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Abstract: Sensors that track physiological biomarkers of health must be successfully incorporated
into a fieldable, wearable device if they are to revolutionize the management of remote patient care
and preventative medicine. This perspective article discusses logistical considerations that may
impede the process of adapting a body-worn laboratory sensor into a commercial-integrated health
monitoring system with a focus on examples from sleep tracking technology.
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1. Introduction

Wearables stand to revolutionize modern medicine by enabling widespread remote
patient monitoring and individualized tools for preventative mobile health (mHealth)
care [1–4]. The pathway for technology transfer seems straight-forward. Recent innovations
incorporate sensors that measure health-relevant physiological signals into devices that can
easily be worn during everyday life. Algorithms can automatically identify signal features
that are known to be health relevant and mobile applications can alert the user or their
physician about the user’s health status. Widescale adoption of wearables allows for the
accumulation of big data that can then be used to analyze population health statistics or
train more advanced computer models for preventive health care. Data can be aggregated
from multiple sensors and applications per user and across users to provide an even more
robust snapshot of overall health [1,2,5–7].

This pathway augurs an efficient automated healthcare system that can reduce the bur-
den of care, increase access to care, and improve overall human quality of life. Additionally,
remote patient monitoring is especially desirable in the face of the COVID-19 pandemic.
The Sensors journal is full of articles describing scientific, engineering, or computational
efforts to improve technology transfer along this pathway, but it is also important to un-
derstand practical barriers that may prevent technological advances from successfully
integrating with the status quo [3]. The goal of this perspective is to outline logistical
obstacles that can arise between the development of sensor technology and the widespread
adoption of health-relevant wearable devices in order to better prepare sensor developers
to achieve their end goals.

2. Sensors vs. Wearables

The term “sensor” can refer to any device that measures and records a physical prop-
erty, including physiological signals produced by the human body. The term “wearable”
has popularly come to refer to body-worn, internet-enabled electronic devices that monitor
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activity and physiological signals and provide feedback about personal wellbeing to the
individual consumer. The most recent generation of wearables process inputs from multiple
sensors to create a holistic picture of health.

Just because a multi-sensor wearable measures the same physiological signals as a
laboratory counterpart does not mean that those measurements are equivalent. Take, for
example, the difference between measuring sleep in a laboratory compared to mobile sleep
trackers. The gold standard of sleep measurement, polysomnography (PSG), is a system
of sensors used to determine sleep in controlled bedroom environments. Electrodes are
attached, usually by glue, to the wearer’s (1) scalp to provide electroencephalography (EEG)
readings; (2) face to collect electromyography (EMG) readings from the facial muscles and
electro-occulogram (EOG) eye movement readings; (3) chest for electrocardiogram (ECG)
readings; and (4) legs for additional EMG muscle readings. PSG also includes chest straps,
a nasal canula, and/or a pulse oximeter to monitor breathing rate, respiratory rate, and
oxygen saturation. Traditionally, these sensors record data via a wired connection to a
central computer and are monitored continuously by a specially trained technician [8,9].

Between the glue, wires, and constant monitoring, it is no surprise that sleep tracking
wearables measure sleep using a different set of sensors than PSG. Many modern wrist-
worn wearables use accelerometry in combination with photoplethysmography (PPG) to
monitor activity and sleep [10–12]. PPG detects changes in blood volume based on light
absorption by biological tissue [13], in contrast to the electrical signals used in PSG. PPG
can provide a measure of multiple physiological signals, effectively replacing the chest
straps, nasal canula, pulse oximeter, and ECG commonly used in laboratory PSG recordings
while fitting neatly into a wearable device.

