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Abstract: This article presents a platform for environmental data named “Environmental Cloud for
the Benefit of Agriculture” (CEBA). The CEBA should fill the gap of a regional institutional platform
to share, search, store and visualize heterogeneous scientific data related to the environment and
agricultural researches. One of the main features of this tool is its ease of use and the accessibility of all
types of data. To answer the question of data description, a scientific consensus has been established
around the qualification of data with at least the information “when” (time), “where” (geographical
coordinates) and “what” (metadata). The development of an on-premise solution using the data lake
concept to provide a cloud service for end-users with institutional authentication and for open data
access has been completed. Compared to other platforms, CEBA fully supports the management
of geographic coordinates at every stage of data management. A comprehensive JavaScript Objet
Notation (JSON) architecture has been designed, among other things, to facilitate multi-stage data
enrichment. Data from the wireless network are queried and accessed in near real-time, using a
distributed JSON-based search engine.

Keywords: data lake; indexes; data visualization; internet of things; data management; environmental
sensors

1. Introduction

Climate change and human activities have an increasing impact on ecosystems [1,2],
and the documentation of global change patterns has been identified as a first step to face
the changing environment to understand the global loss of biodiversity [3] leading to the
need of a quick, reliable access to high-quality data.

It draws the importance of standards in data and metadata, for example in ecology [4]
without being completely defined yet. In this domain, even if a number of repositories
to store shared data have been created and on going developments are trying to define
common data and metadata standards [5], existing data are not exposed in a standard,
machine-readable format using a common vocabulary. Common to all fields, this problem
has for example been addressed by the biodiversity community with the creation of the
Darwin Core [3].

As Deligiannis et al. explain in [6], many stakeholders are lacking the resources for
infrastructure and/or computing expertise, and still rely on outdated approaches such as
(i) storing their data in spreadsheets or raw files, (ii) sharing their data with colleagues
through email, cloud uploads of zip files, or even by snail mailing electronic copies in re-
movable media, and (iii) analyzing the data via sub-standard tools and trial software. They
also mentioned that the proposed data storage solutions usually require significant com-
puting infrastructure and need the constant support and active involvement of Information
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Technology (IT) experts even for trivial tasks such as incorporating new data. Managing
the data heterogeneity and interoperability are still common challenges [7]. For example,
Ciampittiello et al. [8] identify that the specific needs of research in the environmental field
are among others the collection of high-frequency data that are not readily available in
commercial instruments, a data processing software and interoperability. As it is the case
in many domains, they also indicate that the sensors used are both commercially produced
and built by the individual research groups, according to their different specific needs [9],
generating even more heterogeneity. The data formats of different sensors are often in-
compatible, complicating data processing [10]. Thus, Retamar et al. [11] highlight that the
sharing, the exchange and the interoperability of environmental information, individual
data, or boundary information constitute the basis for an in-depth knowledge of a territory.
Hossain et al. [12] argue that data should not be captive by its producers but need to be
freely accessible while Shadbolt et al. [13] explain that knowledge [14] and new services
can be drown from data.

However, this implies the development of infrastructures such as data repositories
allowing data to be shared and valued [15]. Regarding this, ontologies and Findable,
Accessible, Interoperable, and Reusable (FAIR) systems are presently able to handle these
challenges effectively [16]. As Wilkinson et al. [16] explain in the basis of FAIR principles,
there are numerous and diverse stakeholders and have much to gain that researchers
wanting to share, obtain credit, and reuse each other’s data and interpretations; funding
agencies (private and public) are increasingly concerned with long-term data stewardship;
and the data science community is interested in mining, integrating and analyzing new
and existing data to advance discovery. According to Murray-Rust [17], full open access is
the simplest solution to share and reuse data, and it can also increase the quality of data.
This open data movement has its roots in academic circles over the past 50 years [18].

At the same time, Internet of Things (IoT) has become a common technology for large
deployment with multiple applications [19] such as smart health care [20], environment
monitoring [8,21–23], smart cities [24], industrial control [10,25] and agriculture [26–28].
The number of connected devices is estimated at the horizon of 2022 at 42.5 billion and at
the horizon of 2025 at 75.5 billion with a data volume created by IoT connections projected
to reach a massive total of 79.4 zettabytes (https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/ (accessed on 1 December 2021)).

This kind of systems is well suited for environmental studies and smart agriculture
by deploying a monitoring system in a remote area when a high data rate is not required
and where minimal power consumption is sufficient [29], making possible a long-term
monitoring (see for example [23,30] for environment applications and [26] for smart agri-
culture application). From the end-user point of view, the IoT seems to make real-time
uses possible. Ciampittiello et al. [8] explain, real-time processing requires continual input,
constant processing, and steady output of data. For some applications, the near real-time
is sufficient, and has become an hot-topic with the widespread adoption of IoT (see for
example the applications to smart agriculture [26,31]). In near real-time processing the
frequency of transmission is important, but the whole processing time (from acquisition
to visualization) can be in minutes (up to 10), particularly if environmental process under
study is stable [32]. In the environmental domain, a spatial analysis and representation
are commonly implemented [32], by at least georeferencing with GPS WSG84 latitude and
longitude combined with an UTC timestamp. A lot of work on the issue of monitoring
the environment using wireless technologies have been conducted [33–35], but often the
solutions proposed are theoretical, on a particular domain or for short term experiments.
New telecommunication technologies such Long Range (LoRa (https://lora-alliance.org/
(accessed on 1 December 2021))) or SigFox (https://www.sigfox.com/en (accessed on 1
December 2021)) appliance with low velocity can transmit data over kilometers with small
infrastructure and tiny power sources, which perfectly fit the need for large deployment in
the environment.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://lora-alliance.org/
https://www.sigfox.com/en
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In consequence, a lot of research is conducted on data storage in the cloud, but few
works take into account the complete integration of the data from the sensor to the cloud
for long term with various types of sensors and on several sites. Nevertheless, there are
works on the collection of long-term data in large national data centers or data hubs. In
France, such centers are among others Pôle National de Données de Biodiversité (PNDB)
(https://www.pndb.fr/pages/fr/portail-pndb (accessed on 1 December 2021)) and data
terra (https://www.data-terra.org/en/accueil/ (accessed on 1 December 2021)) , which
are able to process large amount of data with large resources (human and computational).

Along with the new technologies enabling data analysis, storage and processing
architecture play also a key role in the big data ecosystem [7]. Whatever the architectures
proposed [26], they aim to facilitate the storing, manipulating, analyzing and accessing
for structured and unstructured data [36]. Among those modern architectures, data lakes
are of main interest as their design aims to store a large volume of data in any format and
structure, and to provide services for data access and analysis [37,38]. They are particularity
relevant in the context of environmental monitoring and agriculture as they can manage
raw data structured or not. According to Fang [39], a data lake is a cost-efficient data storage
system that can improve data analyzing process from ingestion, storage, exploration and
exploitation of data in their native format.

