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Abstract: When using drone-based aerial images for panoramic image generation, the unstableness
of the shooting angle often deteriorates the quality of the resulting image. To prevent these polluting
effects from affecting the stitching process, this study proposes deep learning-based outlier rejection
schemes that apply the architecture of the generative adversarial network (GAN) to reduce the falsely
estimated hypothesis relating to a transform produced by a given baseline method, such as the
random sample consensus method (RANSAC). To organize the training dataset, we obtain rigid
transforms to resample the images via the operation of RANSAC for the correspondences produced
by the scale-invariant feature transform descriptors. In the proposed method, the discriminator
of GAN makes a pre-judgment of whether the estimated target hypothesis sample produced by
RANSAC is true or false, and it recalls the generator to confirm the authenticity of the discriminator’s
inference by comparing the differences between the generated samples and the target sample. We
have tested the proposed method for drone-based aerial images and some miscellaneous images.
The proposed method has been shown to have relatively stable and good performances even in
receiver-operated tough conditions.

Keywords: scale-invariant feature transform; random sample consensus method; rigid transformation;
drone-based aerial images; generative adversarial network

1. Introduction

To solve the problem of correspondence so that they can analyze images that share
common features or objects, researchers in the field of remote sensing develop local key
points, descriptions of their features, and correspondence relating to the local points [1,2].
The problem of correspondence is highly relevant in that it can be related to the registration
or stitching of images [3,4], object recognition [5–7], object tracking [8], stereo vision [9],
and so on.

Recently, as advancements in artificial intelligence (AI) have led to the development
of state-of-the-art techniques around the tasks of recognition, classification, and inference,
developers have actively applied the techniques of machine learning in computer vision.
For example, Shan et al. [10] extracted local binary patterns and applied a support vector
machine (SVM) to classify facial expressions. In other studies, Kumar et al. [11] built the gist
feature [12] and used an SVM to develop an automatic plant species identification program.
In object tracking, Weinzaepfel et al. [13] developed a moving quadrant scale-invariant
feature transform (SIFT) [14] feature to enhance the quality of the matching images wherein
they applied the idea of deep convolutional nets. In the context of applying deep learning
for the correspondence problem, researchers have developed technologies along two tracks:
one track has involved the development of deep learning models that operate in an end-
to-end fashion, while the other track has involved the development of feature extraction
models that apply existing tools to the correspondence problem. In 2016, Detone et al. [15]
proposed HomographyNet; in a direct approach using an end-to-end fashion deep learning
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model, the authors trained a network to estimate the homography by relating the query to
the target images with the labeled dataset. In 2017, Rocco et al. [16] used the layers of the
VGG-16 network [17] to acquire features, and thus proposed a neural network consisting
of a matching network and a regression network that mimics classical approaches to fit
the affine map. In 2018, Nguyen et al. [18] proposed an unsupervised learning method to
generate homography; for the experimental verification, they compared their model with
SIFT-based homography using the random sample consensus method (RANSAC) [19] with
the threshold set at five pixels. Meanwhile, in the other branch that applies existing feature
extraction methods, in 2014, Fischer et al. [20] used the features obtained from the layers
of trained convolutional neural networks (CNN) and compared them to SIFT using the
descriptor matching problem. In 2019, Rodríguez et al. [21] proposed a CNN-driven patch
descriptor that captures affine invariance that is based on the first stages of SIFT. In 2021,
Vidhyalakshmi et al. [22] combined the Root SIFT descriptor and CNN feature to enhance
the matching performance for the person re-identification problem.

Deep learning-based methods are advantageous over traditional methods for solving
geometric problems due to their robustness to sparse scene structures, illumination varia-
tions, and noise; specifically, feature-based methods provide good performance when there
are sufficient reliable features, but these methods often fail in low-texture environments
where unique features cannot be sufficiently detected and matched [23]. Although deep
learning-based methods work reliably, they do not always provide the best performance,
and this shortcoming is particularly caused by the fact that there may be a lack of enough
datasets that are suitable for training [18,21,24,25].

On the other hand, although the existing deep learning techniques work well for
specific datasets or ad hoc problems, they do not consider directly bridging other method-
ologies to enhance the performance by applying their mutual and relative advantages.

In this paper, as another methodology applying deep learning, we propose using deep
learning to bridge the strengths of the existing methodologies so that we can leverage the
advantages of the different existing methodologies and help reduce the cost of developing
new methods. From that specific perspective, our proposed method calculates the false
positiveness for instances of the given methodology to determine the true transformation
in the matching process of the stitching problem and to recommend the reconsideration of
better methods; i.e., by calculating the false positiveness, it bridges to another method that
ensures better performance, even though there are some trade-offs.

For example, we apply deep learning to verify RANSAC, a method widely used to find
the true inlier of the mapping function, and we improve its performance by linking it with
other a posteriori outlier rejection methods, such as optimal choice of initial correspondence
inliers (OCICI) [4,26]. In the process of determining the hypothesis found through RANSAC,
its authenticity is determined by training a generative adversarial network (GAN) [27].
After training various types of existing affine maps delivered by RANSAC, we first make
the discriminator of the GAN determine the authenticity, after which we compare it with
the affine map generated by the generator to make a final decision.

