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Abstract: Thousands of energy-aware sensors have been placed for monitoring in a variety of
scenarios, such as manufacturing, control systems, disaster management, flood control and so
on, requiring time-critical energy-efficient solutions to extend their lifetime. This paper proposes
reinforcement learning (RL) based dynamic data streams for time-critical IoT systems in energy-aware
IoT devices. The designed solution employs the Q-Learning algorithm. The proposed mechanism
has the potential to adjust the data transport rate based on the amount of renewable energy resources
that are available, to ensure collecting reliable data while also taking into account the sensor battery
lifetime. The solution was evaluated using historical data for solar radiation levels, which shows
that the proposed solution can increase the amount of transmitted data up to 23%, ensuring the
continuous operation of the device.

Keywords: osmotic computing; Internet of Things; reinforcement learning

1. Introduction

The Internet of Things is a concept beginning to be a natural element of human
development and technological progress. IoT devices are used in many areas of everyday
life, including smart homes, factories and cities [1]. IoT devices are also used in time-critical
systems, i.e., where it is essential to obtain data processing results in the shortest possible
time [2]. Examples of such systems are various solutions used during natural disasters,
such as fires or floods. The key factor of such systems is the processing of up-to-date,
non-delayed data from sensors installed in IoT devices. To achieve this, devices should be
ready to transmit a data stream with necessary requirements.

Unfortunately, transferring a significant amount of data from sensors is associated
with high demand for energy to make the measurements and then send the data to the
edge and computing clouds. However, this can be difficult to achieve for IoT devices with
limited computing and power resources. Especially when they are powered by renewable
energy sources such as solar energy. However, the device can respond to changes in the
availability of renewable energy by changing the frequency of collecting and transmitting
measurement data. The paper proposes dynamic data streams, which can be changed to
consume the device’s available resources accordingly.

Nevertheless, dynamic data streams in time-critical systems are related to the intel-
ligent management of their parameters. Therefore, we propose to use the concept based
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on autonomic computing [3] to manage their parameters through dedicated management
agents that can monitor and plan adaptation actions. It is also important that the purpose
of device adaptation may depend on the system’s operating goal. For example, in a flood
risk situation, the system should work with the most up-to-date data possible, paying
less attention to maintaining the system’s lifetime. On the other hand, during normal
operation, the system should strive to maintain as long a lifetime as possible to prepare
for emergency situations. The implementation of the autonomic computing concept in IoT
devices is complex since they have very limited resources. Therefore, we propose the usage
of cooperating osmotic agents associated with devices and the edge datacenters [4]. The
agents operating on the devices send data regarding the device operation, e.g., battery level,
current configuration, while the edge agent plans device reconfiguration actions, which are
then sent in response to be executed on the devices.

The agent’s logic could be implemented in the form of decision rules specifying actions
that will be performed in specific situations. However, it would require having a particular
model of the device and the environment in which it works. Therefore, in the paper we
propose to implement the agent’s logic based on reinforcement learning. It is used in
systems where, based on the observation of the system operation and the actions taken,
their effectiveness in the form of a reward can be assessed. In summary, the following are
the paper’s primary contributions:

• we formulated the limitation of the power resources problem in the IoT device,
• we proposed reinforcement learning-based dynamic data streams for time-critical IoT

systems in energy-aware IoT devices,
• we evaluated our proposed approach performance using a levee monitoring system

in river flood scenario.

The paper is organized as follows. The second section deals with an overview of
state of the art. The third section discusses the motivation, while fourth describes the
formal model and problem definition. Section five presents the proposed concept based
on reinforcement learning, which is then evaluated in section six. Finally, the paper is
summarized and future work is discussed.

2. Related Work

Adaptation of IoT devices with the help of reinforcement learning (RL) is widely
described in the literature. In [5] different cases of RL applied to IoT ecosystems are
presented. IoT devices can use adaptation mechanisms in different layers of the systems,
e.g., a smart vehicle, in the perception layer, can decide on velocity, driving direction,
or avoiding obstacles. In the application layer, on edge/cloud servers, decisions about
scheduling tasks, caching data or resources of virtual machines allocation can be made.
Finally, RL algorithms can control the bandwidth or rate of data sent in the network layer.

RL algorithms can be applied to improve outcomes of sensing coverage tasks [6].
For example, many sensors may cover the most extensive possible area maintaining low
battery consumption. Basically, the large area coverage by the single sensor, results in
substantial battery consumption. In multi-agent systems, where each device communicates
with another, RL can be used to optimise device operations for sensing applications and
decrease the overall battery consumption. For that purpose, Q-Learning algorithm can
be modified by e.g., distributed value function [7] improving up the learning process in a
distributed environment.