PSG and PPG output readings overlap with regard to the physiological signal being
measured but the signals are measured using a completely different methodology. In direct
comparison against PSG, multi-sensor wearables using PPG fall short when determining
sleep stages or identifying periods of wake during a sleep episode [10,14]. Multi-sensor
sleep trackers still represent a step forward, but are not accurate enough to be considered
replacements for laboratory measurements [10,15]. This is just one example of how labo-
ratory sensors and consumer wearables may differ with regard to measuring signals of
interest. Many of the examples outlined in this perspective will focus on sleep tracking
use cases. The reason for this is four-fold. Firstly, sleep measurement through wearables
is one of the Institute for Behavior Resources (IBR) Operational Fatigue and Performance
group’s area of expertise. Secondly, sleep–wake determination requires input from multiple
body-worn sensors, as described above, and thus, represents a complex computational
case. Thirdly, sleep is related to a litany of health effects. Not only are sleep disturbances
correlated to underlying physical and mental health problems, but poor sleep behavior can
actually increase the risk of developing a subsequent health issue [16–20]. Because of its
relationship to health outcomes and also because sleep behavior can be easily changed by
the individual, sleep is an attractive target for mHealth behavioral interventions [21–23].
Fourthly, body-worn sensors can more accurately measure a physiological signal if the
wearer is in a resting state such as sleep [24–27]. That is to say, even if the goal is to measure
a physiological signal that is unrelated to sleep, that signal may be easier to monitor when
the individual is in a quiescent state because there will be less noise from motion artifacts
or responses to external stimuli.

In support of this fourth point, a recent review of wearables designed to measure
respiratory activity had a relative error percentage in the neighborhood of 10% when
measurements were taken during quasi-static conditions such as sitting or sleeping but
an error rate closer to 40% during dynamic tasks such as walking [24]. Similarly, in an
evaluation of PPG sensors, the absolute error of heart rate (HR) measurement was 30%
higher during activity than during rest periods [26]. Sleep episodes are likely to be the
longest and most reliable periods of quiescence in humans under real-world conditions;
therefore, a wearable system that aims to accurately detect a basal physiological rhythm
should consider the benefit of first determining whether the wearer is asleep prior to
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initiating measurements. Algorithms that determine sleep onset using only wrist activity
data have been used for sleep research since the 1990s [28–30]. Implementing an activity-
based algorithm for sleep–wake determination prior to collecting a signal that is susceptible
to motion artifacts may help increase measurement accuracy.

3. Wearables vs. Medical Devices

Because most wearables are marketed as consumer accessories rather than as medical
devices, device inaccuracy may not necessarily affect market availability. Most wearables
are considered general wellness devices rather than medical devices that require govern-
mental approval. Medical devices are similarly defined by the United States Food and
Drug Administration (FDA), European Commission Medical Device Regulation (MDR),
and International Medical Device Regulators Forum (IMDRF) as being devices intended
for the purpose of diagnosis, prevention, monitoring, treatment, prediction, or alleviation
of a specific disease or disease state [31–33]. Wellness devices, in contrast, encourage a
healthy lifestyle without specific relation to disease prevention or treatment. Because they
present a low risk to the safety of users, they do not need to be validated against laboratory
measurements or approved by a government regulatory body [33]. There appears to be
a trend for wearable manufacturers to assert medical applications of their wearables, but
those claims will expose the manufacturer to the burden of obtaining certification from the
governing body in each jurisdiction in which it is sold.

However, manufacturers of wearables that are not marketed as medical devices may
still wish to obtain other forms of certification. For example, the Institute of Electrical and
Electronics Engineers (IEEE) has published a draft standard, P360—IEEE Draft Standard
for Wearable Consumer Electronic Devices that will focus on “an overview, terminology,
and categorization for Wearable Consumer Electronic Devices (or Wearables in short). It
further outlines an architecture for a series of standard specifications that define technical
requirements and testing methods for different aspects of Wearables, from basic security
and suitableness of wear to various functional areas like health, fitness and infotainment
etc.” [34].

The breadth of this effort is unclear, but it points to a prospect for the future with
independent agencies offering to review and certify devices for specific purposes. While
the IEEE standard may focus on the technical engineering aspects of wearables, other
groups may focus on the functional attributes of wearables. For example, two joint sleep
societies—Sleep Research Society (SRS) and the American Academy of Sleep Medicine
(AASM)—regularly discuss the state of sleep tracking technology and publish guidance on
acceptability for clinical or research use [11,35–37]. Likewise, the International Federation
of Sports Medicine (FIMS) has created a quality assurance standard for the application of
wearables for physical fitness and athletics [38].