To implement the proposed method for experimental verification, we apply it to drone-
based aerial images. Previous studies have shown that it is relatively difficult to solve the
correspondence problem for aerial images based on drones [4,26], and our proposed method
shows a way to improve the efficiency of the existing methodologies supported by deep
learning technology. Actually, our proposed deep learning methodology deals with the
topography of the estimated resampling operators, such as affine maps and not the images;
hence, from the method’s inherent properties, it may be applicable for correspondence
problems with various types of images. Our proposed method can be used regardless of
the type of dataset—i.e., the trained neural network system can fit any domains of data
in the real-world datasets—because the shapes of the mapping operators are not sensitive
to the kinds of features in the images, as they are only influenced by the viewing angles
of the objects and figures. The proposed method can act as a discriminator to eliminate
outliers and bridge several feature-based matching methods to maintain the performance



Sensors 2022, 22, 2474 3 of 21

of stitching in a stable and efficient manner. Our experimental results are mainly focused
on the drone-based images which showcases the application of the proposed method. The
experimental outputs for some images of general views are miscellaneous and support a
‘ripple effect’ of the proposed method for its extensive use for general images.

In Section 2, we introduce the scheme of our proposed method. In Section 3, we
present the experimental results and discuss some properties and issues related to the
proposed method to verify its utility. In Section 4, we conclude the study.

2. Method Description
2.1. Extraction of Local Descriptors and Geometric Correspondence

The general approach for stitching images involves identifying key points and com-
paring their local descriptors to determine the transform of the key points’ geometric
correspondence to generate the resampling rule of the sensed images [1,2]. In our study, we
use SIFT as the descriptor, which is applied in many studies for its well-known geometric
invariance properties [26,28]. Figure 1 shows the reference image and sensed image with
the marks of the SIFT points, where the images are resized into a 200 × 250 resolution; we
present 50 random SIFT points and the lattices of the orientations.

Figure 1. Reference (a) and sensed (b) images with SIFT.

The descriptors in both images are then matched to form a set of correspondences
that estimates the parameters of the resampling rigid transform (an affine map made of a
3 × 3 matrix [4,26]) using RANSAC.

2.2. Outlier Discrimination Network

While focusing on the estimation of the resampling transform, our proposed model
detects the falsely estimated transforms that have been fed from the baseline method of
RANSAC; we apply a 3-pixel threshold for the error tolerance of RANSAC across all of our
experiments. Figure 2 presents the outlier discrimination network (ODNet) used to detect
the false estimations: (i) RANSAC estimates the baseline hypothesis of the affine map (the
resampling transform), which is represented in the form of 3 × 3 images in Figure 2, (ii) the
result is then passed as the input into the discriminator of the pre-trained GAN (D-GAN),
and (iii) through the discriminator’s judgment of falseness, a better promising method is
recalled to robustly calculate the estimation (here, we recall OCICI [4]) or (iv) we confirm
the result of RANSAC when it is discriminated as true.
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Figure 2. Architecture of the outlier discrimination network consisting of RANSAC + D-GAN + OCICI.

For the test correspondence problem, we use the affine transform to resample the
images. During the RANSAC process used to estimate the hypothesis, we obtain several
estimated transforms that yield values of the cosine distance ranging ~>0.9995 from the
best one. The measure of the cosine distance C is defined as

C(I1, I2) =
I1 · I2

||I1||||I2||
(1)

where I1 and I2 are the vector alignments representing the parameter values of the given
two transforms. We then prepare the training dataset for the discriminator of GAN. Among
the total 63 pairs of consecutive drone-based aerial images taken of photovoltaic panels [29],
we set aside five pairs of images that do not produce enough descriptors or for which
RANSAC fails to find novel transforms, as reported in [4], and some of them are included
in the test data. From the remaining 58 pairs, we organize training data with 16,378 pre-
estimated transforms, including the best ones; here, for the set of tentative correspondences
of the descriptors that are used to estimate the transforms using RANSAC, we apply the
matching strategy of the nearest rate of distance as used in [14]. Let us suppose that ỹ1
and ỹ2 are, respectively, the nearest and second nearest descriptors in the sensed image
from given descriptor x̃ in the reference image; then, we include ỹ1 into the tentative set of
correspondences if it holds that

|x̃− ỹ2|/|x̃− ỹ1| > ε (2)

Note that we apply the threshold parameters ε = 1.1 and 1.2 in the process to form the
training data. Figure 3 illustrates the process of training data acquisition, while Figure 4
presents the related example images overlapped by some given transforms with cosine
distances ranging over several values that were calculated during the process of training
the data acquisition using RANSAC.
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Figure 3. Acquisition of the training data.

Figure 4. Cosine distances and overlapped images.

Now, to train the GAN, we model the architecture of the networks’ layers with a
multi-layered perceptron so that we could efficiently use small-sized input data to train
the networks. We set one hidden layer for the discriminator and one hidden layer for
the generator. Figure 5 illustrates the structure of the GAN. The hidden units are set by
128 units and activated by a leaky rectified linear unit (Leaky ReLU), the output units of the
generator are activated by the hyperbolic tangent function (tanh), and the output unit of
the discriminator is activated by the logistic sigmoid function.
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Figure 5. GAN architecture.