In this paper, we present the “Cloud Environnemental au Bénéfice de l’Agriculture” or
“An Environmental Cloud for the Benefit of Agriculture” (CEBA) which is one deliverable
of the Challenge 1 “Sustainable agroecosystems in a context of global change” of the the
Initiatives Science–Innovation–Territories–Economy (I-Site) Clermont CAP 20-25 Projet [40].
By proposing an on-premise data lake, the CEBA aims to fill the gap of a regional tool in
Auvergne (France) to store, visualize, analyze and share heterogeneous data (structured
or not) collected from research programs and studies related to the environment and
agriculture, whether these data come from files, databases or sensor networks with an
authentication service and ensuring data ownership.

The geographical area covered by the CEBA is the former Auvergne region, with near
twenty sites identified covering a large scope of data and analysis to manage (see Figure 1).

Figure 1. Geographical area and sites covered by the CEBA.

The CEBA proposes an innovative architecture for research teams that do not have IT
computer staff to (i) record, organize and manage collected data with a metadata descrip-
tion for datafiles up to several gigabyte with a simple normative metadata management;

https://www.pndb.fr/pages/fr/portail-pndb
https://www.data-terra.org/en/accueil/
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(ii) collect IoT data with free format and structure for low output sensors networks such
as LoRa or SigFox; (iii) access and visualize IoT (hot) data in near real-time, access and
query historical (cold) data, extract in several formats; (iv) perform bounding box spatial
query on data; (v) search for data and dataset in a data catalog according to keywords
and geographical GPS WSG84 coordinates; (vi) share whole datasets and datafile with
authenticated users and public; (vii) perform basic and advanced user management tasks
(such as user permissions, data and metadata access).

The contributions of the work performed in the CEBA is an innovative on-premise data
lake with the following features: a data catalogue managing spatially referenced resources,
an ingestion platform to collect IoT data regardless of its format and structure, a storage
platform to upload and store any type of data files with query solutions, a visualization
platform to access hot data in near real-time, some spatial and temporal query functional-
ities. To achieve these objectives, an efficient storage architecture and data management
pipeline are proposed to provide a robust, scalable and extensible solution. In addition,
these elements can allow data enrichment for sensor networks or if some metadata are
lacking. All services are designed for usage by non-IT experts.

The article is organized as follows. In Sections 2 and 3, we present a review of data
lake architecture focusing on the requirements that led us to choose a data lake architecture.
In Section 4, we propose a design and an architecture for data storage with PostgreSql
databases [41] and Simple Storage Service (S3) storage as main elements, with a full
JavaScript Objet Notation (JSON) architecture for the IoT data. We will detail the design
of data flows management from sensor networks by using the Elastic Stack for a near
real-time visualization, the management of metadata by the implementation of a data
catalog and the different tools to manage metadata and the design and implementation of
the web site which is the entry and exit point for the end user of the data and metadata. In
Section 5, different use cases will be shown. We conclude and propose some directions for
future research.

2. Data Lake Architecture Review and Requirements

While it was still theoretical a few years ago, the concept of data lake used today in the
academic and private sector has become a target of large infrastructure on a countrywide
scale [42] or is evaluated in a large research infrastructure such as high energy physics
and astronomy [43]. Data lake is also identified as a new trend in data management for
agriculture [26].

Different definitions of the concept can be found in the literature over time.
The data lake concept has existed since 2010 [36] and is described as a large storage

system for raw and heterogeneous data, fed by multiple data sources, and allows users
to explore, extract and analyze all the existing data. A data lake has multiple synonyms
now, such as data hub [44] or data reservoir [45]. Furthermore, the growing up of big
data technical solution such as HADOOP [39,44] and more recently with proprietary
solutions such as Azure [46], IBM [45] and Cloudera [47] have also introduced some
confusion in people’s minds as they propose a fully technical operational solution with
their own architecture.

Following the limitations of this concept highlighted in various scientific pa-
pers [39,45,48], Madera and Laurent [37] propose an enhanced definition to embrace
scientific and vendors data lake definitions and pointed out three main challenges including
Data Governance and Metadata Management and Enhancement.

Sawadogo et al. [49] modify Madera and Laurent’s definition of users (giving access
to any type of user), of the logical view (modifying the handling of external data sources),
and include scalability (which is a main requirements for a data lake for [36,50,51]). They
also identify interesting features including indexing of data using direct or reverse indices,
semantic enrichment and versioning of data.

Ravat and Zhao [52] propose to include input, process, output and data governance
features in the data lake definition. They restrict access to the data lake to less users and
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include external data sources in the data lake (such as in Fang paper [39]). They make it
clear that data ingestion is a process-free phase and that the raw data is stored in its native
format for later use.

Sawadogo and Darmont in their review [53] adjust the definition and give new insights
to manage and generate metadata. They also indicate that the management of unstructured
datasets is not comprehensively globally thought, that the exploitation of unstructured
data (such as text) is not taken into account, and that the possibility to cross-analyse data
induces serious security problems.

Finally, Hai et al. [54] propose a new definition: “A data lake is a flexible and scalable
data storage and management system that ingests and stores raw data from heterogeneous
sources in its original format, and provides query processing and data analysis on the
fly.” A data lake is not considered only as a storage system and must support on-demand
data processing and querying. Furthermore, data indexing should only be performed if
necessary at the time of data access, ingestion of data sources could be light, as there is
no need to force schema definitions and mappings beforehand. Hai et al. agree that the
metadata of the data lakes will evolve over time in an incremental way.

Whatever the definition, data lake can be simply defined as a schemaless architec-
ture [50,55,56] using a schema-on-read global approach (even such a definition can be
considered not precise enough for some computer scientists according to the literature
given above), in contrast to the schema-on-write approach in warehouses.

Although the lack of a real consensus on data lake definition is true, we can resume
that a data lake should keep data in its raw format and provides:

• Services to ingest any kind of data;
• Data access and use to various kind of users;
• A catalog service to make data findable by their metadata according to standards;
• A data governance;
• A logical and physical design;
• Some scalability possibilities.

When talking about data lake architectures, existing studies [52,57] generally distin-
guish between pond and zone or layer architectures.

Zone architectures generally consider three [58] to four zones [52] up to six zones [59].
In addition to this, several classifications of the data lake architecture have been

implemented. Ravat and Zhao [52] propose to distinguish functional architecture from
technical architecture while Sawadogo et al. [49] propose to classify the architectures into
three groups (maturity-based, hybrid, functional). According to Sawadogo et al. [49],
functional architectures include a data ingestion function to connect to data sources, a data
storage function to hold raw and refined data, a data processing function, and a data access
function to allow querying of raw and refined data. The components of data maturity-based
architectures are defined according to the level of data refinement, while the components
of hybrid architectures depend on both data lake functions and data refinement.