These examples suggest that professional societies have already taken the initiative to
self-impose standards for acceptable use of wearables within their own fields. These initia-
tives can help guide the development and use of wearables at individual steps across the
mHealth pipeline but have no regulatory authority over device manufacturers. The applica-
tion of society standards at the market level will depend on whether manufacturers believe
that adopting the standards will be economically beneficial from a marketing perspective.

Whether a wearable is classified as a medical device or a wellness device, medical or
professional society endorsement or certification may translate to greater market demand
for the product. Conversely, certification, and the process of validation testing to achieve
that certification, would likely impose an added cost to wearable production. The man-
ufacturer will have to assume that certification confers sufficient added value to warrant
the added cost. Currently, the value of scientific endorsement of a wearable has not been
quantified. To that end, IBR has initiated a study to establish the economic value of such
validation and endorsement as it pertains to sleep tracking devices [39,40].
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4. Validation

Many wearables undergo validation testing against laboratory measurements but
there are currently no solid criteria for how well a device must perform in order to be
considered “valid” [11,41,42]. For sleep tracking technology, wearable systems are usually
compared against overnight PSG as well as research-grade actigraphy [10,11], but this form
of comparison is not helpful for testing whether a wearable can reliably determine sleep
onset for short sleep bouts (i.e., naps) or for unanticipated sleep onset, such as dozing off.
An important next step in validation testing against PSG will be to develop a laboratory
protocol that replicates erratic sleep schedules. A protocol suggested by researchers at the
Walter Reed Army Institute of Research (WRAIR) is to test fieldable sleep trackers against
PSG using a modified maintenance of wakefulness test (MWT) [43]. Participants in this
protocol would be confined to the laboratory bedroom environment over the course of
the study and monitored by PSG even during the day. Any sleep episodes that occurred,
including naps, could then be scored by a PSG technician, and compared against the
wearable’s ability to detect sleep onset or offset.

There is even less guidance on how to test the validity of wearables outside a controlled
environment. This is an important limitation since wearables are designed specifically
for use outside the laboratory. Establishing ecological validity requires fit-for-purpose
study design and testing within the target population [44]. For sensors that are designed
to identify an activity state, such as sleep or exercise, devices can be compared against
the wearer’s self-report. Validation testing for IBR’s purpose-built sleep tracker not only
included a comparison against the gold-standard PSG, but a subsequent comparison of
all-day sleep measurement against self-reported sleep behavior in a population of long-haul
pilots [12,45]. Self-report is commonly used to collect data about individuals in the real
world, but is not always reliable [44–47]. Comparing a sensor or wearable’s ability to
estimate activity states in real-world environments against self-report is better than no
testing at all. It is also worthwhile to note that the user’s perception of accuracy may
influence their adoption of wearable technology.

Establishing validity for biological signals that cannot be self-reported, such as HR,
requires fit-for-purpose study design and testing within the target population [44]. For
example, to test the accuracy of PPG HR sensors across a spectrum of activities and skin
tones, the Department of Biomedical Engineering at Duke University recruited participants
from diverse racial backgrounds, and gauged skin tone using the Fitzpatrick skin tone
scale [26,48]. These participants then wore four different PPG consumer devices and two
research-grade ECG sensors during periods of rest, deep breathing, walking, and typing
activities. All devices had previously been tested for accuracy at rest, and were time
synchronized during the study procedures and analysis. This study is a good example of a
protocol designed to test accuracy under a specific use case.

Many recent validation testing studies have simultaneously compared multiple con-
sumer wearables against a laboratory standard at once [10,25,26]. This technique allows
multiple devices to be validated using the same study cohort, which is cost-effective, but
also allows for a head-to-head comparison between consumer wearables. Inter-device
reliability, that is, a comparison of accuracy between two consumer wearables rather than
between a wearable and research standard, may be an effective field validation protocol in
the future. Considering that wearables are designed for use in the real-world environment,
testing for consistency between devices that have already demonstrated measurement
accuracy in a controlled setting could be a viable next step for validation.