The architecture of the GAN is based on the differentiable generator networks [27,30],
and the associated loss and cost functions can be defined with a payoff function V, and the
default choice for V is

V
(

θ(g), θ(d)
)
= Ex∼pdata log d(x) +Ez∼pmodel log (1− d(g(z))), (3)

where the generator g transforms the latent variables z into fake samples g(z) with the
associate neural network’s weight parameter θ(g), and the discriminator d outputs the
payoff values for input x and g(z) to differentiate the fake samples using the weight
parameter θ(d). Through the zero-sum game of GAN, we train the networks to solve the
min–max problem:

arg min max
g(z;θ(g)) d(x;θ(d))

V(g, d) (4)

In training the generator, Equation (4) leads to a solution of the minimization problem:

arg min
g(z;θ(g))

Ez∼pmodel log (1− d(g(z))) (5)
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In our study, we aim to generate samples similar to the outliers of the transform to
allow the discriminator to experience the differentiation of outlier-like samples, and we sug-
gest that, if the generator produces samples similar to real samples, then the discriminator
will suffer in learning knowledge about the outliers. To this end, we apply a loss function to
train the generator with lower slopes of the gradient than those used in Equation (5) and, as
one of several choices, we use−log d(g(z)) instead of log (1− d(g(z))); looking at Figure 6,
which presents the comparison plots for −log d(g(z)) and log (1− d(g(z))), as the value
d(g(z)) approaches 1, the slope of the gradient in log (1− d(g(z))) becomes steeper than
−log d(g(z)), and we suppose that, if we set the generator’s loss function to −log d(g(z)),
then the discriminator’s response to determine the differentiation is more sensitive than
the generator’s sensitiveness to shape the fakes, which will give the discriminator more
chances to learn lots of information about the outlier-like samples. Note that if d(g(z))
appears near to be 0, it is not necessary to have the discriminator speed up to discern the
fakes, because the input is the fake. From that suggestion, in training the generator in our
study, we solve the minimization problem:

arg min
g(z;θ(g))

Ez∼pmodel − log d(g(z)) (6)

Figure 6. Comparison of the slopes of − log(x) and log(1− x).

Now, for the data normalization used to train D-GAN, we divide the input samples by
the element-wise maximum absolute values of the training data, and we call this max-abs
normalization; i.e., for a given sample transformation T, we normalize it such that

Tscaled =
T

Tmax
(7)

where Tmax is the element-wise maximum absolute values of the training data. The gener-
ated samples emitted from the generator are allowed to have a negative (−) sign because of
the tanh activation followed by the Leaky ReLu activation, and we have not constrained the
input data to be non-negative values. However, in the inference step for test datasets, we
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consider a variation treatment that makes it so that positively dominated numbers remain
positive, while negatively dominated numbers or positively small numbers are transferred
into negative values. This comes from an intuition that, if a falsely estimated transform
is given by RANSAC, then the tricky variation treatment may deform the topography of
the sample space to make the false sample look falser from the perspective of the G-GAN.
For the topography deformation, we consider the following parameter-gauging linear
transformation: for a given sample T,

Tde f ormed = ξ(T − ζ) (8)

where ξ and ζ are the hyper-parameters we have to set. In our study, we set ξ = 1/2 and
ζ = 1/2. For a topography deformation technique, the readers may refer to [31].

Next, for the correction of RANSAC’s rejected hypothesis, we use OCICI [4] as one of
the refined outlier rejection schemes (see Figure 2). This considers the geometric congruence
made by the initial three pairs of the correspondences to measure the transform: for a
given set of the initial pairs x̂ in the reference image and ŷ in the sensed image of the
correspondences, (i) we consider the similarity of the triangles ∆ABC and ∆A′B′C′ that
were, respectively, formed by x̂ and ŷ; (ii) we investigate the invariance of a corner’s angle
in the sensed image by transforming it with the initially estimated transform into the
reference image. Summing up those two constraint factors in the process of OCICI, the
authors in [4] defined two loss functions—Θ and K—and their associate hyperparameters
α and ρ, thus leading them to the following solution for the minimization problem:

arg min
x̂, ŷ

αΘ(x̂, ŷ) + ρK(x̂, ŷ) (9)

For the choice for the hyperparameters α and ρ, in our study, we set α = 1 and ρ = 1
as the default choice, as recommended in [4].

2.3. Generative Comparison Network

In this subsection, we introduce a scheme to apply the generator of the GAN (G-GAN)
to discover false discriminations of D-GAN and overcome the limitations in the false
positive reduction.

As the training of the GAN allows the generator to produce samples that are indistin-
guishable from real ones, the distribution of the generated samples may resemble that of
the real ones. Using this insight, we can search for a generated sample that has the nearest
distance to the given hypothesis by measuring the cosine distances over the arbitrary
samples generated from the latent space of z. For example, let us assume that there are
1000 latent vectors arbitrarily chosen in the standard Gaussian noise distribution. Then, we
generate 1000 samples dependent on the latent vectors and measure, for each of them, the
cosine distances from the given hypothesis. Discerning the closest one among the samples,
we then verify the true positiveness of the given hypothesis.

