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Abstract: Airship-based Earth observation is of great significance in many fields such as disaster
rescue and environment monitoring. To facilitate efficient observation of high-altitude airships (HAA),
a high-quality observation scheduling approach is crucial. This paper considers the scheduling of
the imaging sensor and proposes a hierarchical observation scheduling approach based on task
clustering (SA-TC). The original observation scheduling problem of HAA is transformed into three
sub-problems (i.e., task clustering, sensor scheduling, and cruise path planning) and these sub-
problems are respectively solved by three stages of the proposed SA-TC. Specifically, a novel heuristic
algorithm integrating an improved ant colony optimization and the backtracking strategy is proposed
to address the task clustering problem. The 2-opt local search is embedded into a heuristic algorithm
to solve the sensor scheduling problem and the improved ant colony optimization is also implemented
to solve the cruise path planning problem. Finally, extensive simulation experiments are conducted
to verify the superiority of the proposed approach. Besides, the performance of the three algorithms
for solving the three sub-problems are further analyzed on instances with different scales.

Keywords: airship; observation scheduling; task clustering; heuristic algorithm; ant colony optimization

1. Introduction

Earth observation techniques play a key role in environmental surveillance, intelli-
gence reconnaissance, and disaster relief [1]. As a new kind of Earth observation platform,
the high-altitude airship (HAA) has many advantages [2,3]. For instance, compared with
the traditional unmanned aerial vehicle (UAV), HAA can fly continuously for several
months, which makes HAA observe and acquire data uninterruptedly for a long period.
In comparison with the Earth observation satellite (EOS) that only can observe ground tar-
gets within specified time windows [4,5], HAA has stronger abilities of rapid response and
maneuverability. In addition, HAA has a lower cost in deployment, operation, and control.
Therefore, HAA has become an ideal alternative Earth observation platform.

The practical applications of HAA in civilian fields have been investigated by several
scientists and groups. For example, Belozerov et al. [6] provided a systematic analysis of
the application of HAA in fire protection of farmland, steppe, and forest tracts. The authors
argued that the HAA can perform round-the-clock patrolling and response to emergencies
along optimal routes in all regions of Russia. Particularly, the HAA is of significance in
diagnosing the environment of mountainous areas that are difficult to be monitored due
to the limited material and human resources. The Skyship project [7] created by South
Korean telecom giant KT Corp has built a 5G-connected airship to help transform search
and rescue missions. The Skyship can search for signs of life in disaster areas by using
thermal imaging. Cloudline Dynamics [8] dedicates to applying airships in health logistics,
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precision agriculture, infrastructure monitoring, and wildlife management. In case of a
natural disaster, the airships of Cloudline Dynamics can immediately be deployed for
logistics, data continuity, and live video feed applications. Besides, the airships “5G Cloud
One” [9] and “LanTianHao” [10] have been tested in China for emergency rescue, disaster
relief, and traffic monitoring applications in the future.

When an HAA is launched for executing observation tasks in some application cases
such as environment monitoring and fire prevention, the HAA is generally required to take
numerous pictures from many locations. Therefore, a high-quality observation scheduling
algorithm is crucial to improve observation efficiency by determining the observation
sequence of target locations. It should be noted that the observation scheduling problem
of HAA is distinguished from that of other observation platforms. Specifically, EOS has
multiple observation chances during a scheduling horizon since it files along its orbit at a
high speed [4]. In contrast, due to the low cruise speed, HAA usually hovers above the
ground target for fixed-point observations. Hence, the observation scheduling for HAA
is not constrained by orbit issues faced by EOS. Although UAV also can hover above the
ground target, the observations are comprised of several dispersed activities restricted by
the flight endurance of the UAV. Besides, different from HAA that is not limited by launch
and retrieve nodes due to its long flight endurance, the observation scheduling problem of
the UAV needs to consider the constraints yielded by launch and retrieve nodes (generally
the launch and retrieve nodes are the same) [11].

However, to our best knowledge, a limited number of studies have been carried out
to address the observation scheduling problem of HAA [12–14]. Besides, the existing
studies mainly focused on optimizing the cruise path of HAA and rarely considered
the planning of the imaging sensor simultaneously. Since the imaging sensor equipped
on the HAA can swim or rotate within a certain angular range and the HAA usually
cruises at a low speed, it is possible and more practical for HAA to hover above a specific
ground node (i.e., stagnation node) and observe nearby targets through appropriately
planned sensor rotations. Thus, this paper investigates the observation scheduling problem
considering sensor slewing for HAA. To solve the considered problem, it is natural to
cluster all observation tasks into several sets and observe the tasks in each set by slewing
the imaging sensor of HAA. Hence, we transform the observation scheduling problem
into three sub-problems: task clustering, sensor scheduling, and cruise path planning.
In the task clustering problem, all observation tasks need to be clustered into several sets,
and each set is associated with a stagnation node. The stagnation node is determined
during the clustering process and the HAA hovers above the stagnation node to observe
its nearby ground targets. The sensor scheduling problem aims to find a reasonable
observation sequence executed by the imaging sensor to accomplish observation. Finally,
an appropriate path formed by stagnation nodes is determined in the cruise path planning
problem. Note that in this paper we regard a ground target as an observation task.