Developing blanket criteria for ecological validation testing is a daunting and im-
practical task given the wide applicability of wearable technology for health-monitoring
purposes. Instead, guidelines for what constitutes acceptable validity need to be developed
independently with respect to specific use cases. Wearables and their applications should be
tested for measurement accuracy and efficacy of feedback interventions within the context
of their intended real-world usage. Validation testing should be considered a necessary
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first step not only when manufacturing a new device but also prior to working with data
extracted from currently available wearables.

5. Manufacturing

Several years ago, IBR partnered with a small company to produce a wearable device
that would be suitable for monitoring sleep and fatigue in shiftwork and similar operational
work environments [12]. Unfortunately, the company’s other wearable initiatives failed
and they ceased manufacturing. This left IBR without the means of producing more
devices. The cost of re-creating the design for another device with a new manufacturer
was cost-prohibitive and would be even greater in order to update the design with any
additional features.

There is tremendous risk in manufacturing a “purpose-built” wearable for a specialty
application. From the perspective of the manufacturers, adding new algorithms or sensors
to an existing system is undesirable unless the addition promises a sizeable boost in sales
and revenue. Specialty applications that are not perceived to represent the interests of
the mass market have little chance of increasing revenue. Therefore, even sensor tech-
nology which has been shown to be scientifically valid and relevant to health outcomes
may not make it to mass production. This consideration is particularly important for
mHealth initiatives that depend on widescale user adoption or population-level analysis of
health data.

Manufacturing may be carried out at a facility that is in overseas and/or in a different
country from the device developer or target consumer population. This distance limits
the ability of the developer to provide oversight and quality control in manufacturing.
Should the manufacturing of devices be successful, there are still logistical challenges in
distribution. The cost of shipping must be factored into the overall price and logistics
of manufacturing [49]. This includes determining the method (air or sea) and route for
shipping. Quality control during shipping should also be considered. Many manufacturers
assume a certain percentage of damaged goods in a shipment to cover the costs of unusable
merchandise. The final destination of the devices can provide additional hurdles. Import
duties and taxes are levied at varying rates depending on the country of import. Import
regulations are different across countries as well: the devices may be classified differently
(i.e., medical device vs. wellness device) by legislature in the destination country than from
the country of manufacturing, which would affect how their importation is regulated. For
example, the definition of a medical device is slightly different in the European Union’s
(EU) Medical Device Regulation 2017/745 than in the U.S Food and Drug Cosmetic Act [50].
These logistical challenges are not insurmountable, but require a large capital investment
that may not be cost-effective for small companies.

6. Working with Existing Data

The high costs and logistical difficulties of manufacturing a purpose-built wearable
drives many developers to work with existing wearable data systems. Researchers must
then contend with how data are collected and accessed. There is no standard for how
current commercial wearables process and display sensor-collected data. One wearable
may sample data continuously on an epoch-by-epoch (EBE) basis while another may only
sample data at intermittent intervals. Researchers must verify that the frequency of data
sampling is sufficient for their analyses.

Data can then either be processed on the device itself or transmitted via wireless
signals to a company-owned server or associated mobile application for processing. Most
wearable devices do not possess enough processing and battery power to analyze data
on the device hardware. The use of cloud-based servers solves this problem by allowing
calculations to be carried out on better-powered servers but requires wireless connectivity.
A benefit to this approach is that data are stored on cloud-based servers and can be accessed
remotely using a company-provided Application Programming Interface (API). APIs allow
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third-party applications to access data, integrate data from multiple sources, and use their
own proprietary algorithms to analyze data.

Using third-party data is not without its pitfalls. Differences between systems may
make it difficult to analyze data consistently across devices. Each wearable company has
its own API that may provide data as raw EBE activity or as scored summary data. Raw
data may not be equivalent between devices due to sampling rate, device sensitivity, or
other differences in design. Scored data carry an additional layer of possible variance
since non-equivalent raw data are then analyzed using algorithms that may use a different,
usually proprietary, set of computations.

