the Inceptionv3 model [44] with the modified depth-wise
separable convolution, which contains 1× 1 convolution followed by a n× n convolution
and no intermediate ReLU activations. Using 48,010 images of the FLAME dataset [45]
and data augmentation techniques (horizontal flip and rotation), this method achieved an
accuracy of 76.23%. Treneska et al. [29] also adopted four deep CNNs, namely InceptionV3,
VGG16, VGG19, and ResNet50 [46], to detect wildfire in aerial images. ResNet50 achieved
the best accuracy with 88.01%. It outperformed InceptionV3, VGG16, and VGG19 and
the recent state-of-the-art model, Xception, using transfer learning techniques and the
FLAME dataset as learning data. Srinivas et al. [37] also proposed a novel method, which
integrates CNN and Fog computing to detect forest fire using aerial images at an early stage.
The proposed CNN consists of six convolutional layers followed by the ReLU activation
function and max-pooling layers, three fully connected layers, and a sigmoid classifier
that determines the output as Fire or Non-Fire. This method showed a great performance
(accuracy of 95.07% and faster response time) and proved its efficiency to detect forest
fires. Zhao et al. [36] presented a novel model called “Fire_Net” to extract fire features and
classified them as Fire and Non-Fire. Fire_Net is a deep CNN with 15 layers. It consists
of eight convolutional layers with ReLU activation functions, four max-pooling layers,
three fully connected layers, and a softmax classifier. Using the UAV_Fire dataset [36],
Fire_Net achieved an accuracy of 98% and outperformed previous methods. Wu et al. [38]
used a pretrained MobileNetv2 [47] model to detect both smoke and fire. MobileNetv2 is
an extended version of MobileNetv1 [48], which is a lightweight CNN with depth-wise
separable convolutions. It requires small data and reduces the number of parameters of
the model and its computational complexity. It employs inverted residuals and linear
bottlenecks to improve the performance of MobileNetv1. Using transfer learning and data
augmentation strategies, this method achieved an accuracy of 99.3%. It outperformed
published state-of-the-art methods such as Fire_Net and AlexNet and proved its suitability
in detecting forest fire on aerial monitoring systems [38].

2.2. Fire Detection Using Deep Learning Approaches for UAV

Region-based CNNs are used to detect, identify, and localize objects in an image. They
determine the detected objects’ locations in the input image using bounding boxes. These
techniques are divided into two categories: one-stage detectors and two-stage detectors [49].
One-stage detectors detect and localize objects as a simple regression task in an input
image. Two-stage detectors generate the ROI (Region of Interest) in the first step using the
region proposal network. Then, the generated region is classified and its bounding box is
determined. Region-based CNNs showed excellent accuracy for object detection problems.
They are also employed to reveal the best performance in detecting fires on aerial images.

Table 2 presents deep learning methods for UAV-based fire detection. Jiao et al. [50]
exploited the one-stage detector, YOLOv3 [51], to detect forest fires. YOLOv3 is the
third version of YOLO deep object detectors. It was proposed to improve the detection
performance of older versions by making detections at three different scales and using
the Darknet-53 model, which contains 53 convolutional layers as a backbone [51]. Testing
results revealed great performances and high speed [50]. Jiao et al. [52] also proposed the
UAV-FFD (UAV forest fire detection) platform, which employs YOLOv3 to detect smoke
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and fire by using UAV-acquired images. YOLOv3 showed high performance with reduced
computational time (F1-score of 81% at a frame rate of 30 frames per second). It proved its
potential in detecting smoke/fire with high precision in real-time UAV applications [52].
Alexandrov et al. [53] adopted two one-stage detectors (SSD [54] and YOLOv2 [55]) and a
two-stage detector (Faster R-CNN [56]) to detect wildfires. Using large data of real and
simulated images, YOLOv2 showed the best performance compared to Faster R-CNN,
SSD, and hand-crafted classical methods. It proved its reliability in detecting smoke at
an early stage [53]. Tang et al. [57] also presented a novel application to detect wildfire
using 4K images, which have a high resolution of 3840 × 2160 pixels collected by UAS
(Unmanned Aerial Systems). A coarse-to-fine strategy was proposed to detect fires that are
sparse, small, and irregularly shaped. At first, an ARSB (Adaptive sub-Region Select Block)
was employed to select subregions, which contain the objects of interest in 4K input images.
Next, these subregions were zoomed to maintain the area bounding box’s size. Then,
YOLOv3 was used to detect the objects. Finally, the bounding boxes in the subregions were
combined. Using 1400 4K aerial images, this method obtained a mean average precision
(mAP) of 67% at an average speed of 7.44 frames per second.

