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Abstract: Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which
may lead to wrong interpretation in the brain–computer interface (BCI) system as well as in various
medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting
the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for
the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local
means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier.
Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a
modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients
through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used
in this paper for the first time. The proposed system is first validated on simulated EEG data and
then tested on real EEG data. The proposed approach achieved average mutual information (MI) as
2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently
developed denoising techniques with higher average MI, which indicates that the proposed approach
is better in terms of quality of reconstruction and is fully automatic.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); electromyogram (EMG);
modified non-local means filter (NLM); muscle artifacts

1. Introduction

Brain–computer interface (BCI) is a collaborative setup between the human brain
and a computer device, which takes brain signals as input and tries to decode them into
computer commands to direct external activities such as cursor control, wheelchair control,
and silent-speech recognition [1,2]. The electroencephalogram (EEG) is widely used as
a non-invasive way of measuring brain signals in BCI systems due to its high temporal
resolutions. It captures cerebral activities through electrodes placed over the scalp. EEG is
also used in diagnosing several neurological disorders such as Alzheimer’s and epileptic
seizures [3]. Generally, BCI records the brain activities, pre-processes them to extract
features from the data and finally classifies them for identifying mental states [4]. Therefore,
analyzing the information contained in the EEG is of great importance. Although EEG is
intended to record cerebral activities in the form of electrical pulses, it also captures electrical
activities other than the cerebral activities, known as artifacts. EEG signals are widely
contaminated with different types of artifact sources such as cardiogenic (ECG), ocular
(EOG), and myogenic (EMG). These artifacts suppress the information contained in the
EEG signal and lead to wrong interpretation of BCI systems and medical diagnosis. Hence,
the elimination of artifacts from the EEG signal is of great importance for practical uses.

Sensors 2022, 22, 2948. https://doi.org/10.3390/s22082948 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082948
https://doi.org/10.3390/s22082948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7122-2095
https://orcid.org/0000-0002-8045-0137
https://orcid.org/0000-0002-5165-1773
https://doi.org/10.3390/s22082948
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082948?type=check_update&version=2


Sensors 2022, 22, 2948 2 of 21

The elimination of EMG artifacts from an EEG is more challenging as compared to
removing other types of artifacts from an EEG signal. Generally, the EMG artifacts occur
in EEG signals due to various muscle movements near the head. Various muscle move-
ments such as teeth clenching, swallowing, head movement, chewing, jaw movement, and
tongue movement are also captured through electrodes and contaminate the EEG signals
with higher amplitude, broad anatomical distribution, and wide frequency spectrum [5].
Specifically, the EMG has a wide spectral band and broad spatial distribution [6]. The
power-frequency spectrum of EMG artifacts ranges from 2 Hz to 100 Hz [6]. Their wide
spectrum easily overlaps with the frequencies of interest of the EEG. Because of the influ-
ence of both the volume conduction and the broad distribution of muscles across the face,
neck, and head, it can be observed anywhere on the scalp.

In contrast, the spatial distribution of ECG and EOG are comparatively localized. EMG
artifacts occur from the movement of spatially distributed and functionally independent
muscle groups with distinct topographic and spectral signatures [7]. The spectral signatures
may vary across different muscles and also with the intensity of muscle contraction. In
addition, ECG and EOG artifacts can be removed with the help of a reference channel, while
it is difficult to remove EMG artifacts by using reference channels. Due to the complex
muscle distribution, the placement of reference electrode for EMG artifact removal is very
difficult [7] in a practical situation. Hence, it is challenging to remove EMG artifacts without
using any reference channels.

Numerous techniques have been proposed in the literature to overcome these difficulties
of EMG removal from EEG. In early research, approaches based on blind source separation
(BSS) were explored for the automatic removal of EMG artifacts from multichannel EEG [8].
The authors in [9–11] showed that independent component analysis (ICA) resulted in a good
performance for removing EMG artifacts from the multichannel EEG data. Janani et al. [12]
showed that canonical correlation analysis (CCA) outperformed the ICA to eliminate EMG
from EEG successfully. Chen et al. [13] proved that independent vector analysis (IVA) could
successfully denoise the EEG signal from EMG. However, BSS-based denoising techniques
assume that the number of concerned sources is equal to or less than the number of chan-
nels. In this case, BSS can also be implemented for single-channel EEG data [14], where
single-channel EEG data was at first decomposed with some decomposition techniques.
Then artifactual components from the results of decomposition are used for BSS processing.

However, the recent trend in mobile healthcare applications has led to the reduction in
the number of EEG channels for health monitoring, and in some cases only a single channel
is used [15]. In such applications, BSS may not perform well. To overcome this issue, several
attempts based on the decomposition techniques have been proposed to remove EMG
artifacts from a few channels and single-channel EEG data. Fitzgibbon et al. [16] removed
EMG artifacts from central channels through the surface Laplacian transform (SLT). They
stated that brain activities captured through central channels are affected only by a group
of nonadjacent muscles as there is no muscle under the center of the scalp [16] and SLT
performed well in removing muscle contamination of scalp signals. However, the neuronal
activities from other channels are affected by both the adjacent and the distant group of
muscles. Yong et al. [17] removed EMG artifacts from both the non-central and distant
channels through morphological component analysis (MCA) by assuming that the EEG
recordings are a linear combination of neuronal activities, artifacts, and electronic noise.
However, as the EEG and EMG have non-stationary morphology, the performance of the
MCA is not always satisfactory with the chosen dictionaries in MCA. Further, the above-
mentioned decomposition techniques are not fully data-driven, which make them unfit for
automatic and online applications. Bhardwaj et al. [18] proposed wavelet-transform-based
EMG artifact removal. Multiscale principal component analysis (MSPCA) is another effec-
tive hybrid denoising technique for EMG artifacts correction, in which PCA is combined
with multiscale wavelet transform [19–21]. Wavelets separate stochastic and determinis-
tic processes and approximately uncorrelated the autocorrelation between calculations,
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whereas PCA offers interactions between distinct variables. The wavelet transform is an
ideal approach for EEG signal analysis due to its multi-resolution characteristics.