To facilitate the solving of the problem, the three sub-problems are formulated by
classical combinatorial optimization problems. Specifically, since the number of ground
targets that can be observed by HAA is affected by the maximum slewing angle of the
imaging sensor and fewer cruise distances may lead to less energy consumption, the task
clustering problem can be treated as a maximum coverage problem (MCP) [15] that aims to
cover all ground targets by using the minimum number of field of views (FOV). The FOV
is defined as a circular area on the ground in which targets can be observed by slewing
the imaging sensor [16]. As to the sensor scheduling and cruising path planning problems,
since the aim of them is to find permutations of nodes, they can be formulated as variants
of vehicle routing problems (VRP) [17,18].

We implement heuristic and meta-heuristic algorithms to solve these sub-problems.
Specifically, as 2-opt local search and ant colony optimization (ACO) have been proved
effective in solving vehicle routing problems [19–21], we appropriately combine them with
several sophisticated mechanisms into a hierarchical framework to solve the observation
scheduling problem of the HAA. In the hierarchical framework, we adopt a heuristic
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algorithm embedding an improved ant colony optimization (IACO) and a backtracking
strategy to solve the task clustering problem as well as find stagnation nodes. A simple
but efficient heuristic algorithm combining the 2-opt local search and nearest neighbour
search (NNS) is developed to handle the sensor scheduling. Meanwhile, the IACO is
also implemented to solve the cruise path planning problem. Particularly, the IACO is
developed by hybridizing ACO with local search, as well as modifying the selection criteria
of candidate nodes.

Therefore, the contributions of this paper are summarized as follows. (i) We consider
the scheduling of the imaging sensor in the observation scheduling of HAA, which is rarely
considered in previous studies. (ii) To solve the studied problem, we transform the original
problem into three sub-problems and propose an observation scheduling approach based
on task clustering (SA-TC). The SA-TC has a hierarchical framework that is composed of
three stages corresponding to the three sub-problems. In the first stage, a heuristic algorithm
based on a backtracking strategy and IACO is developed to cluster tasks and determine
stagnation nodes. In the second stage, a heuristic algorithm that combines the 2-opt local
search and NNS is proposed to solve the scheduling problem of the sensor, followed by
the third stage in which IACO is implemented to solve the planning problems of the
cruise path. Besides, the IACO integrates local search and appropriate candidates selection
strategy to improve the performance of ACO. (iii) We conduct extensive experiments to
prove the superiority of the proposed approach. Meanwhile, the three algorithms for three
sub-problems are further analyzed.

This paper is structured as follows. Section 2 provides a literature review and Section 3
describes the observation scheduling problem. Section 4 introduces the proposed hierarchi-
cal scheduling approach based on task clustering. Experimental studies and conclusions
are presented in Section 5 and Section 6, respectively.

2. Related Work

To better apply the HAA platform, numerous relevant studies have been carried out in
recent years. For example, Wang et al. [22] investigated a path-following control method for
a robotic airship subject to sensor faults. To detect and isolate the sensor fault, the authors
designed a data-driven soft sensor based on an adaptive neuro-fuzzy inference system
to detect and isolate the sensor fault. Zhang et al. [23] proposed an energy optimization
strategy based on the position potential for airships to improve endurance performance.
To improve the solar energy system of solar airships, Zhu et al. [24] studied the altitude
planning method by optimizing the yaw angle of airships. Another study conducted by
Zhang et al. [25] also focused on the altitude planning problem of solar airships. The authors
further analyzed the energy balance using different angle planning strategies. Besides,
Wang et al. [26] introduced the recovery trajectory optimization problem of the stratospheric
airship for the station-keeping mission and adopted an off-the-shelf nonlinear programming
problem solver to address this problem. These above-mentioned studies are utilized to
improve the performance of the HAA platform (e.g., reducing energy consumption and
easing control). However, few studies have paid attention to the observation scheduling
problem, which is one of the most crucial aspects of HAA applications.

Previously, to investigate the scheduling problem of HAA, Zhu et al. [12] proposed
a novel agent-based scheduling mechanism for multiple airships oriented to emergen-
cies. The authors integrated a bidirectional announcement mechanism and a collaborative
process into the proposed mechanism to facilitate the scheduling. Chuan et al. [13] in-
vestigated the cooperative scheduling problem on HAAs for imaging observation tasks.
An intelligence algorithm named propagation algorithm combined with the key node search
algorithm was proposed by the authors to solve the cruising optimization problem of HAA.
Similarly, the same group carried out a further study [14], in which the authors proposed an
energy-aware optimization strategy that optimizes task benefits and energy consumption
simultaneously. A recent study conducted by Xu et al. [27] developed a decomposition-
based multi-objective optimization algorithm using dynamic weight vectors and stable
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matching schemes to address the deployment problem of airships. Several studies also con-
sider the observation scheduling of airships coordinated with other observation platforms.
For example, Deng et al. [28] focused on an Earth observation network consisting of het-
erogeneous observation resources (e.g., satellites, UAVs, airships, and ground monitoring
vehicles), and proposed a two-phase coordinated planning approach to efficiently utilize
these observation resources. Wu et al. [29] developed a hierarchical coordinated planning ar-
chitecture that includes observation resources, sub-planner, coordination, and information
management. Meanwhile, two task assignment algorithms were designed by the authors
to coordinate and allocate observation tasks to sub-planners. In addition, Wang et al. [30]
focused on the coordinated scheduling problem in space information networks. It can be
concluded that previous studies mainly focused on optimizing the execution sequence of all
tasks to plan a reasonable cruise path for HAA and the sensor slewing is rarely considered.
In our study, we integrate the sensor scheduling into the observation scheduling problem
of HAA to fill the gap.