In Figure 7, we illustrate the scheme of G-GAN’s inference to measure the cosine
distance to RANSAC’s hypothesis. Looking at Figure 7, in the process of G-GAN’s sample
generation to measure the cosine distance, we use the logit of the output layer in G-
GAN to represent the generated sample that comes before the activation of tanh and, by
implementing this, we intend to increase the numerical variation in the topography of the
generated samples such that the values in the generated samples are mapped to the range
around (−5, 5), which comes from the fact that the tanh goes, approximately, from −1 to
+1 for the input going from under −5 to over +5; the generated samples may not need
to be evaluated into the range [−1, 1], because we only measure the directional similarity,
i.e., cosine distance, of the vectors representing the randomly generated samples. The idea
to use the logit rather than the activated original output has come from our preliminary
experiments. For any given T in the training data consisting of 16,378 samples, we generate
1000 samples (the outputs activated by tanh), and with the samples’ logits, we organize
another 1000 samples. After gathering those generated samples, we measure the distances



Sensors 2022, 22, 2474 9 of 21

from T. Table 1 lists the queries’ results that can be used to determine if the distances from
the tanh outputs or their logits are closer to the given T. For a given T, we query from which
group the closest one comes. If the closest one comes from the logit group, then we identify
it with an inequality such that C(Logit, T) > C(tanh, T), and for the other case, we count it
into C(Logit, T) < C(tanh, T). Looking at Table 1, we suggest that the logit samples better
describe the real samples with closer distances.

Figure 7. Scheme of G-GAN’s inference.

Table 1. Distance comparison for logit and tanh to alternatively distinguish the one closer to the real
samples in the total 16,378 pieces of training data.

C(Logit, T) > C(tanh, T) (Logit, T) < C(tanh, T) Total
Number of cases 15,601 777 16,378

For a more specific analysis, we apply the proper orthogonal decomposition (POD) [32]
for the sample space of the training data. To obtain the POD bases, we apply the singular
vector decomposition [32] for the snapshot matrix consisting of a 9 × 16,378 matrix to
produce six POD bases. With the three POD bases that correspond to the three largest
eigenvalues, we represent the samples in the form of three-dimensional POD-based coordi-
nates; then, for the three-dimensional represented samples’ space, we conduct the same
comparison tests as we did to obtain the results in Table 1. Table 2 lists the results for those
queries; looking at Table 2, the POD-based samples’ representations confirm that the logit
samples move closer to the distribution of the real samples, as can also be seen in Table 1.
In Figure 8, we plot the samples’ POD-based remaining three-dimensional representations
into the three-dimensional axis with the XY-axis (top-left), XZ-axis (top-right), and YZ-axis
(bottom-left). Looking at Figure 8, for the coordinates of the three remaining POD bases,
the real samples’ POD-based distribution is dispersed around the origin (0,0); the tanh
samples’ coordinates are located at the points furthest away from the origin; i.e., the tanh
samples’ distribution error is much more disturbing than that of the logit samples. Note
that, as the sample space is organized by 3 × 3 matrices, a three-dimensional vector space
shall optimally represent the sample space and, hence, the remaining three POD bases’
representations should have the distribution centered at zero.
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Table 2. POD version distance comparison for logit and tanh to alternatively distinguish the one
closer to real samples in the total 16,378 pieces of training data, where the associated POD bases
consist of the maximal three POD bases among six POD bases.

C(Logit, T) > C(tanh, T) (Logit, T) < C(tanh, T) Total
Number of cases 15,325 1053 16,378

Figure 8. Plots of the samples’ POD-represented vectors with the remaining three-dimensional
minimal POD bases.

Figure 9 illustrates the comparison of a hypothesis given by RANSAC, the closest
real sample, and the closest generated sample by G-GAN, where the cosine distance from
the hypothesis = 0.65 (D-GAN’s output = 1). In this case, we know that the hypothesis is
good and that the real one achieves the best match. Even though the generated one has a
relatively far distance, we can employ a threshold δG to discern the hypothesis’ validity;
i.e., for a given hypothesis th and the closest generated sample ts, if it holds that

C(
→
th,
→
ts) > δG (10)

Then, we assume that hypothesis th is a true positive, where
→
th and

→
ts are the vector

forms of th and ts. For the false hypothesis, as shown in Figures 10 and 11, we present
two lowly evaluated generated samples; the generated samples’ evaluations are −0.04 and
0.47, whereas the real samples are relatively higher values of 0.84 and 0.53, respectively.
Note that the D-GAN’s output is 1 for the case of the falsely estimated hypothesis given in
Figure 11. From those preliminary tests, we suggest that, if every generated sample lies on
almost lower ranges of the evaluations than the real samples, as can be seen in Figures 10
and 11, then the G-GAN may be useful for querying the detection of the false positiveness
made by D-GAN. From this point of view, we modify the model of ODNet to have an
additional outlier-searching network with G-GAN so that we introduce the generative
comparison network (GCNet) as illustrated in Figure 12. Starting from RANSAC, (i) we
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discriminate the RANSAC hypothesis using D-GAN, and (ii) if that is discerned as true,
(iii) it recalls G-GAN to generate samples to compare with; then, (iv) if it finds a similar
one among the G-GAN samples, we finally assume that the RANSAC hypothesis is true; if
the RANSAC hypothesis is discerned to be false by D-GAN, or if we find no similar one
among the G-GAN samples, then we recall OCICI.

Figure 9. RANSAC’s hypothesis and its closest sample in the training dataset of GAN, and the closest
generated sample.