In recent years, several hybrid methods [12,22–32] have been proposed to overcome
the difficulties of individual techniques for the removal of EMG artifacts from the EEG
data, and their summary is shown in Table 1. It is observed from the table that EMD-based
methods have been widely used for EMG artifacts correction. However, these methods
ignore significant cross-channel interdependence information and consider the dependent
information between spatially adjacent channels for the source separation procedure [33].
On the other hand, EMD-based techniques perform well on few channel EEG data com-
pared to the single-channel EEG data, whereas wavelet-based techniques perform well
on single-channel EEG data. The main idea of wavelet-based techniques is to threshold
the wavelet coefficients to remove the artifacts from the signal. To threshold the wavelet
coefficients, several thresholding techniques such as statistical threshold and universal
threshold calculations are widely used. However, Phadikar et al. [34] showed that these
threshold functions may vary with the data, which makes the system unfit for automatic
and online implementation. Recently, Bajaj et al. [35] proposed a tuneable artifact removal
technique based on wavelet packet decomposition (WPD). Their denoising method auto-
matically removes EMG artifacts from the corrupted EEG signal. However, the challenge
associated with wavelet analysis remains in the selection of proper wavelet function and
decomposition level.

Table 1. Comparison of recently developed hybrid techniques for the removal of EMG artifacts from
the EEG data.

Author(s) Methodology
Requirement
of Reference

Channel

Prior
Knowledge Automatic Online

Can Perform
on Single
Channel

Mijovic et al. [22] EEMD-ICA 7 7 7 7 3

Sweeney et al. [23] EEMD-CCA 7 7 7 7 3

Chen et al. [24] EEMD-IVA 7 7 7 7 3

Chen et al. [25] EEMD-MCCA 7 7 7 7 3

Chen et al. [14] MEEMD-CCA 7 7 7 7 3

Zeng et al. [26] MEEMD-ICA 7 7 7 7 7

Chen et al. [27] MEMD-CCA 7 7 7 7 7

Xu et al. [28] MEMD-IVA 7 7 7 7 7

Maddirala et al. [29] SSA-ICA 7 7 7 7 3

Dora et al. [30] Adaptive SSA-NNR 3 3 3 7 3

Liu et al. [31] FMEMD-CCA 7 7 7 7 7

Li et al. [32] cICA 3 3 3 7 7

7—No, 3—Yes; EEMD—Ensemble Empirical Mode Decomposition, MCCA—Multiset Canonical Correlation
Analysis, MEEMD—Multivariate EEMD, SSA—Singular Spectrum Analysis, NNR—Neural Network Regressor,
FMEMD—Fast Multivariate Empirical Mode Decomposition, cICA—Constrained ICA.

Zhang et al. [36] proposed a convolutional neural network-based approach for the
removal of muscle artifacts from the EEG signals. However, their approach is limited to only
2 s of EEG epoch. A better configuration of CNN is needed for longer duration of EEG. More
recently, NLM filter-based methods were employed for the removal of EMG artifacts from
the EEG data. Earlier it was designed for image denoising [37]. Eltrass et al. [38] proposed
a hybrid method in which an NLM filter is combined with the multi-kernel normalized
least mean square with a coherence-based sparsification (MKNLMS-CS) algorithm for the
successful removal of the EMG artifacts from the EEG data.

While numerous methods have been studied for the elimination of EMG, developing
robust single or hybrid algorithms that can operate automatically is still very challenging. In
addition, most of the techniques are suitable for multi-channel EEG (performance degrades
for single-channel EEG), hence, developing an automatic EMG artifact removal technique
for single-channel EEG is still challenging. However, the combination of multiple cascading
algorithms is essentially an unexplored area. The significance of cascading algorithms is
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to suppress the artifacts in a single stage, which suppresses artifact sources and achieves
a higher degree of robustness. In this manuscript, a novel automatic cascaded system is
proposed in which wavelet transform is combined with the NLM filter for the elimination
of EMG artifacts from the EEG signals.

In the proposed work, an EMG-contaminated EEG signal is automatically identified
and decomposed into wavelet coefficients through WPD. Wavelet transform is used to
separate the EEG features into different scales so that significant features of the EEG signals
are preserved and noises can be removed. The mother wavelet and with an appropriate
decomposition level is selected through a proper procedure. It is to be noted that artifacts
will be reflected in the wavelet coefficients. Hence, correcting the corrupted wavelet
coefficients will result in denoising the EEG signal. In the proposed method, corrupted
wavelet coefficients are corrected through an optimized NLM algorithm. Finally, all the
corrected coefficients are used in the inverse operation to get back the original artifact-
free EEG signal. In this approach, no threshold calculation method is employed; instead,
wavelet coefficients are corrected through an NLM filter, which makes the system automatic
and fit for implementation in online applications. In addition, a modified NLM algorithm
is proposed, in which all the parameters of the algorithm are optimized in a proper way.
The proposed approach preserves the information of interest in the EEG signal, which is
reflected in higher average correlation coefficients (CC) and higher MI values. The main
contributions of the proposed denoising algorithm are stated as:

(1) The proposed algorithm employs the wavelet transform for its good time-frequency
localization and optimized NLM filter for better removal of wide frequency spectrum
EMG artifacts from the corrupted EEG signals.

(2) The main challenge in wavelet-transform-based denoising is the selection of appropri-
ate threshold values. Hence, instead of thresholding the wavelet coefficients, they are
corrected through NLM estimation.

(3) The issue of optimum parameter selection for the NLM is properly addressed with
the help of a meta-heuristic algorithm.

(4) Further, the proposed algorithm corrects only the EMG-corrupted portion of the EEG
and keeps the clean portion untouched. Hence, the proposed system preserves the
true information contained in the EEG signal.