Table 2. Fire detection using Deep learning methods for UAVs.

Ref. Methodology Smoke/Flame Dataset Results (%)

[50] YOLOv3 Flame Private dataset: 3,840,000 images F1-score = 81.0
[53] YOLOv2

Faster R-CNN
SSD

Smoke Private dataset: 12,000 images Accuracy = 98.3
Accuracy = 95.9
Accuracy = 81.1

[52] YOLOv3 Flame/Smoke Private dataset: 3,684,000 images F1-score = 81.0
[57] YOLOv3 and ARSB method Flame Private dataset: 1400 K images mAP = 67.0

2.3. Fire Segmentation Using Deep Learning Approaches for UAV

Image segmentation is very important in computer vision. It determines the exact
shape of the objects in the images. With the progress of deep learning models, numerous
problems were tackled and a variety of solutions was proposed with good results.

Deep learning models are also used to segment fire pixels and detect the precise shape
of smoke and/or flame using aerial images. Table 3 shows deep learning methods for
UAV-based fire segmentation. For example, Barmpoutis et al. [58] proposed a 360-degree
remote sensing system to segment both fire and smoke using RGB 360-degree images, which
were collected from UAV. Two DeepLab V3+ [59] models that are encoder–decoder detectors
with ASPP (Atrous Spatial Pyramid Pooling) were applied to identify smoke and flame
regions. Then, an adaptive post-validation scheme was employed to reject smoke/flame
false-positive regions, especially regions with similar characteristics with smoke and flame.
Using 150 360-degree images of urban and forest areas, experiments achieved an F1-score of
94.6% and outperformed recent state-of-the-art methods such as DeepLabV3+. These results
showed the robustness of the proposed method in segmenting smoke/fire and reducing the
false-positive rate [58]. Similarly to wildfire classification, Shamsoshoara et al. [28] proposed
a method based on the encoder–decoder U-Net [60] for wildfire segmentation. Using a
dropout strategy and the FLAME dataset, U-Net obtained an F1-score of 87.75% and proved
its ability to segment wildfire and identify the precise shapes of flames [28]. Frizzi et al. [61]
also proposed a method based on VGG16 to segment both smoke and fire. This method
showed good results (accuracy of 93.4% and segmentation time per image of 21.1 s) using
data augmentation techniques such as rotation, flip, changing brightness/contrast, crop,
and adding noises. It outperformed previous published models and proved its efficiency in
detecting and classifying fire/smoke pixels [61].
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Table 3. Fire segmentation using deep learning methods for UAVs.

Ref. Methodology Smoke/Flame Dataset Results (%)

[58] DeepLabV3+
DeepLabV3+
+ validation approach

Flame/Smoke Fire detection 360-degree dataset:
150 360-degree images

F1-score = 81.4
F1-score = 94.6

[60] U-Net Flame FLAME dataset: 5137 images F1-score = 87.7
[61] U-Net

CNN based on VGG16
Flame/Smoke Private dataset: 366 images Accuracy = 90.2

Accuracy = 93.4

3. Materials and Methods

In this section, we first introduced our proposed methods for wildfire classification
and segmentation. Then, we describe the dataset used in training and testing. Finally, we
present the evaluation metrics employed in this work.