Figure 10. RANSAC’s hypothesis and its closest sample in the training dataset of GAN, and the
closest generated sample.
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Figure 11. RANSAC’s hypothesis and its closest sample in the training dataset of GAN, and the
closest generated sample.

Figure 12. Scheme of generative comparison network consisting of RANSAC + D-GAN + G-GAN +
OCICI.

3. Results and Analysis
3.1. Experimental Result Applying ODNet

Focusing on the estimation of the transform created by applying ODNet, we test
certain pairs of images for which RANSAC fails to reject the outliers. To evaluate the output
value of D-GAN into true or false, for a given input sample x, we set a threshold δD, such
that if it holds

d(x) > δD (11)
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Then, sample x is determined as a true one. For the experiments, we set δD = 0.4,
which is given as one of our empirical choices. Note that, among the pairs of images
that have been used to extract training samples, for one pairing, RANSAC has rendered
estimated operators whose discriminator outputs vary sensitively. However, most of the
outputs of the discriminator are given as 1 or 0; therefore, in our experiments, the threshold
δD has given less effects to the numerical results for ODNet. In Table 3, we present a
preliminary result obtained using the discriminator of the GAN for the test images that are
not included in the training process of the GAN. For each pairing, we attempt 20 trials of
full estimations, and each trial case is set differently for the given ε defined in Equation (2).
We count good transforms as true positive ones and the outliers that we can heuristically
judge to be false ones as negative ones. As presented in Table 3, the total false positive rate
is reduced by D-GAN; however, we also find that, as the false negative cases occur, then
the unnecessary extra calculation cost to recall OCICI is added for ODNet.

Table 3. Outlier rejection test of RANSAC and D-GAN for several test images.

ε Stitching View by RANSAC False Positive Case vs. Total
Cases by RANSAC

False Positive Cases vs. Total
Cases by D-GAN

ε = 1.1 0/20 0/20
(False negative rate = 100%)

ε = 1.2 0/20 0/20
(False negative rate = 100%)

ε = 1.1 0/20 0/20
(True positive rate = 100%)

ε = 1.2 0/20 0/20
(True positive rate = 100%)

ε = 1.1 11/20 1/20
(True positive cases = 0)
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Table 3. Cont.

ε Stitching View by RANSAC False Positive Case vs. Total
Cases by RANSAC

False Positive Cases vs. Total
Cases by D-GAN

ε = 1.2 0/20 0/20
(False negative rate = 100%)

Total false positive rate 9.1667% 2.439%

Table 4 presents the comparison results for the calculation cost and accuracy for the
datasets set by ε = 1.1, 1.2, · · · , 1.5, which have been obtained using RANSAC, ODNet,
and OCICI. Looking at Table 4, for ε = 1.1, 1.2, ODNet and OCICI produce 100% accuracy;
note that the maximum value in the parentheses indicates the accuracy accomplished by
ODNet if the rejected RANSAC’s correction method is replaced by an ideal one instead
of OCICI; in total, we see that ODNet outperforms the others in terms of accuracy and
reduces the cost consumed for the OCICI scheme. In Table 5, we give the false positive
cases (FPs) versus whole pairings and the false negative cases (FNs) among the negatively
discriminated ones by D-GAN, and the true negative detection (TND) that denotes the
cases in which the D-GAN accurately discriminates the RANSAC’s falsely estimated cases.

Table 4. Cost and accuracy for the datasets set by ε = 1.1, 1.2, · · · , 1.5, with RANSAC, ODNet,
and OCICI.

ε RANSAC ODNet OCICI

Accuracy

ε = 1.1 96.8254% 100% 100%

ε = 1.2 98.4127% 100% 100%

ε = 1.3 90.4762% 93.6508% (max 96.8254%) 93.6508%

ε = 1.4 96.6102% 98.3051% (max 100%) 96.6102%

ε = 1.5 96.5517% 96.5517% (max 98.2759%) 94.8276%

Cost

ε = 1.1 34.2061 66.6555 318.6295

ε = 1.2 89.5633 94.3174 145.6169

ε = 1.3 30.5566 32.4998 77.3177

ε = 1.4 29.7655 30.9285 63.7132

ε = 1.5 26.9586 27.7069 54.0032

Table 5. Discrimination accuracy and false positive rate of ODNet for the datasets set by
ε = 1.1, 1.2, · · · , 1.5.

ε=1.1 ε=1.2 ε=1.3 ε=1.4 ε=1.5
Accuracy 85.7143% 85.7143% 90.4762% 89.8305% 89.6552%

FP 0/52 0/53 2/55 0/51 1/52

FN 9/11 9/10 4/8 6/8 5/6

TND 2/2 1/1 4/6 2/2 1/2

3.2. Experimental Result Applying GCNet

ODNet helps to reduce the number of falsely estimated transforms produced by
RANSAC; however, it could not reduce the number of FPs to zero, because the D-GAN
failed to perfectly detect the outliers for several values of ε.
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At this point, we have the test for GCNet to reduce the rate of FPs. For the threshold
δG with which to determine the distance between two samples in Equation (10), we set
δG = 0.5. Table 6 presents the results for comparison with RANSAC and OCICI for the test
datasets organized by the descriptors’ correspondences with ε = 1.3, 1.4, 1.5. Table 7 gives
the related results regarding the FPs, FNs, and TND of GCNet. Looking at Tables 6 and 7,
we can see that GCNet outperforms the other methods by relatively reducing the calculation
costs and enhancing the accuracy; the FP rate is zero in all cases, i.e., the FP rate made by
RANSAC can be perfectly detected by GCNet and, hence, a GCNet-based method followed
by an ad hoc inlier selection method superior to OCICI may set the best conditions to
produce a true hypothesis. Figure 13 shows a bar graph depicting the numerical properties
of ODNet and GCNet to summarize the efficiency in reducing the FP rate that occurs with
RANSAC. For calculation costs, ODNet and GCNet are competitive, whereas for the FP
reduction rate, GCNet outperforms ODNet; further, for our test datasets of the drone-based
aerial images, our proposed method’s model of the neural network is experimentally
well verified.