The proprietary nature of wearables companies and their algorithms can complicate
the use of wearable data for STEMM initiatives. Not only are proprietary algorithms
private, but the algorithms and API documentation may be updated by the company
without notice. This lack of transparency means that researchers cannot be sure whether
data were collected or processed in an accurate or consistent manner and remains a concern
for research groups [10].

7. Economic Considerations

When designing sensors for wearables, it is worth considering economics in the context
of how wearables are built, manufactured, and marketed. The first economic consideration
has already been touched upon, namely, manufacturing costs. A sensor that relies on
exotic materials or technology will be less successful compared to a sensor that is based
on existing and inexpensive technology. After determining the cost of a sensor of interest
and its impact on the overall cost of the wearable, the next two factors are (1) perceived
market for the sensor information and (2) the perceived impact of the sensor on the market
price. In other words, “does the addition of this sensor and information it provides justify a
higher price?” Understanding the interplay between marketability of wearables technology
and economic demand is an ongoing research initiative at IBR [39,40]. Our initial work
assessed the impact of wearable features on demand and indicated that additional features
may confer a competitive advantage compared to wearables without that feature despite
no change in pricing [51]. What this means is that if the price cannot be increased to cover
the cost of an additional sensor, the added cost has to be absorbed by reducing the cost of
other components. This dictates, to some extent, the pace at which new sensors will be
implemented; new sensors will only be adopted at the rate the cost of existing components
is decreased through economies of scale.

Even if the cost of the sensor can be absorbed, there is a cost to redesigning and
manufacturing a new version of the device that implements those sensors. That kind of
initiative is often driven by the marketing department—who will want the information
provided by the sensor, how large is that market, and how much additional revenue will
be driven by appealing to that market. Marketing departments have a variety of tools
to assess the market value for wearables and new features. Often these market research
tools will use panels of consumers to test market the wearable, the sensors, and the new
information that it can provide [52,53]. Responses will be skewed by the composition of the
panel. For example, most wearable manufacturers see the value of including sleep tracking
into a wearable, but consumer panels are likely to be composed of consumers who do not
work shifts and thus, have consolidated night-time sleep patterns. Such market testing
would not detect the value of measuring daytime sleep behaviors, such as napping, which
is a common practice for shift workers and in 24-h operations [45,54–57]. In this use case,
a population that would greatly benefit from sleep tracking (shift workers) may be less
likely to adhere to an mHealth sleep hygiene initiative if the devices do not measure sleep
duration across the 24-h day.

The ultimate consequence of economic considerations is that it is very difficult to sell a
specialty sensor that is designed for a narrow market. Given the economic constraints, it is
much more feasible to deliver specialty information from existing sensors using innovative
software algorithms, either built into the firmware of the wearable or incorporated into
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connected applications that can take the raw signal from a general-purpose sensor and
extract specialty information. The firmware approach is controlled by the manufacturer
and will be limited by their marketing perspective. Connected applications can be used
to extract information for specialty markets, but connected applications are limited by the
nature of the APIs that manufacturers use to share their sensor information. Specialty
applications are forced to derive information from highly condensed and processed infor-
mation available from the manufacturer’s server. Hopefully, this aspect will change as
the emphasis shifts more to health and wellness monitoring and manufacturers see the
value in having innovators take their sensor data and apply artificial intelligence to derive
important new health metrics. Working collaboratively has huge economic advantages for
both the wearable manufacturers and the innovators; it represents a relatively small cost to
share data that can drive up demand, and it incentivizes innovators to favor wearables that
have open access to raw data.

8. Trust

Finally, trust is a significant barrier to the successful integration of wearables into
mHealth initiatives. Proprietary algorithms serve as a red flag for human subject research
groups, but the protection of proprietary technology is to be expected. Most software
programs, including commonly used research tools, have proprietary algorithms and are
permitted to update the system ab libitum. A common concern among research groups
is that they will not know when the algorithm has been changed in a way that could
affect the validity or consistency of their data collection. For example, if a researcher was
using a wearable to track menstrual cycle in order to identify the ovulation window in
their participants, but the wearable’s algorithm was changed from assuming a 28-day
cycle to assuming a 30-day cycle, the results would no longer be accurate. The research
team would have no way of knowing that the difference was due to an update since the
algorithms are not freely available. The team could risk publishing inaccurate data or
drawing false conclusions. Interestingly, while this is often cited as an area of concern
when using wearable technology, it is rarely discussed as a concern when using statistical
analysis software or other proprietary software systems commonly used in research that
could influence the interpretation of results. Similarly, inter-rater reliability of PSG scoring
remains an issue even in highly trained technicians [58], which begs the question of the
intrinsic accuracy of any interpretation of physiological signal measurements.