Authors in [8] compare three different approaches to maintaining the highest possible
amount of data transferred from an IoT device with limited battery capacity. Two of them
are online/offline optimisation which assumes that the upcoming energy and state of the
environment is known. In contrast, the RL based approach, which is more likely to be
held in real life scenarios, knows about energy and system state only casually. Results
show that with time, the learning-based approach yields results compared to those using
optimisation-based approaches. In [9], RL is used in the case of many battery powered user
equipment communicating via limited access channels to the single base station. The goal
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was to maintain the highest possible bandwidth of data sent from equipment to the base
station while keeping the device battery alive. In each time slot, the station receives state
information from selected equipment. Then such a state is used to choose an action based
on learnt policy, and then such action is broadcasted to the user equipment. As the action
and state spaces were large, the Deep RL algorithms based on Long Short-Term Memory
(LSTM) was used to estimate Q-values.

In mobile edge computing (MEC) RL can be used for adapting processor frequency [10].
In such a scenario, an RL agent is implemented on an edge server in order to reduce
processing time for incoming requests. When a request arrives, the edge server checks
the current state of CPU loads and battery and decides whether such a request should
be processed at all. If accepted, the CPU frequency should be set to a higher operational
frequency, requiring more energy resources. Experiments show that the server learns how
to handle requests of different sizes in different states (e.g., battery state) by using RL.
This yields better results than rule based methods, e.g., best/worst fit approaches or other
learning solutions such as sliding windows.

A combination of RL with LSTM neural networks can be utilised for scenarios when
an RL agent must decide whether sensors have to be turned on to sense actual data or the
value can be predicted based on the historical measurements [11]. It is used to preserve
balance between energy consumption and the accuracy of the measurements. Both the RL
agent and LSTM network are pretrained and two approaches are compared-model-free
and model-based RL algorithms. Experiments show that such algorithms allow turning off
sensors when predictions are accurate enough to preserve battery lifetime.

3. Motivation

Consider the system for monitoring the condition of the levees built along the river, as
shown in Figure 1. Its purpose is to detect situations that may result in the breakage of the
levee during a flood and cause significant material and human losses.

River

Cloud

Levee Levee

Edge

Figure 1. Levee monitoring system.

IoT devices are located along the river and measure the physical parameters of flood
barriers, including temperature, humidity and its displacement. The sensor data streams
are then preprocessed in the edge station located in close proximity. The aggregated results
are then sent to the cloud datacenter for further analysis. Communication between devices
and the edge server is carried out using the wireless network.

The size of the data stream from sensors depends on the frequency with which the
devices take measurements. However, increasing the amount of data transferred results in
an increased demand for energy [12]. The devices are self-powered, thanks to the fact that
they are equipped with photovoltaic panels and rechargeable batteries.

In the case of time-critical systems, it is necessary to send data as frequently as possible
because, in the event of a flood hazard, actual sensor data are required [13]. Unfortunately,
this can lead to a complete battery discharge, causing the device to be inactive until the
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next day and the next recharging cycle from soler panels. In a situation where there is no
risk of damage to the embarkment, too frequent data transmission from sensors results in
deep discharging cycles of the batteries, which contributes to the rapid degradation of their
capacity and is undesirable.

The research problem concerns the adaptive management methods of the data stream
from sensors in the presented class of systems. The research considers two scenarios. The
first involves the operation of the IoT system under normal operating conditions. In this
case, the purpose of adaptation is to ensure the longest possible operation of the system
on the batteries and to reduce the complete discharge cycles. The second assumes the
operation of the system during exceptional situations, requiring constant and frequent
monitoring of the environment and sending data from sensors.

4. Formal Model

We begin by presenting the required definition and system description to represent
our research problem in Section 4.1. We formulate our problem using these definitions
(Section 4.2). The Abbreviations part lists all of the notations that were used in the paper.