Table 6. Cost and accuracy for the whole dataset for ε = 1.3, 1.4, 1.5.

ε RANSAC GCNet OCICI

Accuracy

ε = 1.3 93.6508% 93.6508% (max 100%) 93.6508%

ε = 1.4 94.9153% 96.6102% (max 100%) 96.6102%

ε = 1.5 93.1034% 94.8276% (max 100%) 94.8276%

Cost

ε = 1.3 30.5566 33.7912 77.3177

ε = 1.4 29.7655 31.4479 63.7132

ε = 1.5 26.9586 28.1906 54.0032

Table 7. Discrimination accuracy and false positive rate of GCNet for the datasets set by ε = 1.3, 1.4, 1.5.

ε=1.3 ε=1.4 ε=1.5
Accuracy 76.1905% 79.6610% 82.7586%

FP 0/44 0/44 0/44

FN 15/19 12/15 10/14

TND 4/4 3/3 4/4

Figure 13. Discrimination performance (cost and number of false positive hypothesis mappings) for
the whole dataset for ε = 1.3, 1.4, 1.5.
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3.3. Discussion and Experiments for Some Miscellaneous Images

Through the experiments described above, we have verified the performances of the
two proposed neural network-based methods, ODNet and GCNet, and by applying the
methods, we have reduced the number of falsely estimated hypotheses of the transforms
for the correspondences of the given descriptors. The operation of the proposed methods
is dependent on the quality of the trained neural networks. We have trained them with
the dataset of the drone-based aerial images introduced in [4], and we resized the images
into the resolution of 200 × 250 for use in our experiments; i.e., the trained neural networks
would be dependent on the given images’ resolution scale. In other words, the proposed
methods may function invariantly for images that have the same designated resolutions,
regardless of the objects’ kinds of views in the images. Note that the neural networks of the
proposed methods have been trained for the sample transforms that have a resolution of
3 × 3; therefore, the proposed methods’ computational costs would be substantially lower
than those of any of the other developed deep learning-based methodologies.

To compare the methods’ performances, we found out that the GCNet’s employment
of G-GAN is useful and that it outperforms the D-GAN-based ODNet in detecting the
outliers. Even though GCNet emitted relatively many false rejections of the true hypothesis
compared to ODNet, as the calculation costs of both methods are competitive, the trade-off
effect may be negligible, at least for our ad hoc datasets (see Figure 13). For the details of
the performance comparison, we visualize the cases that the methods have detected for
RANSAC’s FPs for the test datasets in Figure 14. Meanwhile, Figure 15 presents the cases
in which D-GAN fails to detect the FPs and the cases that G-GAN detects for the FPs with
small discrepancies. From Figures 14 and 15, we can see that the G-GAN has recognized
FPs in better detail and more diversely.

Figure 14. Discrimination types that D-GAN and G-GAN recognize for test datasets.
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Figure 15. Discrimination types that D-GAN fails to detect and G-GAN succeeds in detecting despite
small discrepancies for test datasets.

As an issue regarding the proposed methods, we discuss how the use of the methods
may be efficient. The methods are modeled to recognize the FP cases that are falsely
estimated by RANSAC. The G-GAN functions as the confirming network while using its
generated samples that are randomly produced to be compared for the distances from the
RANSAC’s given hypothesis. Looking at Figures 9–11, real samples are found to compare
the possibility of the generated sample’s appearances in the trained generator’s output
distribution. If the real sample’s distribution contains any true recognition of whether
the RANSAC’s hypothesis is an FP or TP, then this would mean that the proposed neural
network’s training model could only be used to compress the real samples’ (training data)
information into the neural network’s memory. In Figure 16, we present a case wherein a
real sample is found to assert that the given RANSAC’s hypothesis can be found in the true
hypothesis distribution. However, the hypothesis makes a strong case for itself to be an FP,
and the G-GAN discerns it as one of the FPs.