As mentioned above, the observation scheduling problem is divided into three sub-
problems based on our proposed method. These sub-problems can be formulated by
maximum coverage problem (MCP) and variants of vehicle routing problem (VRP), which
have been proved to be NP-hard [15,17]. To solve these combinatorial problems, it is com-
monly believed that exact algorithms cannot find optimal solutions within an acceptable
time. Hence, heuristic and meta-heuristic algorithms are widely implemented to obtain
approximately optimal solutions. For instance, to address the coverage problem that com-
monly appears in mobile wireless sensor networks, Liang et al. [31] devised four heuristic
algorithms and validated the effectiveness of the proposed algorithms. Chauhan et al. [32]
proposed a robust three-stage heuristic to solve the coverage facility location problem with
drones considering uncertainties such as battery availability and consumption. A recent
study conducted by Li et al. [33] solved a new variant named budgeted maximum coverage
problem based on an algorithm that combines reinforcement learning with tabu search.
For solving VRP and its variants, efficient algorithms such as tabu search [34,35], variable
neighborhood search [36], large neighborhood search [37], genetic algorithms [38], iterated
local search algorithms [39,40], and hybrid algorithms [41,42] have been adopted in existing
studies. However, the existing heuristic and mate-heuristic algorithms cannot be directly
implemented to solve our studied problem. Thus, we carry out some problem-specific
modifications as well as heuristic algorithms are required to obtain high-quality solutions.

3. Problem Description

As shown in Figure 1, during the observation period, an airship flies along with its
cruise path and begins to observe by hovering above a stagnation node. The ground targets
nearby the stagnation node are covered by the airship’s field of view (FOV) and these
targets are observed by slewing the imaging sensor equipped on the airship. Further,
the cruise path of the airship is formed by a set of stagnation nodes to accomplish all
observations. Note that each stagnation node is either at the location of a ground target,
or a new location determined by multiple ground targets in a FOV.

To facilitate the problem description and modeling, some reasonable assumptions are
given as follows. (i) During the observation, the impacts of sensor resolution and clouds
are assumed to be negligible. (ii) The radius of the Earth’s curvature is not considered in
this study. (iii) The working height of the airship is assumed to be maintained, thus this
paper only considers the horizontal movement of the airship. (iv) Assume that an airship
is equipped with an imaging sensor and the sensor can rotate freely but is constrained by
its maximum slewing angle. Besides, the notations used in this section are summarized in
Table 1.
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Figure 1. An example of the HAA observation process.

As mentioned above, the observation process of HAA includes two parts: (i) the
airship flies along with the cruise path formed by stagnation nodes, and (ii) the airship
hovers above each stagnation node and rotates the imaging sensor to observe the ground
targets covered by the FOV. Hence, to accomplish all tasks efficiently, the optimization
objective of the observation scheduling problem is the total observation time, which can be
written as

f = min ∑
i,j∈S

xijαij + ∑
u∈C

∑
k,l∈T

zkuzluykl βkl , (1)

where the first part of the objective function represents the total time for the airship flying
along the cruise path and the second part represents the total time required by the imaging
sensor to accomplish all observation tasks in all clusters. Here each cluster is formed by
one or multiple ground targets, which is determined by the FOV of the airship hovering
above every stagnation node.

Table 1. Notations.

Parameters Description

T Set of ground targets
S Set of stagnation nodes
C Set of clusters

αij
The time for the airship cruising from stagnation node i ∈ S to stagnation
node j ∈ S

βkl
The time for the imaging sensor rotating from the position observing target
k ∈ T to the position observing target l ∈ T

dij Distance between node i and node j on the ground
δi Distance between the airship and target i ∈ T
H The working height of the airship
θ The maximum slewing angle of the imaging sensor
M A sufficiently large number

Decision variables Description

xij
xij = 1 if the airship cruises from stagnation node i ∈ S to stagnation node
j ∈ S; otherwise, xij = 0

ykl
ykl = 1 if the sensor rotates from the position observing target k ∈ T to the
position observing target l ∈ T; otherwise, ykl = 0

ziu ziu = 1 if ground target i ∈ T belongs to cluster u ∈ C; otherwise, ziu = 0

Besides, the main constraints that should be satisfied are as follows.