3.1. Proposed Method for Wildfire Classification

To detect and classify fire, we propose a novel method based on deep ensemble
learning using EfficientNet-B5 [23] and DenseNet-201 [24] models. EfficientNet models
proved their efficiency to reduce the parameters and Floating-Point Operations Per Second
using an effective scaling method that employs a compound coefficient to uniformly scale
model depth, resolution, and width. EfficientNet-B5 showed excellent accuracy and outper-
formed state-of-the-art models such as Xception [43], AmoebaNet-A [62], PNASNet [63],
ResNeXt-101 [64], InceptionV3 [44], and InceptionV4 [65]. DenseNet (Dense Convolutional
Network) connects each layer to all preceding layers to create very diversified feature maps.
It has several advantages, including feature reuse, elimination of the vanishing-gradient
problem, improved feature propagation, and a reduction in the number of parameters.
Using extracted features of all complexity levels, DenseNet shows interesting results in
various competitive object recognition benchmark tasks such as ImageNet, SVHN (Street
View House Numbers), CIFAR-10, and CIFAR-100 [24].

Figure 1 presents the architecture of the proposed method. First, this method is fed
with RGB aerial images. EfficientNet-B5 and DenseNet-201 models were employed as
a backbone to extract two feature maps. Next, the feature maps of the two models are
concatenated. The concatenated map was then fed an average pooling layer. Then, a
dropout of 0.2 was employed to avoid overfitting. Finally, a Sigmoid function was applied
to classify the input image into Fire or Non-Fire classes.

Figure 1. The proposed architecture for wildfire classification.

3.2. Proposed Methods for Wildfire Segmentation

To segment wildfires, we used a CNN model, EfficientSeg [25], and two vision trans-
formers, which are TransUNet [26] and TransFire.

3.2.1. TransUNet

TransUNet [26] is a vision transformer based on U-Net architecture. It employs global
dependencies between inputs and outputs using self-attention methods. It is an encoder–
decoder. The encoder uses a hybrid CNN-transformer architecture consisting of ResNet-50



Sensors 2022, 22, 1977 7 of 18

and pretrained ViT (Vision Transformer) to extract feature maps. It contains MLP (Multi-
Layer Perceptron) and MSA (Multihead Self-Attention) blocks. The decoder employs CUP
(cascaded up-sampler) blocks to decode the extracted features and outputs the binary
segmentation mask. Each CUP includes a 3 × 3 convolutional layer, ReLU activation
function, and two upsampling operators. Figure 2 depicts the architecture of TransUNet.

Figure 2. The proposed TransUNet architecture.

3.2.2. TransFire

TransFire is based on MedT (Medical Transformer) architecture. MedT [66] was
proposed in order to segment medical images with no requirement of a large dataset for
training. Two concepts, gated position-sensitive axial attention and LoGo (Local-Global)
training methodology, were employed to improve segmentation performance. Gated
position-sensitive axial attention was used to determine long-range interactions between
the input features with high computational efficiency. LoGo training methodology used
two branches, which are global branch and local branch, to extract feature maps. The first
branch works on the image’s original resolution. It consists of 2 encoders and 2 decoders.
The second operates on image patches. It contains 5 encoders and 5 decoders. The input to
both of these branches is the feature extracted using a convolutional block, which includes
3 convolutional layers with ReLU activation function and batch normalization.

TransFire is a modified MedT architecture. It includes one encoder and one decoder
in the global branch. It also employs a dropout strategy in the local branch (after the fourth
first encoders and the last decoder), in the global branch (after the decoder), and in each
input of both of these branches. TransFire was developed to overcome the memory problem
of MedT and to prevent overfitting. Figure 3 illustrates the architecture of TransFire.

3.2.3. EfficientSeg

EfficientSeg [25] is a semantic segmentation method, which is based on a U-Net struc-
ture and uses MobileNetV3 [27] blocks. It showed impressive results and outperformed
U-Net in some medical image segmentation tasks [25].

Figure 4 depicts the architecture of EfficientSeg. It is an encoder–decoder with 4 con-
catenation shortcuts. It includes five types of blocks, which are MobileNetV3 blocks
(Inverted Residual blocks), Downsampling operator, Upsampling operator, and 1 × 1 and
3 × 3 convolutional blocks with ReLU activation function and batch normalization layer.
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Figure 3. The proposed TransFire architecture.