Giebler et al. [60] consider that defining data ingestion, storage and organization is not
sufficient for a data lake, and then propose a framework based on nine aspects to define a
complete data lake architecture not tailored to specific use cases.

Hai et al. [54] identify three examples of real applications of data lakes. Our project is
of the type “multiple entries of heterogeneous raw data” with additions on:

• Managing geographic coordinates;
• Having a full JSON architecture for data querying;
• Considering a data valid for the infrastructure as soon as it has a “what, where,

when” information;
• Combining relational and not only SQL (NoSQL) storage and querying systems;
• Giving the access to the data to any kind of users, including open data users;
• Furthermore, finally managing metadata with a catalogue managing spatially refer-

enced resources.
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3. The Elastic Stack

The Elastic Stack, initially designed to manage system log with a full text search
approach is currently used to manage IoT data in several domains such as medicine [61,62],
building monitoring [63]. The Elastic Stack [64] is composed of four main open and free
projects: Beats, Logstash, Elasticsearch [65], and Kibana. Beats are data shippers. Logstash
is a data processing pipeline. Elasticsearch is a document-oriented database. Kibana is a
user interface tool of Elasticsearch for administration and queries. We are going present
each tools in the next subsections.

3.1. Beats and Logstash

Beats are lightweight data shippers. They mainly ship data from the source, such as
files, to Logstash. Logstash is a processing pipeline engine with real-time pipelines. It
ingests data from multiple sources, and transforms and ships the transformed data to the
configured destination, such as Elasticsearch.

3.2. Elasticsearch

Elasticsearch is the heart of the Elastic Stack. It is a free and open search engine
with real-time and full-text searching. It is also a document-oriented and distributed
database. The documents are JSON objects that are stored within an Elasticsearch index.
An index field can be of many different types, e.g., a string or a number. The mapping of
an index defines the types of the fields, and how the fields should be indexed and stored
in Elasticsearch. Elasticsearch is a distributed database storage. It extends the concept of
relationship between clusters, nodes, indexes and shards:

• A cluster can have one or several nodes.
• An Elasticsearch index can be divided into one or several shards (partitions).
• Shards of an index can be populated in one or several nodes in the same cluster.

One advantage of Elasticsearch in terms of storage is scalability and availability:

• Scalability: means that Elasticsearch can easily increase the size of storage, e.g., adding
new nodes by configuring them in the same cluster, or adding new shards for an
existing index without suspending this index.

• Reliability: means that if some nodes stop working, others in the same cluster can take
the workload of the failing one.

Elasticsearch supports a varying number of field datatypes in a document [66]. There
are core datatypes (e.g., string, numeric, date, boolean), complex datatypes (e.g., object
for single JSON objects), geo datatypes, and specialized datatypes (e.g., Interne Proto-
col address).

Elasticsearch supports two groups of spatial data types which are of great interest for
our platform: geo-point and geo-shape. Geo-point is a pair of latitude and longitude data.
Geo-shape includes a point or set of points (e.g., point, linestring, polygon, multipoint,
multilinestring, envelope, and circle).

Elasticsearch supports a query Domain Specific Language based on JSON data where a
query structure combines three parts: Application Programming Interface (API) method; ad-
dress that includes Uniform Resource Locator, index, type, and method; and the query body.

3.3. Kibana

Kibana [67] is an application used with Elasticsearch. An interesting visualization
functionality of Kibana is the dashboard, as it supports Elasticsearch aggregation queries.
We use Grafana instead of Kibana in the CEBA because it is more relevant for the main
usages we have actually.
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4. CEBA Architecture

Actual CEBA architecture has been designed according to the data flows it was funded
to manage and the services it should give with the main hypothesis that it should tackle
any data flow with no prerequisite.

The CEBA has been designed as a data lake with very few analysis functionalities as
the main requirements were focused on data storage and sharing. According to the data
management, the design is build upon the four main functionalities a data lake should
provide on data (ingestion, storage, processing and access) with a metadata management
at high level (at least, the datasets must have metadata).

As the CEBA can become in the future a big data platform for Auvergne Region,
the storage layer has been designed to enable this (see Sections 4.2–4.4) by using JSON as a
common storage format.

Thus, the CEBA is composed of the following layers:

• An ingestion layer for streaming data sources using Beats;
• A dual data storage layer for near real-time visualization and data querying using

Logstash, Elasticsearch, Grafana and PostgreSql;
• A long term data storage layer provided by PostgreSql and a S3 Mesocentre service;
• A data access and discovering layer by a website and a data catalog.

The CEBA architecture, displayed in Figure 2, is composed of several servers, each of
them hosting one to several services. Each service is hosted by its own server. Specifically,
the sensor network data part has one server for transport/transformation and a cluster of
three Elasticsearch servers for indexing and retrieval.

Figure 2. Global architecture of CEBA.

Regarding the functionalities, Figure 3 describes the different global functionalities
of the CEBA, with the different possibilities of (i) depositing data and metadata, (ii) how
they are stored with a unification of solutions, (iii) how they can be managed (indexing,
enrichment, catalog), (iv) and finally how they can be manipulated and visualized. All
features support at least GPS coordinates (GPS WSG84 latitude and longitude), even at
the project level where the associated sites are described with a bounding box. Of course,
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all datasets and associated data can be made available in open data if they are declared
as such.

Figure 3. Global functionalities of CEBA (in blue IoT features, in orange web features and in green
common features).

The ConnecSens project from the European Regional Development Fund program of
European Union (https://ec.europa.eu/regional_policy/en/funding/erdf/ (accessed on 1
December 2021)) has designed and implemented a collecting platform fully open source
and proprietary, and is one of our main partner for the development of the IoT part [68].

In the next subsections, we are going to explain how data governance and management
are set up and the design of several layers. We will start by describing the ingestion layer
and the pipeline we set up. Then, we present the storage layer by describing the database
and S3 components and how they are designed. We then finally describe the access layer
composed of a web site and a the Grafana tool.

4.1. Data Governance and Management

Findable, Accessible, Interoperable, Reusable (FAIR) principles, open data and open
science have driven data management as it was a clear issue to propose an open access to
any data produced by public funds, applying the principle “as open as possible, as closed
as necessary”. Data governance in the CEBA is not supported by a unique software solution
but represented by good practices, requirements and choices for each software component.
One main issue is the metadata management as any datafile to be uploaded must be
associated with a dataset in order to make it findable and accessible on the CEBA, along
with data coming from wireless sensor networks. As some partners are being part of Long
Term Research infrastructures and national observatories such as INEE LTSER ZA (Long
Term Socio-Ecological Research Zones Ateliers), OSU (Observatories of Sciences of the
Universe) and OZCAR-RI (Critical Zone Observatories, applications et research) where
data are mainly georeferenced, and linked to environmental studies, we are compliant with
the Infrastructure for Spatial Information in the European Community (INSPIRE) directive.
So, the metadata management is performed using INSPIRE [69], and more details are given
in Section 4.1.1.