The novelty of the proposed hybrid method in which SVM, WPD and NLM are
combined is described as below:

• SVM is one of the most efficient classifiers and hence was used in this work. Different
artifacts have different characteristics, for example, eyeblink artifacts contaminate the
EEG signals with 5 to 10 times’ larger amplitude than the normal EEG signals with
very low frequency (typically 0.1 to 3 Hz), and EMG artifacts contaminate the EEG
signals with higher amplitude and higher frequency components. Similarly, ECG
artifacts contaminate the EEG signals with periodic discharges. Moreover, we do not
know which EEG patterns are hidden in the artifact portions (there is no ground truth).
Hence, before removal of artifacts, it is necessary to identify which artifacts contami-
nate the EEG signals, because different artifacts have different characteristics and affect
the EEG signals distinctively. If the system does not have any prior knowledge about
the type of artifacts, then the system will be capable of denoising the EEG signals but
the true EEG pattern (or the original ground truth) will not be reconstructed properly.
Therefore, first the EEG signals corrupted with EMG artifacts are identified with SVM
as a classifier.

• The frequency of muscle artifacts overlaps with the frequency of interest of EEG
signals. Hence, removing those particular frequencies by making the relevant wavelet
coefficients zero will result in a significant loss of information. Therefore, at first EEG
signals are decomposed into wavelet coefficients using WPD to represent the different
frequency bands of EEG signals with respect to time. Note that designing an efficient
NLM-based filter for a very wide frequency band is very difficult. Thus, the corrupted
EEG signal is decomposed into different frequency bands at different levels in WPD
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so that efficient NLM filters can be designed for decomposed signals at different levels
for the effective removal (correction) of EMG artifacts.

• The optimization of parameters, especially the bandwidth parameter, λ of NLM
algorithm at different levels (set of λ), simultaneously is a challenging task, and meta-
heuristic algorithms are the most efficient ones in solving this type of problem. Hence,
one of the recently developed meta-heuristic algorithms, GWO, is used for the task.

The manuscript is organized as: Section 1 introduces the background, state-of-arts,
challenges, objectives, and notations and preliminaries used in this paper are described
in Table 2, Section 2 depicts the tools and ideas employed in this methodology, Section 3
states the proposed methodology, Section 4 depicts the outcome of the research, Section 5
discusses about the experiment, and Section 6 completes the manuscript by drawing
conclusions alongside the strategies for the future works.

Table 2. Notations and preliminaries.

Name Details

cAj(k) Approximation Coefficients at level j and instant k.
cDj(k) Detail Coefficients at level j and instant k.
x(t) or X Input EEG signal
Xˆ Reconstructed clean EEG signal
Y Simulated Corrupted EEG
y∗ Simulated clean EEG
h(k) Highpass Filter in Wavelet Packet Decomposition
g(k) Lowpass Filter in Wavelet Packet Decomposition
di,j Wavelet Coefficient at ith level and jth node.
d̂i,j Corrected wavelet coefficients
ε Reconstruction Error
Xrecon Reconstructed signal
SEj Normalized Shannon Entropy at level j
Ejk Wavelet Energy Spectrum at level j and instant k
ũ(s) Estimated version of the signal u
N(S) Search Neighbourhood
W(S, η) Weights corresponding to given sample S
λ Bandwidth Parameter
P Patch half-width
M Search neighbourhood half-width
∆ Patch
L∆ Number of samples contained in ∆

d2(s, t)
Squared-summation of the point-by-point difference
between patches

C-EEG Corrupted EEG signal
NC-EEG Non-corrupted EEG signal
P (,) Joint Probability Distribution Function
P ( ) Marginal Probability Distribution Function
SAR Signal to Artifact Ratio
W−1 Inverse WPD Function
µ Sample Mean
σ Standard Deviation
σX̂y∗ Cross-correlation of the zero mean data Xˆ and y*

2. Materials and Methods
2.1. Support Vector Machine (SVM)

The SVM is generally used as a classifier that competently categorizes the data using a
supervised machine learning algorithm [39]. It creates an optimal hyperplane using the
training data to classify the test data. The optimal hyperplane, also known as support
vector, creates a decision border from the nearby samples of different data. If the data are
linearly inseparable in their original finite dimensions, then they can be remapped into
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relatively higher dimensions using kernel tricks. For more details, readers may follow the
details described in [40,41].

2.2. Wavelet Packet Decomposition (WPD)

The wavelet transform decomposes the signals into approximation (cA) and detail (cD)
coefficients [42]—cD consists of high-frequency information about the signal, whereas cA
consists of low-frequency information. In DWT, after decomposing the signal into cA and
cD, only the cA is being decomposed for further higher-level decomposition. To cover
the shortage of fixed time-frequency decomposition in DWT, WPD was proposed as an
extension of DWT [43]. The WPD not only decomposes the cA but also cD simultaneously.
As a result, the WPD has the same frequency bandwidth in each resolution while DWT
does not.

For an EEG signal x(t), the WPD coefficients can be derived as shown in Equation (1) [43]:
d0,0(t) = x(t),

di,2j−1(t) =
√

2∑kh(k)di−1,j(2t− k),

di,2j(t) =
√

2∑kg(k)di−1,j(2t− k)

(1)

2.3. Wavelet Base and Decomposition Level Selection

In the wavelet-transform-based signal analysis, the selection of the appropriate mother
wavelet and decomposition level is a challenging task. Several mother wavelets are avail-
able in the wavelet family. The performance of the wavelet transform is affected by
individual wavelet functions. Because hit and trial approach is a time-consuming task,
the appropriate mother wavelet is selected according to the reconstruction error in this
paper. It is to be noted that when any transformation technique transforms a signal into
another domain, and again reconstructs the original signal through inverse operation, the
reconstruction error should be ideally zero. The wavelet function is selected that gives the
minimum reconstruction error. The reconstruction error (ε) is calculated from Equation (2):

ε =
√

MSE(X− Xrecon) (2)

The decomposition level is selected by calculating the Shannon entropy (non-normalized)
from the wavelet coefficients [44]. Non-normalized Shannon entropy is calculated as shown in
Equation (3):

SEj =

N

∑
K=1

Ejk log Ejk (3)

Ejk defines as:

EDjk =
∣∣cDj(k)

∣∣2 (4)

EAjk =
∣∣cAj(k)

∣∣2 (5)

Because most of the information in the wavelet-transformed signals are stored in the
approximation coefficients, the optimum level of decomposition is selected at which the
entropy of cA becomes less than that of cD.