Figure 17 presents (a) the types of the stitching outputs mapped by the sample trans-
forms that were used as the GAN’s training data, and (b) a miscellaneous stitching output
that is not included in the output types for GAN’s training data, where we set the threshold
ε to be 1.2. For this example, the G-GAN outputs 0.56 for the hypothesis’s distance, and
if we set the threshold δD = 0.5, then it shall be discerned as a true one. Table 8 lists the
results of an experiment that we have conducted to rigorously verify the robustness of the
proposed methods in many severe conditions. For the test, we have performed 20 hypothe-
sis trials using RANSAC, which has been constrained to operate for only three epochs for
inference, which we have implemented to increase the probability of FPs to appear, where
the thresholds δD and δG are set as 0.4 and 0.5 for D-GAN and G-GAN, respectively. In this
case, the G-GAN also outperforms D-GAN in discerning outliers, even though the G-GAN
has made one misdetection among the 40 trials in total. For the case in which G-GAN was
mistaken, we suggest that the situation may happen in which the given images’ correct
mapping is out of the types of the forms that the images employed in the training dataset
have; i.e., the generated sample of G-GAN is unfamiliar for the network of G-GAN itself.
For this issue, we may have to consider better training strategies to overcome the networks’
suffering for the unfamiliar styles of the test samples and enhance the performances of the
proposed models to operate in severe conditions that affect the descriptors.
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Figure 16. RANSAC’s hypothesis and its closest sample in the training dataset of GAN, and the
closest generated sample by G-GAN.

Figure 17. Types of stitching outputs mapped by sample transformations.
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Table 8. Results for 20 hypothesis trials by RANSAC, which has been constrained to operate for only
three epochs for inference, where the thresholds δD and δG are set as 0.4 and 0.5 for D-GAN and
G-GAN, respectively.

Matching Correspondences False Stitching Output FP (for 20 Trials)

ε = 1.2

RANSAC: 10%

D-GAN: 5%

G-GAN: 5%

ε = 1.2

RANSAC: 40%

D-GAN: 15%

G-GAN: 0%

4. Conclusions

Recently, advancements in AI have led to the development of state-of-the-art tech-
niques in computer science. The development of an outlier rejection scheme for corre-
spondence problems represents an important issue in the current area of computer vision.
Although deep learning-based technologies for the correspondence problems, and for the
stitching problems in particular, have been actively developed with various models, it was
difficult to find a state-of-the-art direct application of deep learning to reduce the falsely
estimated transform’s hypothesis produced by some baseline methods, such as RANSAC.
In this study, we proposed a deep learning-based outlier rejection scheme by applying the
architecture of GAN. In applying the discriminator and the generator of the GAN model,
we proposed the outlier rejection networks called ODNet and GCNet. We have tested the
methods for drone-based aerial images and some miscellaneous images. The methods
operated with outstanding performances, reducing the FPs that RANSAC has produced
due to its inherent computational limitations. GCNet functioned with relatively stable and
noble performances, even for receiver-operated tough conditions, and it outperformed
ODNet in reducing FPs.

Regarding the limitations of the present work that provide directions for future re-
search, we suggest that there may be a need for training methodologies that can enhance
the neural networks’ performances when inferring recognitions, in addition to the ad hoc
topographical deformation techniques; for example, we would set a loss function to train
GAN, which aims to differentiate the adversarial networks’ training speeds so that we
deliberately handle each network’s training status for the enhancement of the networks’
cognition abilities. Further, the organization of the training samples can also be improved
upon, and we have to apply the methods with images of various formats, resolutions,
volumes, etc.

Funding: This research was supported by the Institute of Data Science of Korea University, funded
by the Korea University’s endowment, and also supported by Jesus Christ foundation for scientific
research of Every Family Mission Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in https://github.com/
seojksc/seojk-kuids (accessed on 10 November 2021).

https://github.com/seojksc/seojk-kuids
https://github.com/seojksc/seojk-kuids


Sensors 2022, 22, 2474 20 of 21

Acknowledgments: This research was supported by the Institute of Data Science of Korea University.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
2. Szeliski, R. Image Alignment and Stitching: A Tutorial. Found. Trends Comput. Graph. Vis. 2006, 2, 1–104. [CrossRef]
3. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application in stereo vision. In Proceedings of the 7th

International Joint Conference on Artificial Intelligence (IJCAI-81), Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679.
4. Shin, B.-C.; Seo, J.-K. Experimental Optimal Choice Of Initial Candidate Inliers Of The Feature Pairs With Well-Ordering

Property For The Sample Consensus Method In The Stitching Of Drone-based Aerial Images. KSII Trans. Internet Inf. Syst. 2020,
14, 1648–1672.

5. Mundy, J.L. Object Recognition in the Geometric Era: A Retrospective. In Toward Category-Level Object Recognition (LNCS 4170);
Springer: New York, NY, USA, 2006; pp. 3–29.

6. Fu, Y.; Guo, G.; Huang, T.S. Age Synthesis and Estimation via Faces: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2010,
32, 1955–1976. [PubMed]

7. Ng, C.B.; Tay, Y.H.; Goi, B.M. Vision-based human gender recognition: A survey. arXiv 2012, arXiv:1204.1611.
8. Brox, T.; Malik, J. Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Trans. Pattern

Anal. Mach. Intell. 2011, 33, 500–513. [CrossRef] [PubMed]
9. Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced Computer Vision With Microsoft Kinect Sensor: A Review. IEEE Trans. Cybern.

2013, 43, 1318–1334. [PubMed]
10. Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image

Vis. Comput. 2009, 27, 803–816. [CrossRef]
11. Kumar, N.; Belhumeur, P.N.; Biswas, A.; Jacobs, D.W.; Kress, W.J.; Lopez, I.C.; Soares, J.V. Leafsnap: A Computer Vision System

for Automatic Plant Species Identification. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany,
2012; pp. 502–516.

12. Oliva, A.; Torralba, A. Chapter 2 Building the gist of a scene: The role of global image features in recognition. In Progress in Brain
Research; Elsevier: Amsterdam, The Netherlands, 2006; Volume 155, pp. 23–36.