∑
i∈S

xij ≤ 1, ∀j ∈ S, (2)



Sensors 2022, 22, 2050 6 of 20

∑
k∈T

ykl ≤ 1, ∀l ∈ T, (3)

∑
u∈C

ziu ≤ 1, ∀i ∈ T, (4)

arccos
δ2

k + δ2
l − dkl

2δkδl
+ M(1− ykl) ≤ θ, ∀k, l ∈ {u : k 6= l, u ∈ C}, (5)

dij + M(1− ziu) ≤ H(tan
θ

2
), ∀i ∈ T, ∀j ∈ S, ∀u ∈ C, (6)

xij ∈ 0, 1, ∀i, j ∈ {S : i 6= j}, (7)

ykl ∈ 0, 1, ∀k, l ∈ {T : k 6= l}, (8)

ziu ∈ 0, 1, ∀i ∈ T, u ∈ C. (9)

Constraint (2) ensures that each stagnation node should be visited by the airship only
once. Similarly, constraint (3) represents that each ground target should be observed only
once. Constraint (4) guarantees that each ground target only can be collected by a cluster.
Constraint (5) indicates that the slewing angle of the imaging sensor used for observing
two successive ground targets in a cluster should not exceed the maximum slewing angle.
In constraint (6), the condition for a ground target i being observed by the airship hovering
above stagnation node j is presented. Constraints (7)–(9) define the decision variables.

The above problem descriptions indicate that it is difficult to solve the studied ob-
servation scheduling problem directly as the problem includes three decision variables
and complicated constraints. Hence, in this paper, we transform the original problem into
three sub-problems, including task clustering, sensor scheduling, and cruise path planning.
The task clustering problem can be treated as a MCP [15] that aims to cover all ground
targets by using the minimum number of field of views (FOV). Since the result of the sensor
scheduling is the observation sequence of ground targets and the cruise path of the airship
is formed by stagnation nodes, the sensor scheduling and cruise path planning problems
can be regarded as two variants of VRP [17,18]. Thus, the original scheduling problem can
be decomposed and then solved in a step-by-step manner.

4. Observation Scheduling Approach Based on Task Clustering

The proposed scheduling approach has a hierarchical framework composed of
two heuristic algorithms and one meta-heuristic algorithm: the heuristic algorithm for task
clustering (HATC), the heuristic algorithm for sensor scheduling (HASS), and the improved
ant colony optimization (IACO). We call the proposed approach SA-TC. The framework of
SA-TC as well as its components are detailed in this section.

4.1. Framework of the Proposed Approach

The framework of SA-TC is shown in Figure 2, in which we adopt three algorithms to
solve three sub-problems as mentioned above. More specifically, we develop a heuristic
algorithm named HATC to divide all observation tasks into several sets (i.e., cluster). First,
an optimal path formed by all tasks is generated based on IACO. Then, a backtracking
strategy is introduced to cluster tasks along the optimal path. Meanwhile, each cluster is
associated with a stagnation node determined by the locations of the tasks in the cluster.
By assuming that the airship hovers above the stagnation node to accomplish observations,
a heuristic algorithm named HASS is proposed to search for a reasonable task observation
sequence in the sensor scheduling stage. The initial solution of the HASS is generated
based on the nearest neighbour search (NNS) and improved by 2-opt local search. Finally,
all stagnation nodes are used to form an appropriate cruising path for the airship based
on IACO.
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Ground targets

Task clustering

Generate an optimal path formed 
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local search
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Find an optimal path formed by stagnation nodes based on IACO

Cruise path planning

Find an optimal path formed by stagnation nodes based on IACO

Parameters

Figure 2. The framework of the proposed observation scheduling approach.

4.2. Heuristic Algorithm for Task Clustering

As mentioned above, the task clustering problem can be regarded as a maximum
coverage problem whose objective is to minimize the number of task clusters. Here a
cluster is defined by a set of ground targets that can be observed by the airship hovering
above a stagnation node. We propose a heuristic algorithm based on the improved ant
colony optimization (detailed in Section 4.4) and backtracking strategy for clustering tasks,
namely HATC, to determine the clusters and stagnation nodes. The main steps of HATC
are illustrated in Algorithm 1.

In HATC, the first step is to form an optimal path consisting of all ground targets by
using IACO. Then, the backtracking strategy is performed in lines 2–34 to cluster tasks as
well as determine stagnation nodes. More specifically, we denote the first two targets along
the optimal path as a and b, and set a stagnation node o at the middle position between a
and b (lines 3–4). If both a and b can be observed by the airship hovering above o according
to constraint (6), both a and b are clustered into the set ctask; otherwise, only put a into ctask
and move o to the position of a (lines 5–9). Afterward, two operations are conducted to add
feasible targets into ctask . In the first operation (lines 10–22), the set of the remained targets
that are not clustered is defined as UT and the closest target c from UT to the stagnation
node is selected in each iteration. Assume a stagnation node o′ at the middle position
between c and o, if target c and other targets in ctask can be simultaneously observed by
the airship hovering above o′ according to constraint (6), target c would be added into the
set ctask, and the stagnation node as well as the remained target set UT would be updated.
Similarly, the second operation (lines 23–33) also tries to add the remained feasible targets
into the set ctask. However, different from the first operation in which the candidate tasks
are selected greedily, the second operation stochastically selects candidate targets to help
the algorithm escape from the local optimum.
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Algorithm 1: HATC.
Input: All ground targets
Output: clusters and stagnation nodes