Trust in proprietary algorithms may hinge on general distrust for accurate measure-
ment of real-world data. Because researchers cannot control or observe the environment,
there is a blind spot in the data collection process. Fostering trust in data science analysis
techniques requires clear quantification and communication between science and medi-
cal research fields and corporate data entities [59,60]. It also requires trusting individual
consumers to use wearables consistently and properly. User adoption and adherence are
common challenges for wearable companies and researchers hoping to improve mHealth
care pathways [61,62].

Users also need to trust that the feedback provided to them from a wearable is salient
to their end goals. Using sleep tracking as an example, wearables that offer an estimation
of sleep depth may be appealing because it sounds scientific. Users assume that knowing
how many minutes of light, deep, or rapid eye movement (REM) sleep they received will
be related to health or medical outcomes. However, preliminary results from IBR’s survey
of sleep medicine professionals [40] indicate that the ability of a device to record short naps
during the day or night is more desirable to sleep researchers than wearable sleep scoring,
which is not the same as clinical PSG sleep staging [10,14]. Despite this, most commercial
sleep trackers do not automatically record short sleep episodes, an output that could be
relevant to sleep health. It is possible that general consumers are more likely to purchase
devices that feature scientifically endorsed features, but the value of scientific endorsement
of wearables has not yet been quantified. This is an on-going project at IBR. Public trust in
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scientists could affect price as well as user adherence if wearables and mHealth platforms
commit to promoting scientific validity and health relevance in their products.

Finally, user trust is also dependent on the privacy policies of wearables manufacturers.
Third party use of data is typically bound by country-dependent privacy laws. For example,
the European Union’s (EU) wide-ranging General Data Protection Regulation laws protect
users’ privacy and personal information from any company worldwide that collects data
from people residing in the EU [63]. In the United States, a mix of separate laws such
as the Health Insurance Portability and Accountability Act (HIPAA) and the Electronic
Communications Privacy Act (ECPA) are designed to protect privacy. Furthermore, while
many wearable devices are not regulated as medical devices in the United States, they
are still capable of collecting health data from individuals. Companies providing a means
of collecting wearable health data should, at a bare minimum, communicate with their
users by notifying them of how they use their data, if they share or sell data with third
parties, and obtain general consent from their users. However, reliance on these practices
has been criticized as inadequate and future legislation may enact policies aimed to better
protect the user’s data [64]. Privacy protections may look different depending on the
user’s geographical location, but they provide a basic level of integrity that can foster trust
between the user and the company.

9. Conclusions

The goal of this perspective has been to arm researchers and developers with infor-
mation that will help them overcome logistical hurdles that may prevent the adoption of
health-relevant technology into the mainstream. Applications that utilize currently existing
devices and/or are agnostic to data formatting may have a better chance of integration
on the consumer market. To overcome issues of trust regarding the validity of consumer
wearables, applications should not only be tested against laboratory measures, but also
demonstrate efficacy in real-world use cases.

The direction of wearables technology development is likely to be driven by mar-
ketability concerns on the part of manufacturers despite the significant interest that sci-
entists, clinicians, and technical engineers have in advancing the field. It is therefore
important to establish the value of scientific validity to manufacturers who have the means
of surmounting the limitations discussed within this perspective. The IBR team’s multi-step
project aims to quantify the value of scientifically relevant wearables features in terms of
economic value [39,40]. In the future, these findings will be used to help foster collaboration
between mHealth researchers and device manufacturers in order to improve the state of
the art for wearables technology.
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