Figure 4. The proposed EfficientSeg architecture.

3.3. Dataset

In the area of deep learning, many large datasets are available for researchers to train
their models and perform benchmarking by making comparisons with other methods.
However, until recently, there was a lack of a UAV dataset for fire detection and segmen-
tation. In this work, we use a public database called FLAME dataset (Fire Luminosity
Airborne-based Machine learning Evaluation) [45] to train and evaluate our proposed
methods. The FLAME dataset contains aerial images and raw heat-map footage captured
by visible spectrum and thermal cameras onboard a drone. It consists of four types of
videos, which are a normal spectrum, white-hot, fusion, and green-hot palettes.

In this paper, we focus on RGB aerial images. We used 48,010 RGB images, which are split
into 30,155 Fire images and 17,855 Non-Fire images for wildfire classification task. Figure 5
presents some samples of the FLAME dataset for fire classification. On the other hand, we
used 2003 RGB images and their corresponding masks for fire segmentation task. Figure 6
illustrates some examples of RGB aerial images and their corresponding binary masks.



Sensors 2022, 22, 1977 9 of 18

Figure 5. Examples from the FLAME dataset. Top line: Fire images and bottom line: Non-Fire images.

Figure 6. Examples from the FLAME dataset. Top line: RGB images; bottom line: their corresponding
binary masks.

3.4. Evaluation Metrics

We used F1-score, accuracy, and inference time to evaluate our proposed approaches
for fire classification and segmentation:

• F1-score combines precision and recall metrics to determine the ability of the model in
detecting wildfire pixels (as shown by Equation (1)):

F1-score =
2× Precision × Recall

Precision + Recall
(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

where TP is the true positive rate, FP is the false positive rate, and FN is the false
negative rate.

• Accuracy is the proportion of correct predictions over the number of total ones,
achieved per the proposed model (as given by Equation (4)):

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TN is the true negative rate, FN is the false negative rate, TP is the true positive
rate, and FP is the false positive rate.

• Inference time is the average time of segmentation or classification using our test-
ing images.

4. Results and Discussion

For wildfire classification, we used TensorFlow [67] and trained the proposed models
on a machine with NVIDIA Geforce RTX 2080Ti GPU. The learning data were split as
follows: 31,515 images for training, 7878 images for validation, and 8617 images for testing
as presented in Table 4.

Table 4. Dataset subsets for classification.

Dataset Fire Images Non-Fire Images

Training set 20,015 11,500
Validation set 5003 2875

Testing set 5137 3480

We employed categorical cross-entropy loss (CE) [68], which measures the probability
of the presence of a wildfire in the input image (as shown in Equation (5)):

CE = −
M

∑
c=1

zb,c log (pb,c) (5)

where M is the number of classes (in our case two classes (Fire and Non-Fire)), p is the
predicted probability, and z is the binary indicator.

For our experiments, we used input RGB images with 254 × 254 resolution, a batch
size of 16, and Adam as an optimizer. We also employed the following data augmentation
techniques: rotation, shear, zoom, and shift with random values.

For wildfire segmentation, we developed the proposed methods using Pytorch [69]
on an Nvidia V100l GPU. Learning data were divided into three sets: 1401 images for
training, 201 images for validation, and 401 images for testing. We employed dice loss [70]
to measure the difference between the predicted binary mask and the corresponding input
mask (as given by Equation (6)). We also used two data augmentation methods, which are
a horizontal flip and a rotation of 15 degrees:

DC = 1− 2|Z
⋂

W|
|Z|+ |W| (6)

where Z is the input aerial image, W is the predicted image, and
⋂

is the intersection of the
input and the predicted images.