1 Form an optimal path P consisting of all ground targets by using IACO
2 repeat
3 {a, b} ←The first and second targets that are not clustered along the path P
4 Set a stagnation node o at the middle position between a and b
5 if {a, b} can be observed by the airship hovering above o then
6 a and b are clustered into the set ctask← {a, b}
7 else
8 ctask← {a} and move o to the position of a
9 end

10 UT ←The set of the remained targets that are not clustered
11 Calculate the distances between o and the targets in UT
12 while UT 6= ∅ do
13 c←The target closest to o in UT
14 Set a stagnation node o′ at the middle position between c and o
15 if ctask ∪ {c} can be observed by the airship hovering above o′ then
16 ctask← ctask ∪ {c}
17 o ← o′

18 UT ← UT/{c}
19 else
20 UT ← UT/{c}
21 end
22 end
23 UT′ ←The set of the remained targets that are not clustered
24 while UT′ 6= ∅ do
25 d←A randomly selected target in UT′

26 if ctask ∪ {d} can be observed by the airship hovering above o′ then
27 ctask← ctask ∪ {d}
28 o ← o′

29 UT′ ← UT′/{d}
30 else
31 UT′ ← UT′/{d}
32 end
33 end
34 until All targets are clustered;

To better understand the backtracking strategy, as well as the proposed HATC, we
present an example in Figure 3. In Figure 3a, there is an optimal path formed by all ground
targets (i.e., observation tasks), and the ground target b is successive to the ground target a
along the optimal path. As Figure 3b shows, if a stagnation node is located at the middle
position between a and b, and the FOV provided by the stagnation node can cover a and
b simultaneously, a and b would be clustered into the same set. Afterward, for the case
in Figure 3c, the FOV cannot cover the ground target b if the stagnation node is located
at the middle position between a and b. Then, the position of the stagnation node would
be moved back to the position of ground target a. The output of HATC is a set of clusters
covering all ground targets and a set of stagnation nodes. Meanwhile, each cluster is
associated with a feasible stagnation node.
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Figure 3. An illustration of the task clustering process. (a) A path formed by all ground targets, (b) A
path with a stagnation node, (c) A path with two stagnation nodes.

4.3. Heuristic Algorithm for Sensor Scheduling

To reduce the time for slewing the imaging sensor, it is necessary to optimize the
observation sequence of ground targets. The sensor scheduling problem in each cluster
can be regarded as a traveling salesman problem (TSP), in which the observation sequence
is represented by a path consisting of all ground targets in a cluster and the stagnation
node is regarded as the depot node. Meanwhile, due to the angle constraint of the imaging
sensor as mentioned in constraint (5), two ground targets may not be observed successively,
yielding difficulties for solving this problem. Hence, since the number of ground targets
in each cluster is limited, we propose a simple but efficient heuristic algorithm for sensor
scheduling (HASS) to find a reasonable observation sequence of ground targets in each
cluster. The main steps of HASS are displayed in Algorithm 2.

As illustrated in HASS, the well-known nearest neighbour search (NNS) is adopted to
create an initial observation sequence (i.e., a path composed of ground targets) for each
cluster (line 2). From the stagnation node, the NNS chooses the next target that is the closet
target from unvisited targets and constrained by the maximum slewing angle of the sensor,
finally stops when all targets are visited. Then, the 2-opt local search is adopted to improve
the initial solution in lines 4–11 as 2-opt based local search has been proved effective in
solving various routing problems [43,44]. In each iteration of the 2-opt local search, two
nodes would be randomly selected from the path and the sub-path between these two
nodes would be reversed (i.e., 2-opt operation). An example of the 2-opt operation is
illustrated in Figure 4. Figure 4a shows an observation sequence of ground targets in a
cluster. Then, based on the 2-opt operation, targets a and b are selected and the sub-path
between a and b is reversed to construct a better path, as Figure 4b shows. It should be
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noted that we implement a repair strategy to address possible infeasibilities caused by
the slewing angle constraint. Specifically, if a solution generated by a 2-opt operation is
infeasible in line 5, this step would output the solution unchanged. Finally, the algorithm
stops when the path in every cluster is optimized by the local search.

Algorithm 2: HASS.
Input: clusters C and stagnation nodes S
Output: observation sequences of the sensor

1 for each cluster i ∈ C do
2 Pi ← Form a path consisting of all ground targets in cluster i based on NNS
3 ti ← Calculate the time for observing all ground targets of Pi
4 while The termination condition is not satisfied do
5 P′i ← Apply 2-opt operation on Pi
6 t′i ← Calculate the time for observing all ground targets of P′i
7 if t′i < ti then
8 ti ← t′i
9 Pi ← P′i

10 end
11 end
12 end

x

y

Stagnation Point

FOV

a

b

(a)

x

y

Stagnation Point

FOV

a

b

(b)

Figure 4. An illustration of the 2-opt operation. (a) A path before 2-opt operation, (b) A path after
2-opt operation.