As multiple projects will use the CEBA platform and as the datafiles will be stored a
quite long time (at least 5 years), a Data Management Plan (DMP) has been designed. It will
also participate to the future Open Science initiative of University of Clermont Auvergne.
This DMP model has been designed with the help of France Grilles Scientific Interest Group

https://ec.europa.eu/regional_policy/en/funding/erdf/
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(www.france-grilles.fr/home/ (accessed on 1 December 2021)) staff and of INIST OPIDoR
team (Optimiser le Partage et l’Interopérabilité des Données de la Recherche—Optimising
Research Data Sharing and Interoperability). A draft of this model is being developed in
the DMP OPIDoR platform, and needs to be finalized.

Considering the data stored, three cases can be considered: datafiles associated with
datasets and data stored in the database, datafiles associated with wireless network and
indexed data. For the first set, the life duration is the same as the dataset. They will be
stored until the owner decide to delete it, and they will be accessible online anytime. For
the second set, they will be stored until the owner decides to delete it, but are inaccessible
unless specific use is needed. For the last set, we will consider a hot data subset and a cold
data subset. They are distinguished by way they are accessible. Hot data are accessible via
indexes, in near real-time meanwhile cold data are only accessible via database queries.
The duration they are kept online, meaning accessible for visualization, is decided with the
owner, and is generally adjusted to one year.

For dataset and datafile naming, we have proposed a naming convention with the
main following elements: the producer identification, the production date, the geographical
location of the data (city or region) and one or two words describing the data.

With regard to data governance, the choice was made to clearly distinguish between
what data producers consider to be test and production streams. Although it may seem odd
to keep test data, many CEBA users have stated that they have a real interest in keeping
this data as it often contains good metrics. This way of distinguishing between test and
production indices nevertheless allows many test indices to be removed to improve the
performance of the elastic cluster.

For long-term resource management, the following organization was chosen: for one
experiment, the current year’s data is stored in 12 monthly indexes to speed up indexing
and querying, while the indexes from previous years will be merged into one by reindexing
as we assume that the old data will need less frequent access.

4.1.1. Metadata Management

We use Geometa [70] which provides facilities to manipulate geographic metadata
defined with Open Geospatial Consoritum (OGC) ISO 19115 and 19139 eXxtensible Markup
Language (XML) standards, to create representations of geographic metadata using R
language, according the above standards, and write it in XML.

To ingest dataset’s metadata, we use the excel file designed by the collective project
“Banking the Data Together” (BED) in charge of the data management within the Zones
Ateliers network (RZA) (http://www.za-inee.org/en/node/804 (accessed on 1 December
2021)) and it enables the datasets ingest to respect the INSPIRE Directive [69]. RZA
belongs to International Long Term Ecological Research network (ILTER) (https://www.
ilter.network/ (accessed on 1 December 2021)) .

As mentioned above, metadata and data are visible at three levels: public, private
or embargoed.

• Open data: Anyone can access the metadata and associated data.
• Private: The metadata and data are only visible to members of the project. However,

they are findable but not clickable from the search bar. If a user wishes to obtain more
information, they should contact one of the metadata’s contacts.

• Embargo: Metadata is only visible to members of the project. It does not appear in a
search. By default, they become open-data after one year.

Visibility also depends on how the metadata is deposited. By web form, it is possible to
choose between these three modes, while by “drag and drop”, the games are automatically
open data.

The metadata fields used in the CEBA are derived from the INSPIRE standard, in ac-
cordance with the FAIR principle. Some fields are mandatory in order to be compliant with
the INSPIRE initiative (v1.3 currently) and to be as FAIR as possible in the first instance.
We have twelve fields to describe the metadata itself (eight are mandatory), nineteen fields

www.france-grilles.fr/home/
http://www.za-inee.org/en/node/804
https://www.ilter.network/
https://www.ilter.network/
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to describe the data (nine are mandatory), one mandatory field describing the quality of
the data, one mandatory field describing the license for redistribution and reuse, and two
optional fields describing access to the data. A contact (at least one author, one principal
investigator and one point of contact are required) is described by fourteen mandatory
fields. In terms of semantics, four fields can be used to semantically annotate the data. The
first three are mandatory and correspond to INSPIRE topics, INSPIRE themes and GEneral
Multilingual Environmental Thesaurus (GEMET) concepts that best describe the dataset.
The fourth allows the use of any other semantic resource such as a controlled vocabulary,
taxonomy, thesaurus or ontology (as long as the concept name and a Uniform Resource
Identifier (URI) describing it are available).

Some optional fields are strongly recommended (such as geographic information and
online access by URI to data) to be as FAIR as possible.

4.1.2. Data Catalog

To make the available data visible and accessible, one solution is to use a data catalog
that allows users to explore and understand their content through metadata. The goal is to
store and redistribute data and metadata while respecting the FAIR principle (Findable,
Accessible, Interoperable, Reusable).

After a comparison of several data catalogs (Dataverse https://dataverse.org/ (ac-
cessed on 1 December 2021), Ckan https://ckan.org/ (accessed on 1 December 2021),
Zenodo https://zenodo.org/) (accessed on 1 December 2021), we chose GeoNetwork
https://geonetwork-opensource.org/ (accessed on 1 December 2021), because it provides:

• The management of spatial, vector and grid referenced resources.
• Powerful editing and search functions for ISO 19115 or 19139 geographic standard.
• The management of metadata on reports or articles, with online access to digitized

resources (e.g., Portable Document Format or via Digital Object Identifier (DOI)).
• Multilingual metadata editing, validation system (e.g., for INSPIRE recommendation)

and geopublishing of layers in OGC services (e.g., GeoServer) exist.
• Harvesting from many sources, including: OGC Catalogue Services for the Web (CSW)

2.0.2 ISO profile, Open Archives Initiative Protocol for Metadata Harvesting (OAI-
PMH) (http://www.openarchives.org/pmh/ (accessed on 1 December 2021)) , Z39.50
protocols, web-accessible folders, ESRI GeoPortal and other GeoNetwork nodes.

Furthermore, it is currently used in many Spatial Data Infrastructure initiatives around
the world, for example the ISRIC soil datahub (https://data.isric.org/geonetwork/srv/
eng/catalog.search#/home (accessed on 1 December 2021)) or the FAO GeoNetwork
(https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home (accessed on
1 December 2021)) .

This choice was confirmed after exchanges with the Centre Régional Auvergne-
Rhône-Alpes de l’Information Géographique (https://www.craig.fr/ (accessed on 1
December 2021)) .