13. Weinzaepfel, P.; Revaud, J.; Harchaoui, Z.; Schmid, C. DeepFlow: Large displacement optical flow with deep matching. In
Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 1385–1392.

14. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
15. DeTone, D.; Malisiewicz, T.; Rabinovich, A. Deep image homography estimation. arXiv 2016, arXiv:1606.03798.
16. Rocco, I.; Arandjelovic, R.; Sivic, J. Convolutional Neural Network Architecture for Geometric Matching. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21 July 2017.
17. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
18. Nguyen, T.; Chen, S.W.; Shivakumar, S.S.; Taylor, C.J.; Kumar, V. Unsupervised Deep Homography: A Fast and Robust

Homography Estimation Model. IEEE Robot. Autom. Lett. 2018, 3, 2346–2353. [CrossRef]
19. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
20. Fischer, P.; Dosovitskiy, A.; Brox, T. Descriptor Matching with Convolutional Neural Networks: A Comparison to SIFT. arXiv

2014, arXiv:1405.5769v1.
21. Rodriguez, M.; Facciolo, G.; von Gioi, R.G.; Muse, P.; Morel, J.-M.; Delon, J. SIFT-AID: Boosting sift with an affine invariant

descriptor based on convolutional neural networks. In Proceedings of the 2019 IEEE International Conference on Image Processing
(ICIP), Taipei, Taiwan, 22–25 September 2019.

22. Vidhyalakshmi, M.K.; Poovammal, E.; Bhaskar, V.; Sathyanarayanan, J. Novel Similarity Metric Learning Using Deep Learning
and Root SIFT for Person Re-identification. Wirel. Pers. Commun. 2021, 117, 1835–1851. [CrossRef]

23. Kang, L.; Wei, Y.; Jiang, J.; Xie, Y. Robust Cylindrical Panorama Stitching for Low-Texture Scenes Based on Image Alignment
Using Deep Learning and Iterative Optimization. Sensors 2019, 19, 5310. [CrossRef] [PubMed]

24. Shen, C.; Ji, X.; Miao, C. Real-Time Image Stitching with Convolutional Neural Networks. In Proceedings of the 2019 IEEE
International Conference on Real-Time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019.

25. Zhang, J.; Wang, C.; Liu, S.; Jia, L.; Ye, N.; Wang, J.; Zhou, J.; Sun, J. Content-Aware Unsupervised Deep Homography Estimation.
In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 653–669.

26. Shin, B.-C.; Seo, J.-K. A Posteriori Outlier Rejection Approach Owing to the Well-ordering Property of a Sample Consensus
Method for the Stitching of Drone-based Thermal Aerial Images. J. Imaging Sci. Technol. 2021, 65, 20504. [CrossRef]

27. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.

28. Zheng, L.; Yang, Y.; Tian, Q. SIFT Meets CNN: A Decade Survey of Instance Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2018,
40, 1224–1244. [CrossRef] [PubMed]

http://doi.org/10.1016/S0262-8856(03)00137-9
http://doi.org/10.1561/0600000009
http://www.ncbi.nlm.nih.gov/pubmed/20847387
http://doi.org/10.1109/TPAMI.2010.143
http://www.ncbi.nlm.nih.gov/pubmed/20714020
http://www.ncbi.nlm.nih.gov/pubmed/23807480
http://doi.org/10.1016/j.imavis.2008.08.005
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1109/LRA.2018.2809549
http://doi.org/10.1145/358669.358692
http://doi.org/10.1007/s11277-020-07948-1
http://doi.org/10.3390/s19235310
http://www.ncbi.nlm.nih.gov/pubmed/31810294
http://doi.org/10.2352/J.ImagingSci.Technol.2021.65.2.020504
http://doi.org/10.1109/TPAMI.2017.2709749
http://www.ncbi.nlm.nih.gov/pubmed/29610107


Sensors 2022, 22, 2474 21 of 21

29. Seo, J.-K. DataSet: Remote Sensing-Drone Aerial Images around Photovoltaic Panels (200 by 250 Resolution). 2020. Available
online: https://github.com/seojksc/seojk-kuids (accessed on 10 November 2021).

30. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017.
31. Seo, J.-K.; Kim, Y.J.; Kim, K.G.; Shin, I.; Shin, J.H.; Kwak, J.Y. Differentiation of the Follicular Neoplasm on the Gray-Scale US by

Image Selection Subsampling along with the Marginal Outline Using Convolutional Neural Network. BioMed Res. Int. 2017,
2017, 3098293. [CrossRef] [PubMed]

32. Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications—Part I: Theory. J. Sound
Vib. 2002, 252, 527–544. [CrossRef]

https://github.com/seojksc/seojk-kuids
http://doi.org/10.1155/2017/3098293
http://www.ncbi.nlm.nih.gov/pubmed/29527533
http://doi.org/10.1006/jsvi.2001.4041

	Introduction 
	Method Description 
	Extraction of Local Descriptors and Geometric Correspondence 
	Outlier Discrimination Network 
	Generative Comparison Network 

	Results and Analysis 
	Experimental Result Applying ODNet 
	Experimental Result Applying GCNet 
	Discussion and Experiments for Some Miscellaneous Images 

	Conclusions 
	References