4.4. Improved ant Colony Optimization

Ant colony optimization (ACO) is a bio-inspired swarm intelligence algorithm that has
been applied in many fields due to its powerful search ability [19,45,46]. At each iteration,
when an ant travels through an edge between two nodes, it will deposit some pheromone
trail on this edge. Besides, the quantity of the pheromone depends on the quality of the
solution. Thus, each ant k selects the next node j from the current node i based on a specific
probability pk

ij determined by the pheromone concentration, which can be written as

pk
ij =


τα

ij ·η
β
ij

∑l∈Jk(i)
τα

il ·η
β
il

, if j ∈ Jk(i),

0, otherwise,
(10)

where Jk(i) is the set of feasible nodes unvisited by the ant k, α and β are weight coefficients
that show the relative importance of the pheromone trail τij and the heuristic information
ηij. Particularly, the heuristic information ηij is generally defined by

ηij =
1

dij
, (11)
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where dij is the distance between nodes i and j. Besides, the pheromone trail τij would be
updated after every ant constructs a complete path. The update methods are described
as follows:

τij = (1− ρ) · τij +
m

∑
k=1

∆τk
ij, (12)

∆τk
ij =

Q
Lk

, (13)

where ρ is the pheromone trail evaporating rate, and ∆τk
ij is the amount of pheromone trail

accumulated on the path (i, j) by the ant k, Q is a constant parameter, and Lk is the distance
of the path traveled by the ant k.

In this paper, we propose an improved ant colony optimization (IACO) to solve
the routing problems yielded in the task clustering problem and cruise path planning
problem. We improve the ACO from two aspects. Specifically, we appropriately integrate
a 2-opt-based local search into ACO to improve its exploration capability. On the other
hand, different from the conventional ACO in which all unvisited nodes are considered as
candidate nodes when the ant selects the next node, the ant of IACO only selects from the
n closest nodes, thereby improving the convergence efficiency. The main steps of IACO are
illustrated in Algorithm 3.

Algorithm 3: IACO.
Input: N nodes, the maximum number of iterations G, the number of ants m, α, β,

ρ, and Q
Output: Best path Pbest

1 Initialization: g← 0, pheromone matrix τ, and the best path Pbest ← ∅
2 while g < G do
3 for k = 1 : m do
4 Pk ← ∅
5 i← Randomly select the initial position of the k-th ant
6 Pk ← Pk ∪ {i}
7 while All nodes are not assigned do
8 Jk(i)← Obtain the n closest nodes from the remained nodes
9 j← Select a node from Jk(i) according to the wheel roulette strategy

10 Pk ← Pk ∪ {j}
11 i← j
12 end
13 end
14 Apply 2-opt-based local search on the best path Pgbest at this iteration
15 Update the pheromone matrix τ and the global solution Pbest

16 g← g + 1
17 end

As Algorithm 3 shows, the inputs of IACO are the nodes, the maximum number of
iterations G, the number of ants m, and other parameters mentioned in Equations (10)–(13).
At each iteration, each ant starts from a randomly selected node and moves to the next
node selected from the remained nodes until all nodes are included in the path (lines 5–12).
Particularly, in the proposed IACO, the ant moves from the current node i to the next node
j selected from the n nearest nodes based on the wheel roulette strategy (line 8). Note that
the value of n would change as the number of unvisited nodes decreases. Assume n = 5 at
the beginning, if the number of the unvisited nodes is more than 5, let n = 5; otherwise,
n equals the number of the unvisited nodes by the ant. The probability of each candidate
movement is determined based on Equation (10). After every ant accomplishes a tour,
the 2-opt-based local search introduced in Section 4.3 would be applied to further improve
the quality of the solution obtained at this iteration. Then, the pheromone information is
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updated according to Equations (12) and (13) and the best path is recorded as Pbest (line 15).
Finally, the algorithm stops when the maximum number of iterations is met.

5. Simulation Experiment and Results

This section represents the simulation and comparative analysis of the proposed ap-
proach and its components. As far as we know, there are no accepted benchmarks yet for the
studied problem, thus we generate targets randomly distributed in a 500 km × 500 km area
to simulate the experiment scenarios. Besides, all algorithms are coded in MATLAB and run
on a PC with Core i5-8400 2.80 GHz CPU, 8G memory, and Windows 10 operating system.

5.1. Simulation Setup

In experimental studies, we use 6 cases with different target numbers to simulate
small-, medium-, and large-scale scenarios, respectively. The HAA is assumed to work
at a height of 23 km with an average speed of 500 km/h. The maximum side slewing
angle of the imaging sensor is set to 25◦ and the slewing speed is set to 5◦/s. According
to previous experiments, the parameters of the IACO algorithm are set as follows: the
number of ants m = 50, the weight coefficients α = 5 and β = 1, the evaporation rate
ρ = 0.9, the parameter Q = 100, and the maximum number of iterations G = 100. Besides,
the maximum number of iterations of 2-opt-based local search is set to n2, where n is the
number of targets.