The current production version in our infrastructure is the 3.8.1.0 version on a dedi-
cated server.

4.2. Ingesting the Data

Data ingestion is the process of importing data from sources outside the system and
storing it.

For the sake of an instantaneous data visualization and to manage the different possi-
ble use cases, an ingestion multi-pipeline near real-time architecture has been designed in
a generic way (see Figure 4). This pipeline is capable of handling data inputs of various
sources: files, databases and data flow. For data coming from sensor network deployments,
ingestion can be achieved by reading files created daily and fed continuously throughout
the day. On the technical side, once the data file is created or updated with a new mea-
sure, a lightweight shipper, called Filebeat [64], forwards data to a data collector called
Logstash [64]. This tool acts as a data streaming pipeline, that is, an Input–Filter–Output

https://dataverse.org/
https://ckan.org/
https://zenodo.org/
https://geonetwork-opensource.org/
http://www.openarchives.org/pmh/
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home
https://www.craig.fr/
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process that can ingest a multitude of data sources (Input), clean and enrich each event
with some relevant information (Filter) and route data into the data lake (Output).

The routing of each measurement to the right storage location is conducted at indexing
using an index naming convention in which the name of the experiment, the name of the
node and finally the date of the measurement are used. This way, variables can be easily
isolated and queried to generate time series.

Figure 4. Schematic representation of generic ingestion pipeline.

This strategy offers the dual advantage of storing and retaining raw data through files
and presenting it to the user in real-time through indexing.

Filebeat is a robust tool with capabilities to stop and resume data transmission in
the event of a network failure and can slow down transmission in the event of ingestion
problems with Logstash. Logstash, on the other hand, has data resilience capabilities
through persistent queues that protect against data loss by storing each line of incoming
data in an internal queue on disk. Together, these tools provide reliable, near real-time data
management. Interestingly, it provides a visualization of the data allowing, for example,
immediate verification of the installation of a sensor or node in situ.

Ingestion can also be performed using sources such as databases using a Java DataBase
Connectivity plugin from Logstash, while Filebeat is able to ingest Message Queuing
Telemetry Transport (MQTT) streams [71].

4.3. Storing the Data: Database

PostgreSQL is an opensource Database Management System (DBMS) versatile that
allows to store a large number of different datatypes, frequently updated and has a very
active community. It offers powerful tools (such as replication), being able to manage
JSON data. However, as a relational DBMS, it lacks functionalities provided by NoSQL
DBMSs to work on unstructured data. In addition, Postgres has multiple extensions such
as Postgis [72] to handle and to query geographic data. The first paragraph details the
database design, then we explain how dataflows are ingested in the database. Then the
proposed database schema is given, on which we then detail the data enrichment process,
the stored queries and the data safety.

4.3.1. Database Design

The sensor database is structured around the associated sensor networks. Several
schemas have been set up according to the structure of data received. We currently have
two schemas: one for delimited files and one for ConnecSens network with JSON files.
Since JSON is the chosen format for IoT data management in our platform, so it is in our
database. It is thus sometimes necessary to transform raw data files into JSON files.

Within PostgreSQL, JSON and JavaScript Objet Notation Binaries (JSONB) are avail-
able to store the raw JSON data. We chose JSONB which currently has more query and
comparison tools than JSON. JSONB combines the flexibility of NoSQL solution with the
querying power of Relational Database Management System (direct query of the JSON
attributes contained, such as listing values or listing keys, comparisons, selection between
2 dates . . . ). However, inserting JSONB into a database takes a little bit longer than inserting
JSON due to the conversion. It is also possible to create indexes on attributes of a JSONB
row which improve the speed of repetitive queries. Between Binary Tree (BTREE), HASH
and Generalized Inverted Index (GIN) index types we have chosen BTREE because it
is the most commonly used index in relational databases and the lightest, comparison
operations are faster when associated with a key-value pair, unlike the HASH index which
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is more rigid. We may move towards GIN indexes if the queries to be provided become
more complex as it is heavier but offers additional search and comparison operators in
JSON, as well as speeding up searches such as a classical index. Using JSONB has other
advantages because, unlike traditional JSON which stores its data in plain text, JSONB
stores the data in a decomposed binary form. This makes query processing more efficient
and faster.

As each sensor network sends JSON lines configured differently, each schema has its
own indexes.

4.3.2. Database Ingestion

Forgetting the authentication steps, all the data coming from sensor networks reach
on our storage servers located at the Mesocentre in Clermont-Ferrand, and are inserted into
the database via a daily running script to insure that the data stored into the database is
correct (see Figure 5).

If the data received is not in JSON, another script transforms it. Once the data is in the
database, it is then possible to query it from the web site by the CEBA users.

Figure 5. Dataflow for sensors database ingestion.

4.3.3. Database Schema

As the data we received are schemaless, we have designed the database in a generic
way, in order to be able to store, isolate and query easily any sensor network. We have
chosen to use PostgreSQL schema to represent a type of sensor network (Figure 6). Within
a schema, we find sensor networks having this same type. Actually, we are managing
semi-structured JSON format and delimited files. In order to distinguish them, we give
them an application name ($APPNAME). Each deployed sensor network then has its own
storage table. It is possible to have as many tables as we want within a schema. As sensors
networks can be modified during the time, we can follow all the changes this way, as a
new table can be added whenever it is needed to not mixed data coming from various
deployments. In order to insure data management, the file name and the insertion date
are stored (see table Json_file in Figure 6). With this information, it is possible to quickly
identify data transmission or data corruption problems.
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Figure 6. Schema of the database.

4.3.4. Data Enrichment

Sometimes, sensor networks do not return enough information to be properly queried.
In this case, complementary information tables are filled with additional data such as GPS
coordinates (in case of static deployment), the list of sensors or the list of measurement
types. This allows to enrich the data inserted in the database during the retrieval and to
allow a more efficient querying. For example, a network of sensors is linked to a buoy on
the Lake of Aydat, autonomous in energy. This system sends very small delimited files with
no header by text message, without GPS coordinates (GPS WSG84 latitude and longitude)
or information on the type of data recovered or the unit. We have then automated two
tasks for this network: transforming the received files into .json files before inserting them
into the database, as well as enriching the information during this same transformation
with sensors names, units and GPS coordinates. This is conducted by using rows of tables
Schema_jsonfields, Schema_sensors and Field_descriptors in Figure 7.
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Figure 7. Converting and enrichment flow.

4.3.5. Stored Queries

For the user side on the web site, stored queries have been designed and implemented
on the database server side. These queries are “generic” ones, as they can query any JSONB
content of any sensor network (as the database structure has been design to enable this).
However, the number of fields returned differs depending on which has been transmitted.
As a result, more accurate and powerful queries have been implemented for ConnecSens’
sensor networks since the network returns a lot of information.