The input data are RGB aerial images with a 512× 512 resolution and their correspond-
ing binary mask. The TransFire Transformer was trained from scratch (no pretraining)
using a hybrid CNN-Transformer as a backbone, patch sizes of 16, and a learning rate
of 10−3. TransUNet is evaluated using a learning rate of 10−3, patch size of 16, and two
backbones that include a pretrained ViT and a hybrid backbone, which includes ResNet50
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(R-50) and pretrained ViT. EfficientSeg also was tested from scratch using a learning rate
of 10−1.

We analyzed the proposed methods’ performance (accuracy and F1-score) as well as
their speed (inference time). In addition, we compared our novel wildfire classification
method to state-of-the-art models (Xception [28,29] and InceptionV3 [29]) and deep CNNs
(MobileNetV3-Large [27], MobileNetV3-Small [27], DenseNet-169 [24], and EfficientNet-B1-
5 [23]), which already showed excellent results for object classification. We also compared
the proposed wildfire segmentation methods, including TransUNet, TransFire, and Effi-
cientSeg, to U-Net [28].

4.1. Wildfire Classification Results

We trained wildfire classification methods on aerial images collected using the Matrice
200 drone with a Zenmuse X4S camera. Testing data are collected using the Phantom drone
with a Phantom camera.

Table 5 reports a comparative analysis of our proposed method and deep CNN
methods using the test data. We can observe that our proposed method achieved the best
performance (accuracy of 85.12% and F1-score of 84.77%) thanks to scaled and diversified
feature maps extracted by EfficientNet-B5 and DenseNet-201 models. It outperformed
recent models for object classification (MobileNetV3-Large, MobileNetV3-Small, DensNet-
169, and EfficientNet models (EfficientNet-B2, -B3, -B4, and -B5)) and inception models
(Xception and InceptionV3). It proved its good ability to detect and classify forest fires on
aerial images. However, it needed a high inference time with 0.018 s.

Figure 7 presents the confusion matrix on test data. We can see that the rate of true
positives (classifying Fire as Fire) and the rate of true negatives (classifying No-Fire as
No-Fire) are higher than the rate of the false positives (classifying Fire as No-Fire) and the
rate of false negatives (classifying No-Fire as Fire), respectively. Our proposed method
showed interesting results in detecting and classifying fires, even for very small fire areas.
It proved its efficiency to overcome challenging problems such as uneven object intensity
and background complexity.

To conclude, our proposed method revealed the best result based on the trade-off
between performance and inference time. It showed an excellent capacity to classify forest
fires in aerial images and managed to overcome the problems of small fire areas and
background complexity.

Figure 7. Confusion matrix for fire classification.
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Table 5. Performance evaluation of wildfire classification models.

Models Accuracy (%) F1-Score (%) Inference Time (s)

Xception 78.41 78.12 0.002
Xception [28] 76.23 — —
EfficientNet-B5 75.82 73.90 0.010
EfficientNet-B4 69.93 65.51 0.008
EfficientNet-B3 65.81 64.02 0.004
EfficientNet-B2 66.04 60.71 0.002
InceptionV3 80.88 79.53 0.002
DenseNet169 80.62 79.40 0.003
MobileNetV3-Small 51.64 44.97 0.001
MobileNetV3-Large 65.10 60.91 0.001
Proposed ensemble model 85.12 84.77 0.018

4.2. Wildfire Segmentation Results

Table 6 illustrates the quantitative results of fire segmentation using the FLAME
dataset. We can see that TransUNet, TransFire, and EfficientSeg obtained excellent results
and outperformed U-Net used as a baseline model.

Vision Transformers (TransUNet and TransFire) obtained higher performances com-
pared to deep CNN models (EfficientSeg and U-Net) due to their ability to determine
long-range interactions within input features and extract the finer details of the input
images. TransUNet-R50-ViT achieved the best performance with an accuracy of 99.9% and
an F1-score of 99.9% thanks to local and global features extracted using a hybrid backbone,
which includes a CNN, R-50, and pretrained ViT Transformer.

Figure 8 depicts examples of the segmentation of TransUNet-R50-ViT. We can see that
this model accurately detected the finer details of fire and distinguished between wildfire and
background. In addition, TransUNet-R50-ViT showed its efficiency in localizing and detecting
the precise shape of wildfire, especially with respect to small fire areas on aerial images.