4.1. System Description and Definition

The infrastructure system X, which is represented as a quintuple 〈O, PV, D, E, C〉. O
is a set of Osmotic Agents that respond to communication between the devices and is
denoted by Oo = {ido}, where ido represent the identifier of the Osmotic Agents Oo. PV is
a set of Photovoltaic panels located in each IoT device Di and is denoted by PVp = {idp},
where idp represent the identifier of the Photovoltaic panels PVp. D is a set of IoT devices
Di and is denoted by Di = {idi, δi, bi, ri, oi}, idi represents the identifier of the IoT device
Di, δi represents the sensing rate of IoT device Di, so, each IoT device observes its sur-
roundings continuously over a given time interval, bi represents the battery of IoT device
Di, ri represents the renewable energy from the Photovoltaic PV panels, oi represents the
osmotic agent of the IoT device Di. E is a set of edge devices Ee, each Ee is represented as
Ee = {ide, he}. Where ide and he represent the identifier and the set of host machines h1

e , h2
e ,

. . . for the edge device Ee, respectively. C is a set of cloud data centres Cc, and is denoted by
Cc = {idc, hc} where idc is the identifier of the datacentre and hc is the set of host machines
h1

c , h2
c , . . . for the cloud data center Cc, respectively.
An IoT application Ai is defined as a directed acyclic graph (DAG) of microservice

Ai = {A
µ1
i ,Aµ2

i , ...} in which each Aµj
i represents a microservice to be execute. Each Aµj

i
has its own set of software (SW), hardware (HW), and quality of service (Q) requirements.
The combined requirementsR(A

µj
i ) for a microservices are shown in Equation (1).

R(A
µj
i ) = SWµj + HWµj +Qµj (1)

In Equation (2), the total requirements of any application Ai is given by the sum up
the requirements of all the microservices.

R(Ai) = ∑
∀j
R(A

µj
i ) (2)

Data are generated by IoT devices Di on a regular basis. The IoT device is treated as a
passive entity, which means it does not handle data and instead sends it to the edge device.
Each IoT device Di have a battery bi and a Photovoltaic panel PVi that will recharge the IoT
device Di battery bi continuously. The total battery capacity Btotal is computed as given in
Equation (3).

Btotal = bavl + PVavl (3)

where bavl is the IoT device Di available battery capacity, and PVavl is the IoT device Di
available Photovoltaic panel charging capacity. When the IoT device generates the data
from the surrounding environment and sends it to the edge datacenter Ee, that process
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will consume the battery. So, to calculate the overall battery consumption BC for each IoT
device using Equation (4).

BC = 1
sr
· tr (4)

where the sr is sensing rate of the environment and tr is draining rate of sending the data
to the edge datacenter Ee.

4.2. Problem Definition

Definition 1. Given an infrastructure X = {O, PV, D, E, C} and a set of IoT applications
A = {A1,A2, . . . }, a suitable deployment solution ∆m is defined as a mapping for Ai ∈ A
to X (∆m : Ai → X∀Ai) if and only if:

1. ∀Aµj
i ∈ Ai, ∃(A

µj
i → vh) where, h ∈ {he ∪ hc}

2. ∀Aµj
i ∈ Ai , if Aµj

i → vh, then HWµj � vHW
h and SWµj � vSW

h
3. ∑µj

HWµj ≤ vHW
h and ∑µj

SWµj ≤ vSW
h

All the requirements to find a suitable deployment solution are considered in the
definition given above. Requirement 1 indicates that a mapping between Aµj

i and a virtual
environment vh|h ∈ {he ∪ hc} must exist for every microservice belonging to the IoT ap-
plication Ai. Requirement 2 confirms that the hardware and software requirements of the
microservice must be satisfied by vh if a microservice Aµj

i is deployed to a virtual environ-
ment vh. Finally, requirement 3 limits the number of microservices a virtual environment
can execute at any time t.

The primary goal of this study is to find the best solution for all applications Ai such
that the overall battery consumption BCAi is minimum. As given these requirements, we
can represent the problem as shown below.

minimize BCAi + minimize si
r

subject to:
∀i ∈ Ai, ∀j ∈ µj ∃(A

µj
i → vh)

(5)

The constraint states that all of the application’s microservices Aµj
i must be executed

in a virtual environment (Equation (5)).

5. Osmotic Agents with RL

In the proposed solution, we leverage the osmotic agents [4] concept. Each device
has an agent associated with it that manages the device’s resources. In a classic approach
to RL, it is assumed that there is an agent-environment interaction in which there is a
critic who can evaluate the actions taken. However, the proposed solution assumes two
environments—one internal that is a shadow representation of the device and the other
external that is a real device. First, the state of the internal environment is updated based
on observation of the external device. Then, the assessment of the actions taken on external
device is carried out based on the state of the internal environment.

We also assume that in the case of a network of IoT devices forming a sensor network,
they are functionally similar and operate analogously. In other words, they are independent,
but with a similar state distributions. This means that the internal environment represents
a generic IoT device that is part of the system, and the knowledge update process may
include observations from a set of devices.

In the solution as presented in Figure 2, agents of different devices can communicate
and create a multi-agent system. Due to the fact that the IoT device has limited computing
and memory resources, the logic of the device adaptation is controlled by an agent running
in the edge datacenter.
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Figure 2. System architecture.