2.4. Grey Wolf Optimization (GWO)

A swarm-based intelligent algorithm, GWO, was first proposed by Mirjalili et al. [45],
which is followed by the hunting strategy of grey wolves. GWO is a global search-based
optimizer that finds the optimum value through mimicking the hunting strategy of grey
wolves [46]. Wolves are grouped into four classes, for example: alpha, beta, delta, and
omega. Alpha is the strongest among the wolves and is followed by beta, delta, and omega.
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The hunting process follows three major steps: searching for prey, encircling the prey, and
finally attacking the prey. For more details readers may refer to [45].

2.5. NLM Algorithm

The goal of the NLM algorithm is to solve the issues with local smoothing filters
by computing the smoothed value as a weighted average of other values in the signal
based on the similarity of the neighborhoods [47]. The weights depend on the similarity
between blocks/patch. In the NLM algorithm, the similarity between two blocks (patches)
is measured in terms of similarity between their neighborhoods. However, employing the
NLM method for denoising of EEG signal is very challenging because of the non-stationary
characteristics of the EEG signals.

Let v be noisy observation, where, u is the original signal and n is the noise, then v is
expressed as in Equation (6):

v = u + n (6)

Then, the estimation ũ(s) for a given sample s is calculated by weighted sum of the
values at the other point η that are within N(s), where, N(s) is the “search neighbourhood”,
as described in Equations (7) and (8) [48].

ũ(s) =
1

Z(s) ∑
ηεN(s)

w(s, η)v(η) (7)

Z(s) = ∑η
w(s, η) (8)

And the weights w(s, η) are expressed as [48]:

w(s, η) = exp
(
−∑δε∆(v(s+δ)−v(η+δ))2

2L∆λ2

)
≡ exp

(
− d2(s,η)

2L∆λ2

) (9)

It is evident from Equation (9) that the NLM algorithm extracts the non-local informa-
tion contained in the data. Therefore, the similarity between non-local patches is exploited
in the NLM technique. It is to be noted that the weights depend upon the patch similarities
instead of the gap between them [48]. Hence, averaging over similar patches yields a better
estimation of the sample. Subsequently, the EEG signal is repetitive in nature and the NLM
algorithm may be considered an effective denoising technique.

In the NLM algorithm, estimation is achieved based on the selected similar patches.
The main challenge associated with NLM-based EEG denoising is the selection of appro-
priate filter parameters. There are three key parameters: bandwidth parameter (λ), search
neighbourhood half-width (M), and patch half-width (P) that need to be optimized for
a better estimation. The value of P determines the number of patches. The size of M
specifies the area of search, and hence, the larger size of M results in higher computational
complexity. Generally, M is limited to reduce the complexity of the system. Out of the
three parameters, selection of appropriate λ is more complicated. The level of the signal’s
smoothness is determined by the λ. A very small value leads to inadequate averaging,
while a very large number can induce signal blurring by causing dissimilar patches to look
like identical patches [49]. Generally, λ is calculated as 0.06σ, σ2 is the variance of noise and
equal to the 0.002 microvolts [49]. However, only the noisy signal is observed; it is more
complicated to estimate the standard deviation of the noise before applying any denoising
technique to the corrupted EEG signal. Defining a universal value of λ for EEG signal
analysis may be unrealistic as the artifacts that contaminate the EEG signals are not always
uniform. A modified NLM algorithm is proposed in this paper, in which the optimum
value of λ is selected through meta-heuristic algorithm.
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2.6. Performance Matrices

To validate and test the proposed method, following parameters are evaluated:

2.6.1. Mutual Information (MI)

The mutual information measures how much information is drawn from the original
corrupted EEG signal to reconstructed clean EEG signal [50]. MI is calculated as in Equation (10):

MI =
x ∞

−∞
P
(

X, Xˆ
)

log

(
P
(
X, Xˆ)

P(X)P(X )̂

)
dX dXˆ (10)

2.6.2. Average Correlation Coefficient (CC)

The average CC computes the degree of similarity between original clean EEG signal
and reconstructed clean EEG signal of same duration [50]. The average CC is calculated as
in Equation (11):

CC =
C
(
X ,̂ y∗

)√
C(y∗, y∗) ∗ C(X ,̂ X )̂

(11)

2.6.3. Structure Similarity Index (SSIM)

The SSIM calculates the similarity index between original clean EEG signal and recon-
structed clean EEG signal of same duration [50]. It is defined as in Equation (12):

SSIM =

(
2µXˆµy∗

µ2
Xˆ + µ2

y∗

)
×
(

2σXˆσy∗

σ2
Xˆ + σ2

y∗

)
×
(

σX̂y∗

σXˆσy∗

)
(12)

The SSIM and average CC are evaluated on simulated EEG data as the ground truth
is available. In the case of recorded real EEG dataset, the ground truth is unavailable,
and hence to determine how much information are preserved from corrupted EEG to
reconstructed clean EEG during denoising process, MI is evaluated.

3. Proposed Methodology

In this report, a novel hybrid technique for automatic recognition of EMG artifacts
and its subsequent elimination from EEG is proposed. The basic flowchart of the proposed
algorithm is shown in Figure 1. Initially the EEG data is recorded and subsequently
processed to remove the artifacts. The stages of the proposed model are as follow:

Step 1: The corrupted EEG (C-EEG) is identified and separated from the non-corrupted
EEG (NC-EEG) with the help of a pre-trained SVM.