Furthermore, in all comparison experiments, we use a metric called GAP in addition
to the optimization objective to represent the difference between the results (i.e., fa and fb)
of two algorithms. The GAP is calculated by

GAP(a, b) =
( fa − fb)

max( fa, fb)
× 100% (14)

5.2. Comparative Study of the Proposed Approach

To verify the superiority of the proposed SA-TC, we compare it with the classical
airship observation scheduling approach [47], namely TSPA, in 6 cases with the number
of targets varying from 100–1200. In TSPA, the observation process of HAA is assumed
to be a TSP, in which the imaging sensor scheduling and stagnation nodes are not consid-
ered. The airship observes all targets based on its cruising ability. During the simulations,
each experiment is repeated 10 times and the average observation time is used for com-
parisons. The experimental results are displayed in Table 2 and Figure 5. In Table 2,
the colonums represent the number of targets, the observation time results obtained by
TSPA and SA-TC respectively, the number of clusters obtained by SA-TC, and the values of
GAP(TSPA, SA-TC) calculated by Equation (14).

Table 2. Comparison results of airship observation scheduling approaches in 6 cases.

Case Num. of Targets
TSPA SA-TC

GAP (%)
Obs. Time (h) Obs. Time (h) Num. of Clusters

1 100 78.53 64.78 56 17.51
2 300 139.02 99.18 116 28.66
3 500 180.34 119.11 149 33.95
4 700 212.98 125.82 166 40.92
5 900 241.67 133.92 182 44.59
6 1200 280.85 141.52 200 49.61

The results demonstrate that the proposed SA-TC is superior to TSPA in all cases.
Specifically, according to the values of GAP(TSPA, SA-TC), the proposed SA-TC can
reduce the total observation time by 17.51% to 49.61% compared with TSPA. Besides,
as the number of targets increases, the superiority of SA-TC becomes more significant.
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For instance, when the number of targets is 500, the observation time required by SA-TC is
66.67% of the time required by TSPA. When the number of targets is 1200, the observation
time required by SA-TC is 50% of the time required by TSPA. Therefore, the proposed
SA-TC is more efficient when dealing with large-scale observation scheduling problems.
The superiority of SA-TC can be explained by the task clustering strategy. Based on the
task clustering strategy, the airship only needs to hover above specific stagnation nodes to
observe nearby targets, thereby reducing the cruise time of the airship.

Figure 5. Comparison results of TSPA and SA-TC with different numbers of targets.

To visually compare the scheduling results, we present the experimental results in
Figure 6. In Figure 6, the red node indicates the stagnation node, the black circle denotes
the FOV of the airship hovering above the stagnation node, the green line represents the
observation sequence of the imaging sensor, and the red line is the cruise path of the airship
obtained by SA-TC. Besides, the cruise path of the airship obtained by TSPA is represented
by the blue dotted line. It can be found that the proposed SA-TC can well address the cases
with different scales of targets.

5.3. Performance Analysis of HATC

This section analyzes the performance of the proposed HATC by conducting experi-
ments in cases with the number of targets varying from 30–400. Each experiment is repeated
10 times and the average results are displayed in Table 3. The results indicate that the
proposed HATC can handle different scales of targets to obtain clusters and stagnation
nodes. Besides, although the CPU time increases with the increase of the number of targets,
the time consumption is still acceptable.

Table 3. Task clustering results with different numbers of targets.

Case Num. of Targets Num. of Clusters CPU Time (s)

1 30 23 0.02
2 50 34 0.03
3 100 55 0.06
4 200 88 0.10
5 300 114 0.13
6 400 135 0.19
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Scheduling results of TSPA and SA-TC. (a) 100 targets, (b) 300 targets, (c) 500 targets,
(d) 700 targets, (e) 900 targets, (f) 1200 targets.

The visual results of HATC are shown in Figure 7. The blue dotted line is the path ob-
tained by IACO, the blue nodes are stagnation nodes obtained by the backtracking strategy,
and the black circle is the range of the cluster. An interesting result is that the increment of
the number of clusters generated by the algorithm is decreasing as the number of targets
increases. It can be explained that with the increase of the target number, the density of
targets would be increased, which would also yield difficulty for obtaining a reasonable
solution. Nevertheless, the large-scale case is well-addressed by the proposed HATC.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Scheduling results of HATC with different numbers of targets. (a) 30 targets, (b) 50 targets,
(c) 100 targets, (d) 200 targets, (e) 300 targets, (f) 400 targets.