TransUNet-ViT also showed excellent performances (accuracy of 99.86% and F1-score
of 99.86%) and high speeds (inference time of 0.4 s) compared to TransFire and EfficientSeg.
We can see in Figure 8 that TransUNet with ViT transformer accurately segmented wildfire
pixels and detected wildfire regions even for small fire areas.

TransUNet models proved their ability in segmenting wildfire, in detecting the exact
shape of fire areas, and in overcoming challenging problems such as small fire areas and
background complexity. However, they still depend on a pretrained vision transformer
(ViT) on a large dataset.

TransFire also showed a higher accuracy with 99.83% and an F1-score of 99.82% due
to high-level information and finer features extracted in the global branch and local branch,
respectively. It outperformed EfficientSeg and U-Net. It proved its excellent capacity in
segmenting wildfire pixels and detecting the exact fire areas, especially small fire areas as
shown in Figure 8. It also segmented forest fire pixels under the presence of smoke.

EfficientSeg also obtained a high accuracy with 99.63% and an F1-score of 99.66%
thanks to its extracted finer details. It outperformed U-Net. It showed its efficiency in
segmenting fire pixels and in detecting the precise shape of fire areas as depicted in Figure 8.
However, It had a higher inference time with 1.38 s compared to vision transformers.

To conclude, TransUNet, TransFire, and EfficientSeg showed excellent performances.
They proved an impressive potential in segmenting wildfire pixels and determining the
precise shape of fire. Based on the F1-score, TransFire showed great performance and out-
performed deep convolutional models (EfficientSeg and U-Net) and was very close to the
performance of vision transformer (TransUNet). In addition, it demonstrated its reliability
in detecting and segmenting wildland fires; in particular, it was the best performing in
detecting small fire areas under the presence of smoke, as observed in Figure 9.
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Figure 8. Segmentation results of the proposed models. From top to bottom: RGB aerial images and
the results of TransUNet-R50-ViT, TransUNet-ViT, TransFire, and EfficientSeg. Orange represents TP
(true positives), yellow depicts FP (false positives), and red shows FN (false negatives).
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Figure 9. Results of TransFire, TransUNet-R50-ViT, and EfficientSeg. From top to bottom: RGB aerial
images and the results of TransFire, TransUNet-R50-ViT, and EfficientSeg. Orange represents TP,
yellow depicts FP, and red shows FN. We can see the interesting results of TransFire in determining
the precise size of small wildfire areas under the presence of smoke compared to TransUNet and
EfficientSeg models.

Table 6. Performance evaluation of wildfire segmentation models.

Models Accuracy (%) F1-Score (%) Inference Time (s)

TransUNet-R50-ViT 99.90 99.90 0.51
TransUNet-ViT 99.86 99.86 0.40
TransFire 99.83 99.82 1.00
EfficientSeg 99.63 99.66 1.38
U-Net 99.00 99.00 0.29
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5. Conclusions

In this paper, we address the problem of wildfire classification and segmentation on
aerial images using deep learning models. A novel ensemble learning method, which com-
bines EfficientNet-B5 and DenseNet-201 models, was developed to detect and classify wild-
fires. Using the FLAME dataset, experimental results showed that our proposed method
was the most reliable in wildfire classification tasks, presenting a higher performance
than recent state-of-the-art models. Furthermore, two vision transformers (TransUNet and
TransFire) and a deep CNN (EfficientSeg) are developed to segment wildfires and detect
the region of fire areas on aerial images. This is the first proposed approach (in our knowl-
edge) using Transformers for UAV wildfire image segmentation. These models showed
impressive results and outperformed recent published methods. They proved their ability
in segmenting wildfire pixels, detecting the precise shape of fire. Based on the F1-score,
TransFire obtained great performance, outperforming deep models such as EfficientSeg and
U-Net. It also showed its excellent potential in detecting and segmenting forest fires and in
overcoming challenging problems such as small fire areas and background complexity.
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