Step 2: The corrupted EEG is decomposed into wavelet coefficients through WPD using
mother wavelet function up to level i (the mother wavelet and the decomposition
level are selected as described in Section 2.3).

Step 3: The wavelet coefficients are then corrected (estimated) through the weighted average
of the non-local patches using optimized NLM algorithm. The key parameter (λ) of
the NLM algorithm is optimized using meta-heuristic optimization technique.

Step 4: Finally, all the corrected wavelet coefficients are reconstructed using the inverse
operation to obtain the clean EEG signal.

The different steps of the proposed approach are elaborated in the subsequent section.
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3.1. Data Recording and Processing

Data were recorded from 40 subjects consisting of 26 male and 14 female students
(mean age: 21.5 years) to measure the stress of individuals [51]. Ethical clearance was
obtained from the institutional ethics committee and a consent from was signed by individ-
ual subjects. The subjects performed various recognition and arithmetic tasks that were
selected to elicit short-term stress in students while their EEG was being recorded. The
data were recorded from 32 channels in accordance with the international 10–20 system for
placing the electrodes and were sampled at 128 samples per second (1024 Hz internal). The
recording was carried out with a wearable 32-channel EMOTIV-EPOC flex gel kit.

The subject was initially asked to relax for a period of 25 s during which relaxing music
was played to ease the subject. The subject was instructed to stay calm after completion of
every impulse type, after which the instructions for the Stroop color and word test (SCWT)
were shown to the subject. The subject was exposed to SCWT for 25 s. The subject then
relaxed for 5 s and then the instructions for the next impulse were displayed for 10 s. In
the next impulse, the subject was shown mirror images and was asked to identify whether
the images are symmetric or asymmetric and respond with a thumbs up or thumbs down
gesture, depending on whether the images displayed represent symmetric mirror images
or not. The mirror image symmetry task was carried out for 25 s, after which the subject
again relaxed for 5 s and then the instructions for the next impulse were displayed for 10 s.
Finally, the subject was instructed to solve arithmetic problems mentally and respond with
a thumbs up or thumbs down gesture, depending on whether the answer displayed on the
screen was a correct solution for the arithmetic problem or not. The arithmetic task was
also repeated for 25 s. The completion of the arithmetic task marked the completion of a
trial. Moreover, when the subject was responding, an operator also gave feedback as to
whether the answers provided by the subject were incorrect or correct. The experimental
setup is shown in Figure 2.
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Figure 2. Experimental setup: a subject is performing the various mental tasks.

In our experiment, students performed various arithmetic tasks and color tests to
measure the stress of individuals. During the experiments it was obvious for a subject to
move the head or swallow or move the tongue, which caused the EMG artifacts in the EEG
signals. The presence of EMG artifacts in our recorded EEG data were visually inspected
by a clinical expert. Generally, normal waveforms of the EEG ranges from 0.1 to 40 Hz. In
our experiment, EEG signals were filtered between 0.1 to 40 Hz to remove the frequency
components above 40 Hz.

3.2. Identification of C-EEG

From the recorded data, clean and corrupted EEG segments were extracted by an ex-
pert by studying various parameters such as the variance, Shannon entropy. In addition, the
expert visually inspected the EEG for segmenting. A total of 400 segments (duration: 10 s)
were extracted to represent each of the two classes, namely C-EEG and NC-EEG. The
SVM network was trained with the features extracted from both the dataset of same size
of 10 s. The data were split in an 80:20 ratio for training and testing. Further, 10-fold
cross-validation was used for evaluating the experimental performance. Three distinctive
features, variance, Shannon entropy, and peak-to-peak, were calculated from all the signals
and provided to train the SVM network. To demonstrate their effectiveness in classifying
C-EEG from NC-EEG, an SVM network was trained with these features extracted from
EEG data of both the datasets. The average values of these extracted features of NC-EEG,
and C-EEG were evaluated respectively and are shown in Figure 3, which demonstrates the
extracted features are distinctive between both the classes. The MATLAB function “fitcsvm”
was used to train the classifier with default parameters.
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3.3. Wavelet Decomposition

After successful identification of the EMG-corrupted EEG signal, it was passed to the
second stage of the proposed algorithm for EMG correction. The C-EEG was decomposed
into wavelet coefficients through WPD. Wavelet transform was used to separate the EEG
features into different scales so that significant features of the EEG signals were preserved
and noises could be removed. To cover the shortage of fixed time-frequency decomposition
in DWT, WPD was employed in the work, which not only decomposed the cA but also cD
simultaneously. As a result, the WPD had the same frequency bandwidth in each resolution
while DWT did not.

Mother Wavelet and Decomposition Level Selection

The mother wavelet was carefully chosen by considering the lower reconstruction
error as described in Section 2.3. With the minimum reconstruction error, the mother
wavelet was selected for decomposing the artifact signal. Several artifact EEG signals were
analysed using several mother-wavelet functions, and their average reconstruction error is
presented in Table 3. It is observed from the table that “fk6” provides the lowest average
reconstruction error in analysing EEG signals. As stated in [38], the decomposition level
was selected in which the Shannon entropy of cA became less than that of the cD. Hence,
the artifact signal was decomposed into wavelet coefficients using “fk6” as mother wavelet
up to level 5, and their corresponding Shannon entropy values are compared in Table 4. It is
evident from the table that Shannon entropy of cA is less than cD at decomposition level 3.
Therefore, in the proposed method, the C-EEG was decomposed into WPD coefficients
using “fk6” as mother wavelet up to level 3.

Table 3. Wavelets vs. average reconstruction error.