For example, Figure 8 shows a query to display the evolution of the number of frames
per node (DevEUI) per day, for a specific $APPNAME.

Figure 8. Stored query example.

The “-»” sign allows one to access a specific key in the JSON and to obtain values. It is
possible to cast its type or to perform tests on the value, such as any PostgreSQL attribute.
To understand this request, here is some information on how a JSON file is generated from
a ConnecSens sensor network. Each JSON line contains a “DevEUI” key. Counting this key
is a way to count every frame sent. Then, casting the “ServerTimestampUTC” key to the
date format allows one to obtain only the date without the time.

Such a simple request has two types of exploitation: a technical exploitation because it
allows the rapid identification of transmission or power supply problems, and a scientific
exploitation because if the transmission is linked to a particular expected event, it can allow
the rapid detection of the appearance of a phenomenon to be studied.

4.3.6. Data Safety

Several types of data backup are performed. The Postgres database, which includes
data from the website and sensor network, is replicated in real-time on a second server,
which identically reproduces the transactions that take place on the main server. The entire
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server is backed up every day in order to be able to perform full restorations. Finally,
the data of the sensor network database and the structure of the tables are exported and
archived in the S3 every week.

4.4. Storing the Datafiles: S3

To store the datafiles within the CEBA, we use a local session of an S3 provided by the
Mesocentre. On the backup side, the data deposited in a bucket is replicated three times.

We have chosen S3 as it is a solid storage solution because:

• It is scalable because there is no fixed limit in terms of storage capacity or data transfer.
• The versioning function allows one to store several versions of the same object in the

same Bucket.
• It is secure thanks to the numerous encryption and data management functions. On the

server side, encryption can be performed with three key management options and
client side encryption.

• Due to its low latency and high throughput, S3 Standard is suitable for dynamic
websites, content distribution and Big Data analysis.

4.5. Accessing the Data

Allowing different users to deposit, discover, access, visualize, extract and query data
are part of the functionalities that a data lake must offer (see Section 2), while guaranteeing
a sufficient level of security. The design of the corresponding tools and services must also
ensure a scientific exploitation of the data by their producers while ensuring a sufficient
level of description via metadata to allow scientific discovery and reuse of the data.

To this end, we have designed a single entry point for the user in the form of a website,
and a real-time consultation service for sensor network data using the Grafana tool. These
two access points are interconnected, secure, and provide access to all data, regardless of
format and storage.

We will now detail the proposed website in terms of its operation and design. Then
we will describe the configurations made on Grafana to ensure the real-time visualization
of the sensor network data.

4.5.1. Web Site

In the following, we will first describe the design and security, the project-based
structuring of the data repository and management, the management of the metadata
repository and access, and finally the access to the sensor network data.

Symfony Update and Security

The website is developed with the Symfony framework (https://symfony.com/ (ac-
cessed on 1 December 2021)) version 4.4; this version is checking security patches until
November 2023. Moreover, the updates of the framework are made fluid thanks to the
notion of “future compatible”. In terms of security, Symfony provides many tools to secure
the application: secure session cookies by default in Hypertext Transfer Protocol (HTTP),
Cross-Site Request Forgery (CSRF) protection.

Testing

To perform tests, we used standard tools such as the PHPUnit framework (https:
//phpunit.de/ (accessed on 1 December 2021)) for unit tests and also OWASP Zed Attack
Proxy (https://owasp.org/www-project-zap/ (accessed on 1 December 2021)) to test the
software security.

Deployment

In order to easily deploy and maintain the CEBA web solution, some parts of the
CEBA such as R server are docked using Docker (see Figure 2) and the source code of the

https://symfony.com/
https://phpunit.de/
https://phpunit.de/
https://owasp.org/www-project-zap/


Sensors 2022, 22, 2733 16 of 26

website is stored, backed up and versioned thanks to the code management software “Git”
on a dedicated space of the university.

Security Aspects

We have used the Fédération Éducation-Recherche (a service provided by Groupement
d’Intérêt Public RENATER (https://www.renater.fr/ (accessed on 1 December 2021)) to
enable a trusted connection to our website in order to foster nationwide collaborations.
At first, we installed and configured the Shibboleth software (https://www.shibboleth.
net/ (accessed on 1 December 2021)) to connect the CEBA website to the federation of
authentication authorities. As no version of Shibboleth was implemented with the version
of the Symfony Framework we used, we then developed and validated the interconnection
of these services. If the user is not a member of a trusted organization, we can create a local
account. Examples of local accounts are the Chamber of Agriculture or private partners.

Users Management

The CEBA site offers three levels of roles for users: “super administrator” reserved
only for CEBA computer specialists, “administrator” to manage projects and “user” to
allow connection but has no rights by default. Unlike public access, the “user” role allows
you to be included in a project and to have full access to the associated resources.

Project Structure

The steering committee asked for the website to be structured structured around the
notion of “project”. This notion has been broken down into two levels: structuring and
standard. A project can be “structuring”, i.e., it can contain other projects or not.

A project is defined by a name, a status, a funding, a creation date, a supporting
organization, a website (by default the organization’s website), whether it is of a Connec-
Sens nature or not, an image, a summary, a description, a project owner, affiliated users
or a geographical site, whether it is structuring or not. A project is created by a user with
the administrator role. A project contains the following headings: experiment, site, sensor
network and dataset.

An experiment is characterized by an instrument, a study object and a method in a
project and can be linked to several sites.

A site is a geographic location defined by a longitude, latitude and a name to identify
the location of the project.

Sensor networks of any type can be connected to the project (see Sections 4.2, 4.3 and 4.5.2
for more details).

Finally, datasets can be created in two ways: by form (unitary deposit), or by “drag
and drop” from a tabular file to the INSPIRE standard (dataset deposit) Section 4.1.1. In
order to properly manage the life cycle of metadata and data, it is possible to restrict the
visibility of a dataset by applying a “public”, “private” or “embargoed” status. The dataset
file can be downloaded in XML format. Once the dataset is created on the CEBA, a data
file can be uploaded in any format with a limit of three gigabytes and associated with the
dataset. It is stored on the S3 Mesocentre. A web feature checks that the data file names
are unique to avoid accidentally overwriting an old file. Deleting a data file on the website
implies a permanent deletion on the S3.

Project Management Rights

It is possible to distribute the authorizations to edit the different parts of the project
between the users affiliated (user role) to a project. A user can be assigned from zero to
several permissions by the project owner to manage (Create, Edit, Delete) the associated
part of the project. Five categories have been created: project management, sensor network
management, create an experiment, declare a site, declare datasets.