5.4. Performance Analysis of HASS with Different Numbers of Targets

In this section, we set 6 experimental cases with the number of targets varying from
50–300 to investigate the performance of the proposed HASS. The simulation results of
HASS are displayed in Figure 8. The green line, red node, and blue circle represent the
observation sequence of the imaging sensor, stagnation node, and target, respectively. It
should be noted that the slewing path of the imaging sensor is a closed-loop, and the
start and termination nodes of the path are the same stagnation node, thus the slewing
direction of the imaging sensor is not provided in Figure 8. As it can be seen, almost
every sensor scheduling problem in each cluster is well-scheduled. Besides, every sensor
scheduling problem in each cluster contains a very small number of nodes (generally less
than 5 as shown in Figure 8), thus it can be solved quickly by using 2-opt-based local
search. Also, since it is very easy to obtain an optimized solution on such a small-scale
problem, no further performance evaluation of HASS is provided in this section. This result
also demonstrates the application of the 2-opt-based local search is reasonable for solving
the sensor scheduling problem. Furthermore, as discussed before, the density of nodes
increases with the increase of target number, so the problem scale of each sensor scheduling



Sensors 2022, 22, 2050 16 of 20

problem in every cluster is also increased. Nevertheless, it can be found from Figure 8f that
the scale of the sensor scheduling problem is still moderate to be solved by HASS.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Scheduling results of HASS with different numbers of targets. (a) 50 targets, (b) 100 targets,
(c) 150 targets, (d) 200 targets, (e) 250 targets, (f) 300 targets.

5.5. Performance Analysis of IACO

This section compares the IACO with conventional ACO to verify the efficiency of
the proposed IACO. The experiments are conducted in 6 cases whose scales are 50, 150,
250, 350, 450, and 500, respectively. Each experiment is repeated 10 times and the average
results are used for comparisons. The results are shown in Table 4 and Figure 9. In Table 4,
the columns indicate the number of targets, the cruise time obtained by ACO and IACO
respectively, the CPU time consumed by ACO and IACO respectively, and the values
of GAP(ACO, IACO). It can be found that the proposed IACO can obtain better results
compared with ACO. Specifically, according to the values of GAP(ACO, IACO), the IACO
can reduce the cruise time of the airship by 2.36–4.61% compared with the conventional
ACO. This result is attributed to the local search adopted in IACO. By appropriately using
the local search, IACO can obtain higher-quality solutions. Meanwhile, the IACO used less
computational time. The IACO can reduce the computational time for dealing with the
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same case by 24.67% at most. It can be explained by that the candidate selection strategy
implemented in IACO reduces the search time.

Table 4. Comparison results between ACO and IACO in 6 cases.

Case Num. of Targets
ACO IACO

GAP (%)Cruise Time (h) CPU Time (s) Cruise Time (h) CPU Time (s)

1 50 57.09 4.50 54.46 3.39 4.61
2 150 96.71 14.39 92.42 15.21 4.44
3 250 132.93 37.67 128.15 35.36 3.59
4 350 154.07 72.57 150.44 64.80 2.36
5 450 178.43 120.90 172.25 103.16 3.46
6 500 186.04 153.46 178.40 120.31 4.11

Besides, the impacts of the target number on the IACO are worth the attention. As it
can be found in Table 4, with the increase of node number, the computational time of
IACO is significantly increased, which is very common for swarm-based meta-heuristic
algorithms. However, the time consumption is acceptable for observation scheduling of
HAA under the consideration of its long-period observation requirement.

Figure 9. Cruise time of the airship in 6 cases with different numbers of targets obtained by HASS.

6. Conclusions

In this paper, we consider the scheduling of the imaging sensor in the observation
scheduling problem of HAA. To solve the studied problem, we propose a hierarchical obser-
vation scheduling approach based on task clustering. The proposed approach transforms
the original observation scheduling problem into three sub-problems: task clustering, sen-
sor scheduling, and cruise path planning, and solves these sub-problems in a step-by-step
manner. In the task clustering problem, a heuristic algorithm named HATC is proposed to
cluster ground targets and find a set of stagnation nodes. Each stagnation node is associated
with a cluster, and the airship hovers above the stagnation node to observe nearby ground
targets. To observe the targets nearby the stagnation nodes, a heuristic algorithm named
HASS is developed to schedule the observation sequence of the imaging sensor in the
sensor scheduling problem. Finally, a meta-heuristic algorithm named IACO is designed
to obtain a cruise path of the airship that connects all stagnation nodes in the cruise path
planning problem.

Besides, some sophisticated mechanisms are adopted to design the algorithms. Specif-
ically, the HATC integrates the IACO to generate an initial solution, and the backtracking
strategy to determine clusters and stagnation nodes. Since the observation sequence
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scheduling in each cluster is small-scale, the 2-opt local search combined with nearest
neighbour search is used to develop the HASS. The IACO proposed in this paper appro-
priately combines local search and modifies the selection strategy of candidate nodes to
improve the performance of the conventional ACO.

The simulation results of this paper show that the proposed approach can reduce the
total observation time by at most 49.61% compared with the traditional airship observation
method. Particularly, the proposed approach is more efficient when dealing with large-scale
problems. Additionally, the performance of three algorithms in the cases with different
scales of targets are analyzed. The results show that all three algorithms can well address
small-, medium-, and large-scale problems.

The proposed algorithm is expected to be used in the HAA-based platform for obser-
vation tasks in emergencies. For example, numerous observation information and pictures
about the disaster area are badly needed when an earthquake occurs. The HAA can be
launched to observe a set of geological accident points that cannot be reached by humans,
while the proposed algorithm would provide the HAA with an efficient observation scheme.
However, the proposed algorithm is not verified by using the benchmark derived from the
practical dataset and ignores some constraints that may appear in practical applications
(e.g., uncertainties and timeless), which would be addressed in future works.
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