Wavelets Average ε ± Std Wavelets Average ε ± Std Wavelets Average ε ± Std

Haar 4.07 × 10−12 ± 3.21 × 10−12 db11 3.88 × 10−12 ± 1.37 × 10−12 coif2 4.45 × 10−10 ± 1.35 × 10−10

db2 2.62 × 10−11 ± 7.07 × 10−12 db12 3.81 × 10−12 ± 1.57 × 10−12 coif3 2.38 × 10−11 ± 7.33 × 10−12

db3 2.61 × 10−10 ± 9.00 × 10−11 sym2 2.62 × 10−11 ± 7.70 × 10−12 coif4 1.10 × 10−9 ± 3.12 × 10−10

db4 4.91 × 10−11 ± 1.67 × 10−11 sym3 2.61 × 10−10 ± 9.0 × 10−11 coif5 2.43 × 10−7 ± 7.01 × 10−8

db5 7.68 × 10−11 ± 2.83 × 10−11 sym4 2.29 × 10−11 ± 6.65 × 10−12 fk4 8.99 × 10−14 ± 7.67 × 10−14

db6 4.58 × 10−11 ± 1.77 × 10−11 sym5 8.08 × 10−12 ± 2.34 × 10−12 fk6 5.97 × 10−14 ± 3.26 × 10−14

db7 6.18 × 10−11 ± 1.93 × 10−11 sym6 3.57 × 10−11 ± 1.03 × 10−11 fk8 7.56 × 10−8 ± 2.19 × 10−8

db8 1.27 × 10−10 ± 4.50 × 10−11 sym7 3.47 × 10−11 ± 1.00 × 10−11 fk14 1.12 × 10−10 ± 3.26 × 10−11

db9 1.38 × 10−9 ± 4.01 × 10−10 sym8 7.01 × 10−12 ± 2.50 × 10−12 fk18 7.58 × 10−10 ± 6.69 × 10−10

db10 1.46 × 10−10 ± 4.40 × 10−11 coif1 4.23 × 10−11 ± 1.23 × 10−11 fk22 1.80 × 10−8 ± 1.18 × 10−8

Table 4. Shannon entropy value corresponding to the different decomposition levels (mother
wavelet: “fk6”).

Decomposition Level
Shannon Entropy

DetailCoefficients Approximation Coefficients

1 1.69 × 104 3.07 × 104

2 1.30 × 103 1.69 × 102

3 0.98 × 103 −1.32 × 102

4 786.31 −1.68 × 103

5 −409.13 −3.08 × 104

3.4. Correction of the Wavelet Coefficients

It is to be noted that the EMG artifacts present in the EEG signal will be reflected in the
corresponding wavelet coefficients. Hence, correcting them will successfully remove the
EMG artifacts from the EEG signal. Now the artifact free wavelet coefficients are estimated
from the artifact wavelet coefficients using weighted average of the similar patches as
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described in Equation (7). The estimation is performed through the NLM algorithm. The
selection of the optimum parameter of the NLM algorithm is described below.

An artifact EEG signal was decomposed into WPD coefficients. All the artifacts will
be reflected in WPD coefficients. Then, artifact-free coefficients were estimated through
the NLM algorithm by tuning its parameters (P, M, λ). Four corrupted EEG signals of
duration 10 s were analysed by varying the parameters of the NLM algorithm. The SAR
improvements achieved by varying several values of P and M are shown in Figure 4. It
is evident from the figure that SAR varies with the different values of P. However, P = 4
provides the maximum SAR for different EEG signals. It is also noted that M does not
affect the SAR, but it increases the computational time as shown in Table 5. The SAR values
for different λ are also compared and shown in Figure 5. Unlike P and M, λ is different
for different EEG signals yielding the highest SAR. Hence, for NLM-based automatic EEG
denoising, it is required to optimize the λ to prevent the over smoothing and incorrect patch
similarity. In addition, wavelet coefficients at different scales have different characteristics;
hence, single λ for all the scales will degrade the smoothness of the EEG signal. In the
proposed work, 2i number of λwere optimized for the 2i number of wavelet coefficients
(where, i is the decomposition level) through GWO. The selection of appropriate parameters
of the NLM algorithm is explained in Section 3.4.1.
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3.4.1. Parameter Selection of NLM-Based Denoising

The parameters of the NLM algorithm were carefully chosen so that the proposed
algorithm gave the best performance for removing EMG artifacts from the EEG signals. In
the proposed algorithm, several sizes of P and M were investigated and their performance
in terms of SAR was compared in the abovementioned Figure 4. It is observed from the
figure that the P = 4 performed better in terms of SAR and M = 50 for lower computational
time irrespective of the characteristics of EEG signal.

The bandwidth parameter, λ is the most important parameter in the NLM algorithm
as it decides the degree of smoothness. In the proposed algorithm, λ was selected through
meta-heuristic optimization technique as to avoid the over-smoothing problem as well
as to select the correct similar patches. Two meta-heuristic optimizers, PSO, widely used
by researchers due to its fast convergence, and GWO, due to its better execution, were
employed for searching the optimal λ for performance comparison.

Let x(t) be an EEG signal and n(t) be a muscle artifact; together they formed C-EEG as
in Equation (13):

Y = x(t) + n(t) (13)

Now the WPD coefficient di,j is extracted from the Y using “fk6” as mother wavelet
up to level i. Next, corrected WPD coefficients (d̂i,j) were estimated from di,j using the

proposed optimized NLM algorithm. The bandwidth parameter λn
(
n = 1, 2, . . . , 2i) was

optimized for each coefficient vector. For example, in the proposed method, Y was de-
composed up to level 3, which implies that eight coefficient vectors were extracted from Y
as D3,1, D3,2, . . . , D3,8. To remove the EMG artifacts from each coefficient vectors, eight
values of λwere optimized in the proposed method. Mathematically d̂i,j was estimated as
in Equation (14):

d̂i,j = f
(
di,j, P, M, λn

)
(14)

where f (.) denotes the NLM function. As suggested in [44], the bandwidth parameter λ
was selected as 0.06σ, where σ2 is the noise-variance and equal to the 0.002. However,
EMG artifacts vary with muscle contraction; in this case, σ2 may vary. Considering this
fact, λ was randomly initialized between 0.01 to 0.9 in the proposed algorithm. The fitness
function used for PSO and GWO is stated in Equations (15) and (16):

f itness f unction = max(SAR) (15)

SARj = 10 log10
std
(
di,j
)

std(di,j − d̂i,j)
(16)
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3.4.2. Correction

After estimating the parameters of the NLM algorithm, the corrupted wavelet coef-
ficients were corrected through the modified NLM algorithm. In the proposed method,
P = 4 and M = 50 was selected through a hit-and-trial approach, and the λ was selected
through GWO. Next, all the corrected wavelet coefficients were passed to the final stage of
the proposed method.