The Project Management permission (grant the same rights as project administrator
on the project data) allows one to edit a project, manage all the metadata related to the

https://www.renater.fr/
https://www.shibboleth.net/
https://www.shibboleth.net/


Sensors 2022, 22, 2733 17 of 26

project, manage the sensor networks and give rights to the project users. The Manage
Sensor Network permission allows one to connect a sensor network to the project. The
Create Experiment permission allows one to add experiments to the project. The Declare
Site permission allows one to add a geographic site already entered in the CEBA to the
project. The Declare Datasets permission allows one to deposit datasets into the project and
manage them by modifying or deleting them.

All user permissions in a project are summarized in a table located in the project and
visible only to the project owner or administrator.

Data Catalog Flows

For security reasons, the data catalog is not publicly exposed. The website and
GeoNetwork communicate (see Figure 9) with two technologies: Representational State
Transfer (REST) API provided by Geonetwork, CSW protocol. The REST API allows us to
view/delete datasets from our website for the queries that do not require an extraction or
an XML file. The second one, the CSW protocol, allows to expose catalog records via HTTP.

Figure 9. Flows between website and data catalog.

We are now going to detail the creation, edition deletion and visualization of a dataset.
To deposit and therefore create a dataset from the website, all the variables of the form

(web or excel) are retrieved and two Comma-separated values (CSV) files are created. The
first one contains all the metadata information while the second one contains the contact
information (by drag and drop, the information is already in CSV format). These CSVs are
injected into our processing chain consisting of an R tool called Geometa [70] which creates
an XML from the two tabular files, using the ISO 19115 standard. Then the XML is sent via
the CSW 2.0 protocol to the GeoNetwork. Once the process is finished, the status of the
operation is retrieved to know if there was an error or not and to display the result.

To edit a dataset, a request via the REST API is used to retrieve the metadata record of
the dataset, then the previous processing chain is used. It is possible to add data files to
the form, which are saved on the S3 in buckets dedicated to the project where the dataset
is located.

The dataset deletion is also performed by request with the REST API according to the
same principle. All the resources (form and associated data files) are then deleted.

The REST API can be used to obtain the desired form in ISO 19115 XML format, which
is then displayed on the website.
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Searching into the Metadata

As requested by the steering committee, the CEBA website has a metadata search func-
tion powered by a search bar. Currently based on an Structured Query Language query, it
returns open data datasets (ignoring embargoed datasets, and private datasets are returned
but remain inaccessible) by searching multiple fields (title, abstract, gemet_keywords, IN-
SPIRE_keywords, other_keywords, and lineage). In the future, we plan to improve our
search capabilities by dedicating a web page and an API to search the index. In addition, it
will be possible to search by date, area (geographic query), resource type, status, format
and representation type, such as sensor network data.

Sensor Network Access

From the website, depending on the richness of the data transmitted (at least “what”,
“when”, “where” in a native or enriched way), it is possible to execute temporal or spatial
queries, or even complete extractions of more or less complete raw data downloadable in
json or CSV format (see Section 4.3).

The user will be able, according to his rights in the CEBA and in the project, to access
the Grafana interface to consult the data in real-time on the Grafana dashboards (see
Section 4.5.2).

4.5.2. Grafana

Data visualization is conducted through time series generated by queries on quantities
(variables). From the CEBA side, we only provide a data source with which users (scientists
and IT) can design their own dashboard. It is striking to note that the simplicity of the
queries allows all users to create their own graphs. The secure access through the use of a
personal account and the Hypertext Transfer Protocol Secure protocol allows to isolate the
data, i.e., to provide each user with access only to the data he/she needs and is authorized to
access. This is possible thanks to the combined use of group and organization with the data
source in Grafana. An interesting point is the ability to create data sources for particular
events by reindexing existing data reduced to defined variables, time interval or material.
This reindexed source can then be deleted once the event is over. Finally, although focused
on the real-time aspect, dashboards can also be used for more sophisticated queries, such
as cross-referencing or historical data. In this case, these charts retrieve data from sources
built on PostgreSQL databases.

5. CEBA in Action

In this section, the use of the CEBA for several projects is shown, and some numbers
of CEBA data hosting are given.

5.1. Etna Use Case

The Laboratoire de Physique de Clermont (LPC) and the Laboratoire Magmas et
Volcans (LMV) of the University of Clermont Auvergne have led a scientific project to
continuously monitor atmospheric radon on Etna in 2019. In parallel with the development
of new radon probes, they used the ConnecSens project technology to deploy a network of
sensors. Prior to on-site deployment, autonomy and data transfer were tested to validate
the design and configure data transmission. The CEBA was involved in this step to find
the right ratio between energy consumption, management and data analysis. During
the deployment on Etna, the CEBA was very helpful as people on the volcano were able
to check the data transmitted in real-time on their smartphones, and thus validated the
deployment and configuration of the wireless network within a week. Since 2019, in parallel
with the different deployments and with the addition of new sensors, the collected data are
stored in the CEBA. For project users, real-time data is displayed and accessible via grafana,
and data can be queried from the website (see Figure 10). Monitoring the wireless network
is also very useful because it allows the IT staff to verify that it is functioning properly and
to prepare upgrade and repair tasks for the next mission on Etna. In this case, the CEBA
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was the key technology point that enabled real-time aerial radon monitoring on Etna for
the first time [68].

Figure 10. Extract of the dashboard of weather station at Mt. Etna (courtesy of LPC and LMV).

5.2. ZATU Use Case

The CEBA can be used to share, make visible and store the analysis and results
obtained by a science project. ZATU has been a member of the French LTSER network
(Réseau des Zones-Ateliers) since January 2015, and this long-term socio-ecological research
observatory studies the relationships between ecology, society and radioactivity. The ZATU
LTER observatory is located in a geographic area northeast of Clermont-Ferrand on the
border of the Limagne Valley and the Bourbonnais Mountains in France. The members
are from twenty-two laboratories or institutes, producing numerous data from sampling,
analysis, models and results on soil, air and water. The data come from the three main
themes focused on humanities and social sciences, radio- and geochemistry, and biology
and ecology, respectively. ZATU uses the CEBA for two primary purposes: data repository
and dataset catalog. ZATU users share the data they are working on through the data
catalog and storage features. ZATU data managers have created several datasets, to which
they are currently adding the datafiles to be shared. This makes the data produced by
the members and the projects around the ZATU visible, accessible, and findable. One of
ZATU’s projects was to design a stand-alone wireless radon sensor. In order to test the
quality of measurements, data transmission and autonomy, one of these systems has been
deployed on the university campus and is currently sending data. The CEBA assisted in
the discussions and validation of the prototype designed in collaboration with a company.
In early 2022, the observatory will be equipped with several wireless sensor networks
measuring many variables such as radon in the air, water level and flow, and weather that
will be uploaded and stored in the CEBA.