The internal environment used by the edge agent can be enriched with additional
information from external sources. In our case, it is information about the weather forecast
and forecast cloud cover for the current and next day.

5.1. QLearning Algorithm

We decided to use the classic Q-Learning algorithm to implement the RL logic of the
agents managing the sensing rate. It is a model-free algorithm that learns the value of an
action performed in a particular state. In our solution, the actions that can be performed on
the device are the same as choosing the sensing rate, i.e., A = {sr}. Hence, the function Q is
defined as:

Q : S× A→ R (6)

Updating the value of the Q function is done using the Bellman function as an iterative
update using the weighted average of the old and new values:

Qnew(st, at) = Q(st, at) + α · [rt + γ · argmax
a

Q(st+1, a)−Q(st, at)] (7)

The α parameter is responsible for the learning rate, i.e., how much new values during
learning affect updating the current values. The γ parameter is responsible for the discount
factor, i.e., how important long-term rewards are compared to short-term ones. Parameter
values influence the learning process and are application dependent. Typically α = 0.1 and
γ = 0.8 are assumed.

5.2. State Discretization

The number of possible states representing the environment requires a discussion.
Initial analysis indicates that an RL problem with ample state space can be solved using
DeepRL [9] methods. However, in the solution, we decided to limit the space states through
their discretization, which is justified in reducing the resources needed for training the
algorithm and implementation in real IoT devices. The possible states values for the
presented problem are presented in Table 1.
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Table 1. Discretized states used in the RL algorithm.

Observation Number of States State Discretization

Today Forecast 3 cloudy; partly cloudy; sunny

Next Day Forecast 3 cloudy; partly cloudy; sunny

Month 3 {1, 2, 11, 12}{3, 4, 9, 10}{5, 6, 7, 8}

5.3. Reward Function

The RL algorithm is based on the value of the reward obtained in response to the
chosen actions. In our system, the reward function is a weighted average of two factors,
where the β parameter determines the weight:

ri =

{
β · bi+(1− β) · min(si

r)

si
r

i f bi > 0.05

0 i f bi < 0.05
(8)

The first component concerns the device’s battery level and assumes values in the
range [0; 1]. The second component involves the sensing rate of the device. The more often
the device collects data, the higher the value is. The second component also takes values in
the range [0; 1].

In the case of the discussed systems, the amount of data transferred from the device is
important, but the more important issue is to prevent the situation of a complete discharge
of the batteries. Therefore, the reward function is 0 if the device has a critical battery
level of less than 5%, and the β parameter was set to 0.2 to include battery level in the
reward function.

We have set the critical battery level as 5% due to the possible inaccuracy of the
battery capacity measurement and the potential need for a safe device’s system shutdown.
Therefore, we assumed that the RL agent receives a penalty if the battery level reaches the
indicated value.

6. Evaluation

The solution was assessed using the IoT-SimOsmosis [14] simulator extended with a
module enabling renewable energy analysis from photovoltaic panels. We assumed that
the IoT devices monitor the dyke temperature, and its specification is presented in the
Table 2. The simulation was carried out for historical data of solar radiation levels in 2016
obtained from the PVGIS database.

We have conducted experiments with various device management profiles regarding
sensor data streams, including both constant and adaptive ones based on RL. The results
achieved will be discussed in the following subsections.

Table 2. IoT device specification used in the evaluation.

Device Type Battery
Capacity

Initial
Energy

Battery
Voltage Solar Panel Charging

Current

Temperature
Sensor 3000 mAh 2000 mAh 3.7 V 10 W 500 mA

6.1. Constant Data Streams

In the case of constant management profiles, it was assumed that the device had a
constant sensing rate value of 60 s, 90 s, 120 s, 150 s, 180 s and 210 s, respectively. We
observed changes in the device’s battery levels during the experiment. The results grouped
by months are presented in the Figure 3. We also counted during how many days in a year
the device completely discharged the batteries. The results are presented in the Table 3. For
measurements performed every 60 s, there were 166 days a year that the sensor stopped
working due to a lack of energy, while the mean battery level was 47%. Most often, such
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situations occur during winter and spring seasons where solar radiation is lower than
during summer periods. On the other hand, with measurements taken every 210 s, the
device ran all year round without interruption having 89% of battery on average.
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Figure 3. Battery levels of the device for various constant sensing rates. Colors of the boxes are
related to the mean value of battery level.