3.5. Reconstruction

After successfully estimating the clean wavelet coefficients, all the corrected coeffi-
cients were used in inverse WPD to reconstruct the original artifact-free EEG signal. The
inverse WPD function is expressed as Equation (17). Finally, the artifact-free reconstructed
clean EEG signal was provided by the proposed model as output.

Xˆ = W−1(d̂i,j) (17)

4. Results

The proposed technique was first tested on simulated EMG artifact EEG data and then
verified on multi-channel real EEG data. The testing was performed on a simulated signal
as the original clean EEG signal (the ground truth) was known. As a result, it was possible
to compare the original EEG signal and its correction after adding EMG artifacts with the
original EEG. In this way, using a simulated EEG signal, the proposed method was tested.

4.1. Test on Single-Channel Simulated EEG

The EEG signal was contaminated with EMG artifacts, but the information suppressed
by the artifacts was not known (there was no ground truth). Hence, to validate the proposed
approach, it was evaluated on simulated C-EEG data for which the ground truth was
available. The EMG-contaminated C-EEG signal was simulated in MATLAB using the
method described in [52]. At first, the clean EEG segments of duration 10 s were simulated
by adding 20 sinusoids together with frequencies selected randomly from 0.1 to 30 Hz with
sampling frequency as 250 Hz. Next, the muscle activities were modelled using random
noise bandpass filtered between 5 to 45 Hz. Finally, clean EEG segments and muscle
activities were added together to form the C-EEG signal.

The simulated artifactual EEG signal was passed through the pre-trained SVM as
a classifier. The SVM automatically recognized C-EEGs through the extracted features.
The performance in terms of accuracy, specificity, and sensitivity of the SVM classifier
was compared with the Naïve Bias Classifier (NBC) and is shown in Table 6. It is evident
from the table that the SVM effectively classified the C-EEG from NC-EEG using extracted
features. Next, the identified C-EEG signal was decomposed into eight WPD coefficient
vectors using “fk6” as wavelet function as described above. For estimating clean WPD
coefficient vectors, the proposed NLM algorithm was applied on eight coefficient vectors.
For finding the optimum λ, both the optimizer PSO and GWO were implemented, and
their performance in term of convergence is presented in Figure 6. It is observed from the
figure that GWO attains excellence solution with maximum fitness as compared to PSO.
The simulated clean EEG signal and EMG signal are shown in Figure 7a,b, respectively. By
adding them, the C-EEG signal was generated and is shown in Figure 7c. EMG artifacts
were observed in the time of 0 to 1.3 s, 2 to 4.2 s, and 7.6 to 8.5 s in C-EEG. In Figure 7d, the
corrected EEG signal denoised through the proposed algorithm is shown. It is observed
that the proposed algorithm successfully removed the EMG artifacts from C-EEG while
preserving true EEG structure. The power spectral density of C-EEG, clean EEG, and
reconstructed EEG were also analysed to verify the proposed algorithm and are compared
in Figure 8. It is observed that the proposed denoising algorithm preserved most of the
frequency bands in the reconstructed EEG.
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Table 6. Performance of the classifier.

Performance
Classifiers

SVM NBC

Sensitivity 98.31 94.09
Specificity 97.91 91.68
Accuracy 98.19 93.28
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To check the superiority, the proposed model was compared with the recently reported
EEG denoising techniques [14,35,38] and is presented in Figure 9. In Figure 9a,b, it is
observed that MKNLMS-CS [38] and tuneable WPD [35] removed muscle artifacts from
the C-EEG, respectively, while distorting the other portion of the C-EEG where no muscle
artifacts are present. EEMD-CCA [14] slightly improves the distortion that occurred in
the clean portion of the C-EEG as shown in Figure 9c. In Figure 9d it is observed that the
proposed method successfully removed the muscle artifacts while preserving the maximum
information contained in the C-EEG. In addition to the pictorial evidence, how much infor-
mation was preserved by all the methods during denoising process was also investigated
in a quantitative manner. The CC between the clean portion of C-EEG and clean portion of
reconstructed clean EEG was evaluated to verify how much information was lost during
denoising the EEG. It is observed from Figure 9 that the EEG portion ranged from 4.3 s
to 7.3 s and did not contain any muscle artifacts. Hence, CC between the C-EEG portion
(ranges from 4.3 s to 7.3 s) and reconstructed clean EEG portion (ranges from 4.3 s to 7.3 s)
was calculated with all the denoising techniques and compared in Table 7. It is evident
from the table that the proposed model highly preserved the information contained in
the original EEG during denoising the EEG signal. Further, CC and SSIM was calculated
between C-EEG and the corrected EEG by all the methods. The performance matrices CC
and SSIM were evaluated for all four denoising methods and the proposed method, and
are compared in Table 8.

Table 7. Comparison of similarity between C-EEG and reconstructed clean EEG (ranges from 4.3 s to 7.3 s).

Denoising Techniques Average CC

MKNLMS−CS [38] 0.2809
Tuneable WPD [35] 0.5089
EEMD−CCA [14] 0.5557
Proposed Method 0.8863

Table 8. Performance comparison on simulated C-EEG.