5.3. Aydat Monitoring

Aydat lake, located in the French Massif Central, has a total area of 60 hectares, a small
watershed of around 16.8 hectares and a maximum depth of 15 m. It is a eutrophic lake with
recurrent proliferation of cyanobacteria. This lake belongs to the “Observatoire des Lacs”
(OLA) network which contributes largely to research on lake ecosystems in France. The
research programs concern the global understanding of the hydro-ecological processes of
the lake in order to better predict its responses to current and future changes, with the aim
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of monitoring and reducing the proliferation of cyanobacteria (which has a great impact on
the local economy, on the functioning of ecosystems and reduces biodiversity). Three main
types of sensors systems are deployed on the lake (one HYDROLAB HL7 multiparameter
sonde, three Aquatroll 200 data logger, eight HOBO temperature data loggers) with different
transmission technologies (LoRa using ConnecSens technology with a gateway connected
to the internet for Aquatroll, Short Message Service for HYDROLAB HL7 and Bluetooth for
HOBO data loggers) sending at least datapoint hourly, each managed by different projects.
HYDROLAB HL7 multiparameter sonde comprises eight sensors (a conductivity sensor,
Hach LDO® Dissolved Oxygen Sensor, temperature sensor, turbidity Sensor, chlorophyll-a
sensor, blue and green algae sensor, rhodamine sensor, and finally a pressure sensor for
water depth measurement). For the Aquatroll, the water level measurement is based
on a piezoresistive sensor whereas the water temperature and the specific conductivity,
the salinity and the total dissolved solids (TDS) is monitored using a balanced 4-electrode
cell. The HOBO data loggers record temperature with high-frequency acquisition (i.e.,
5 min). The Aquatroll and HYDROLAB HL7 systems are currently sending their data
hourly to the CEBA, and reference datasets have been created by the projects around
this observatory.

The CEBA allows all partners to access all data produced (in real-time, on historical
data and on analysis).

For data visualization, dedicated interfaces have been built for each data collection
project (see Figure 11 for example). A project can range from a group of sensors in the same
area or in different areas to a specific monitoring site.

These interfaces allow to compare the measurements of several nodes equipped with
the same sensors. This makes it possible to compare different areas or experimental deploy-
ment conditions (using a graph for a quick overview or a table for a more complete analysis).

We also demonstrated that by using the features of Elasticsearch and Grafana explained
in Section 4.5.2 (notably with the ability to reindex), with the agreement of the owners,
the CEBA is able to give access to independent data sources (Elasticsearch indexes or
PostgreSql tables) to gather all the data produced on the same geographical site or on the
same theme (see Figure 12).

Figure 11. Extract of the dashboard of one system—courtesy of Aydat Observatory.
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Figure 12. Extract of the dashboard of multiple independent sources—courtesy of Aydat Observatory.

5.4. CEBA in Numbers

Eleven projects are hosted by CEBA website, but several projects are under construc-
tion. Nine wireless sensor networks are sending data, some for more than three years,
for around five millions records in the database and more than four millions in the elastic
cluster. All these records weight from 3 GB to 5 GB in the database and in the elastic cluster,
respectively. More details are given in Tables 1 and 2. The number of records has increased
from a factor of 4.5 between 2020 and 2021. In the same time, the indexing duration has
been kept good going from 0.9 ms in 2020 to 1.5 ms in 2021. The query duration is 0.3 ms
for the current use. These figures must be taken with care because they take into account
the various evolutions carried out on the cluster such as the limitation to one year of hot
data in the indexes is conducted to optimize the performances.

Table 1. Table describing the number of records and the size in the database.

Project Records Size (in GB)

ConnecSens 3.0 M 3.8
Aydat 0.4 M 0.6
Etna 0.7 M 0.8

ZATU 0.3 M 0.3
Total >5 M >6

Table 2. Table describing the number of records and the size in elastic cluster.

Project Records Indexe Size (in GB) Indexes

ConnecSens 2.4 M 2.2 302
Aydat 0.7 M 0.7 62
Etna 0.6 M 0.56 78

ZATU 0.4 M 0.4 37
Total >4.5 M 3 >500
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6. Conclusions

This paper presents proposals and operational responses to a set of requirements
arising from the CEBA project, which led to the design and implementation of an epony-
mous platform.

The first requirement is to manage geographic coordinates throughout the data man-
agement process, from ingestion to visualization and querying. This has been achieved
by implementing various elements such as a catalog to manage spatially referenced re-
sources with Geonetwork, a database storing geographically extended data in JSONB using
PostgreSQL and the PostGIS extension. Data enrichment during ingestion, when GPS
coordinates cannot be transmitted, is performed both in the database and in the indexing
pipeline. This allows hot and cold data to be queried in the database and index with almost
the same complexity as geographic queries. From a normative point of view, the ISO 19115
and 19139 standards are managed and the INSPIRE directive is used, to be compatible with
other infrastructures.

Secondly, the “what, where, when” information was needed. For this purpose, the cor-
responding metadata are managed in all components of the platform and can be queried,
allowing data and datasets to be found using this information.

Third, to manage the ingestion of any kind of data stream from IoT networks, we
proposed and designed an ingestion pipeline based on the Elastic Stack. This pipeline feeds
an Elasticsearch cluster providing near real-time data access, which in our experience has
proven to be scalable and responsive to the increasing amount of data.

Fourth, the entire storage and indexing infrastructure was designed in JSON to facil-
itate data querying and enriching (especially from sensor networks). This functionality
allowed data that would normally be isolated from each other to be retrieved and queried
on demand.

Finally, in terms of additional functionality, we proposed and designed a unique data
management system in the form of a website that allows data to be uploaded, downloaded,
queried and viewed. It also allows for the creation and management of datasets for which
data files can be deposited. Users can thus use a single tool for open data purposes and for
managing the data produced by scientific projects with secured access.

This reliability of the CEBA platform has been validated by several projects such as
the monitoring of radon in the air on Mt Etna [68], the global monitoring of Aydat Lake
and some new collaborations with industry. CEBA also hosts the datasets and data files of
long-term research infrastructures and their projects, such as the ZATU workshop.

Currently only available in French, an English option will be added in the next version
of the web site.

In order to improve the query and analysis capabilities of the CEBA, which are
currently quite limited and to reach a level similar to that of data warehouses, research is
underway [73] to build a query engine on top of the CEBA (with Elastic Stack or Apache
Spark SQL [74]). The focus will be on spatial queries with time series criteria. In order to
be able to tackle the IoT network at higher speeds, we are testing other stream processing
platforms such as Apache Kafka [75] and Apache Spark.
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DBMS Database Management System
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HTTP Hypertext Transfert Protocol
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INSPIRE Infrastructure for Spatial Information in the European Community
IoT Internet of Things
IT Information technology
JSON JavaScript Objet Notation
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