One of the solutions to assure frequent sensing is to oversize the size of the PV panels
and the battery capacity, but this raises costs and is not very economical. However, we
propose dynamic data stream management for the IoT device to solve this problem. The
goal is to manage IoT devices to avoid a situation where the devices stop working due to a
lack of energy and provide relevant sensor data required by the flood predictions.

6.2. Dynamic Data Streams

In the case of dynamic data streams, we assumed that the system should learn online
which of the actions taken receive the greatest reward during its operation. However, too
much exploration may result in unexpected operation of the device. It can be observed
in the example where random management actions, i.e., change in sensing rate, affect the
operation of the device, as shown in Figure 4. As a result, there were 57 days during which
the device stopped working due to battery discharge.

Therefore, the exploration process was limited to a random generation of the Q table
during system initialization. As a result, the initial adaptation actions taken by the device
were random, which allowed for state exploration. It is especially visible in the Figure 4
for the beginning months of the year (exploration resulting from a random Q table) where
battery was discharged. During the ending months of the year, the system has already
developed an adaptation policy and thus preventing battery discharge.

The evaluation was continued for the same historical data and the system was still
carrying out the learning process. Still, the actions taken only improved the previously
used policy in this case. As a result, continuous operation of the device was achieved
throughout the year, with an average sensing rate of 170 s. During this time, the batteries
in the device were not discharged and there was a 23% increase in the amount of data sent
from the device compared to the constant 210 s profile as presented in Table 3.
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Figure 4. Battery levels and the selected sensing rates for the devices in RL based data stream
management. Blue area represents min and max values of sensing rate, while the chart represent mean
sensing rate value for the particular month.

Table 3. Data stream management profiles used in the evaluation.

Method Mean Sensing Rate Low Batt Days Mean Batt Level

Constant 60 s 60 s 166 47%

Constant 90 s 90 s 105 62%

Constant 120 s 120 s 57 72%

Constant 150 s 150 s 26 79%

Constant 180 s 180 s 5 85%

Constant 210 s 210 s 0 89%

Random actions 135 s 57 72%

RL first iteration 162 s 8 83%

RL second iteration 170 s 0 85%

7. Summary and Future Work

In the paper, we introduced the concept of dynamic data streams that change the data
transfer rate according to the available energy resources. Thanks to the use of reinforcement
learning, it is possible to adapt to the expected amount of energy obtained from renewable
energy sources—from photovoltaic panels.

In the evaluation, we compare two different methods of managing data streams from
IoT devices. In the simplest case for constant data streams, the user selects their parameters.
If it is important to optimize battery consumption, the user can choose the highest possible
sensing rate, i.e., sending data as rarely as possible. On the contrary, if it is essential to
obtain detailed data about the monitored environment, the user can choose to transmit the
data as often as possible. In this case, however, it may result in a complete discharge of
the device.

In the second case, the proposed dynamic data streams represent the tradeoff between
the described operational modes. It employs the Q-Learning algorithm to adjust the data
transport rate based on the amount of renewable energy resources available, to ensure
reliable collecting data while also taking into account the sensor battery lifetime. The
solution was evaluated using historical data for solar radiation levels, which shows that
the proposed solution can increase the amount of transmitted data up to 23% ensuring the
continuous operation of the device.



Sensors 2022, 22, 2375 10 of 11

Discussed data stream operation modes, i.e., highest sensing rate, minimal battery
consumption and RL based dynamic one, can be activated depending on the user’s require-
ments and the intended purpose of the IoT system.

As future work, the development of the presented works can be twofold. The first
aspect concerns the possibility of cooperation of the devices themselves while gaining expe-
rience and knowledge in device management. Then, RL agents can operate independently
on each of the devices and exchange messages containing the type of action taken in a
specific system state and possibly the achieved reward. The second aspect includes domain
analysis of the monitored environment in which the devices forming the sensor network
are placed. It is then possible to selectively monitor the environment so that devices take
measurements alternately instead of simultaneously.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Description
X The system infrastructure
O A set of Osmotic Agents
PV A set of Photovoltaic panels
D set of IoT devices
E A set of Edge devices
C A set of Cloud data centers
h A set of host machines
v Virtual environment
δ The data rate of IoT device
b IoT device battery
r The renewable energy from the Photovoltaic panels P
A An IoT application
SW A software
HW A hardware
Q Quality of Service
R Requirements
Btotal The total battery capacity
bavl the IoT device Di available battery capacity
Pavl the IoT device Di available Photovoltaic panel P charging capacity.
BC The overall battery consumption
sr Sensing rate of the environment
tr A draining rate of sending the data to the edge datacenter E
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Q Q function
A An actions
S A states
R A reward
α Learning rate
γ Discount factor
β The weight
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