Methods Average CC SSIM

MKNLMS−CS [38] 0.5937 0.3963
Tuneable WPD [35] 0.7101 0.5401
EEMD−CCA [14] 0.8139 0.5723
Proposed Method 0.8675 0.6809
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4.2. Test on Multi-Channel Recorded EEG Data

After successfully verifying on single-channel simulated C−EEG, the proposed model
was also tested on recorded EEG. The 32-channel raw EEG data of duration of 10 s were
chosen from the dataset and filtered between 0.1–40 Hz through a bandpass filter. However,
all the channels were affected by the EMG artifacts. The proposed model automatically
recognized the EMG artifact EEG data and subsequently corrected them. The proposed
model successfully eliminated all the EMG artifacts from the corrupted EEG while preserv-
ing the true EEG structure. For quantitative analysis, MI between the corrupted EEG signal
and reconstructed clean EEG was measured and compared with the recently developed
techniques as presented in Table 9.

Table 9. Comparison of MI on 32-channel recorded real EEG data.

Channels MKNLMS−CS [38] Tuneable WPD [35] EEMD−CCA [14] Proposed Method

1 1.009 1.106 2.417 2.970

2 0.952 1.193 2.334 2.972

3 1.562 1.535 2.858 3.985

4 2.389 1.986 3.198 3.908

5 1.410 1.444 2.583 3.207

6 1.053 1.094 2.117 2.652

7 1.119 1.274 2.426 2.958

8 1.630 1.631 2.994 4.179

9 1.930 1.884 2.319 3.010

10 1.427 1.361 3.202 3.359

11 1.601 1.609 2.197 2.387

12 1.198 1.185 2.429 2.798
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Table 9. Cont.

Channels MKNLMS−CS [38] Tuneable WPD [35] EEMD−CCA [14] Proposed Method

13 1.039 1.165 2.335 2.842

14 0.932 1.506 2.026 2.127

15 1.109 1.158 2.058 2.199

16 2.011 1.054 2.042 2.292

17 1.520 1.055 2.371 2.747

18 1.106 1.158 2.007 2.446

19 1.321 1.033 2.063 2.496

20 1.030 1.146 1.891 2.305

21 1.098 0.997 2.248 2.451

22 1.032 0.900 2.120 2.421

23 1.001 1.045 2.267 2.691

24 1.030 1.078 2.010 1.985

25 1.131 1.132 1.864 1.783

26 1.095 1.385 2.564 3.289

27 1.521 1.611 3.337 3.914

28 1.302 1.535 2.930 3.181

29 1.015 1.268 2.573 3.151

30 1.400 1.440 2.791 3.465

31 1.612 1.615 3.082 4.607

32 1.590 1.703 2.998 4.211

Average ± Std 1.3180 ± 0.3478 1.3214 ± 0.2747 2.4578 ± 0.4239 2.9684 ± 0.7045

5. Discussion

In this paper, a fully automatic denoising method is proposed for removing EMG
artifacts from the EEG signals. At first, the artifact EEG signals are identified through
SVM as a classifier. After that, the corrupted EEG signals are decomposed into wavelet
coefficients through WPD. Wavelet transform is used to separate the EEG features into
different scales so that significant features of the EEG signals are preserved and artifacts
can be removed. Generally, in wavelet denoising techniques, wavelet coefficients are
thresholded to remove the artifacts. However, selection of an appropriate threshold makes
the system unfit for automatic operation. In the proposed method, the corrupted wavelet
coefficients are corrected through a modified NLM algorithm instead of thresholding them.
The NLM algorithm has various parameters and needed adjustment for different types
of EEG data. The NLM algorithm has been modified in this paper by optimizing the
bandwidth parameter through GWO. In addition, a set of λ is optimized at different scales
of the wavelet-transformed EEG signal, which enhances the performance of the proposed
method for denoising the EEG signals. Finally, all the corrected wavelet coefficients are
used in inverse operation to get back the original clean EEG signal. The proposed method
is fully automatic and does not need any intervention of the user.

The proposed method was first validated on simulated EEG signals (the ground truth
is available) and then tested on recorded EEG data. It is observed from the experimental
results that the proposed method is superior among all the denoising methods in terms
of highest CC and SSIM. Hence, the proposed algorithm preserves more true structure
of the clean EEG signal compared to other recently reported EEG denoising algorithms.
For recorded EEG data, the original true clean EEG is unavailable (there is no ground
truth); hence, MI is calculated to check how much information is mutual between corrupted
EEG and denoised EEG. It is observed that the proposed approach achieved higher MI as
compared to other recently developed techniques.
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One of the main advantages of the proposed hybrid method is that it is insensitive
to any threshold value and there is no need to tune the parameters of the NLM algorithm,
which makes the system fully automatic and it can be implemented in online applications.
WPD efficiently deals with the non-stationary characteristics of EEG signals. Although
the proposed method is capable of correcting EMG artifacts from the multi-channel EEG
signals, correcting one by one increases the computational time.

6. Conclusions and Future Scope

In this paper, a new automatic hybrid system for denoising muscle artifacts from EEG is
introduced for the first time, in which WPD is combined with an optimized NLM algorithm.
The WPD is adopted for its multi-resolution analysis while using only a single-channel EEG.
Unlike other current state-of-art methods, the proposed system removes artifacts from its
time-frequency response of the EEG signal through an optimized NLM algorithm instead
of thresholding. The proposed system removes the muscle artifacts from the EEG signal,
no matter how many artifacts contaminate the EEG. Further, several challenges using the
NLM algorithm for EEG denoising are discussed and properly addressed in this work. One
major challenge associated with the NLM algorithm is the selection of proper bandwidth
parameter. It is also shown that the bandwidth parameter is different for different EEG.
In this work, a meta-heuristically optimized NLM algorithm is presented, in which the
bandwidth parameter is selected according to the nature of the EEG. The proposed system
can operate automatically and does not require any intervention of the user while using it.
The proposed system was first validated with a simulated C-EEG in which ground truth
was available, which demonstrated better performance, and then tested with recorded real
EEG data for its practical validation. In addition to a single channel, the proposed system
is also able to remove the muscle artifacts from multi-channel EEG data. Future studies
are likely to investigate the performance of the proposed method in removing other kinds
of artifacts.
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