
Citation: Torres-Alvarado, A.;

Morales-Rosales, L.A.; Algredo-

Badillo, I.; López-Huerta, F.;

Lobato-Báez, M.; López-Pimentel, J.C.

An SHA-3 Hardware Architecture

against Failures Based on Hamming

Codes and Triple Modular

Redundancy. Sensors 2022, 22, 2985.

https://doi.org/10.3390/s22082985

Academic Editors: Athanasios V.

Vasilakos and Christian Haubelt

Received: 5 February 2022

Accepted: 9 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An SHA-3 Hardware Architecture against Failures Based on
Hamming Codes and Triple Modular Redundancy
Alan Torres-Alvarado 1 , Luis Alberto Morales-Rosales 2,*,† , Ignacio Algredo-Badillo 3,*,† ,
Francisco López-Huerta 4 , Mariana Lobato-Báez 5 and Juan Carlos López-Pimentel 6

1 Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico; torresalv@inaoep.mx
2 Facultad de Ingeniería Civil, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo,

Morelia 58000, Mexico
3 CONACYT-Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla 72840, Mexico
4 Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Maestría en Ingeniería

Aplicada, Boca del Río, Veracruz 94294, Mexico; frlopez@uv.mx
5 Instituto Tecnológico Superior de Libres, Libres, Puebla 73780, Mexico; mariana.lobato@upaep.edu.mx
6 Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico;

clopezp@up.edu.mx
* Correspondence: lamorales@conacyt.mx (L.A.M.-R.); algredobadillo@inaoep.mx (I.A.-B.)
† These authors contributed equally to this work.

Abstract: Cryptography has become one of the vital disciplines for information technology such as
IoT (Internet Of Things), IIoT (Industrial Internet Of Things), I4.0 (Industry 4.0), and automotive
applications. Some fundamental characteristics required for these applications are confidentiality,
authentication, integrity, and nonrepudiation, which can be achieved using hash functions. A
cryptographic hash function that provides a higher level of security is SHA-3. However, in real and
modern applications, hardware implementations based on FPGA for hash functions are prone to
errors due to noise and radiation since a change in the state of a bit can trigger a completely different
hash output than the expected one, due to the avalanche effect or diffusion, meaning that modifying
a single bit changes most of the desired bits of the hash; thus, it is vital to detect and correct any error
during the algorithm execution. Current hardware solutions mainly seek to detect errors but not
correct them (e.g., using parity checking or scrambling). To the best of our knowledge, there are no
solutions that detect and correct errors for SHA-3 hardware implementations. This article presents
the design and a comparative analysis of four FPGA architectures: two without fault tolerance and
two with fault tolerance, which employ Hamming Codes to detect and correct faults for SHA-3 using
an Encoder and a Decoder at the step-mapping functions level. Results show that the two hardware
architectures with fault tolerance can detect up to a maximum of 120 and 240 errors, respectively,
for every run of KECCAK-p, which is considered the worst case. Additionally, the paper provides a
comparative analysis of these architectures with other works in the literature in terms of experimental
results such as frequency, resources, throughput, and efficiency.

Keywords: SHA-3; FPGA architectures; VANET; fault tolerance; security

1. Introduction

Nowadays, cryptography has become one of the essential disciplines in information
technology for data transmission and storage, since there are attacks that can compromise
user security, requiring some security properties such as confidentiality, integrity, and au-
thentication [1,2]. Confidentiality allows for determining that unauthorized users do not
read data; integrity helps to know if data are not modified or altered; authentication gives
certainty that some user is who they claim to be [3].

The cryptographic solutions can be implemented on software or hardware. The first
ones are fixed implementations (programs), and the second ones enable exploring and

Sensors 2022, 22, 2985. https://doi.org/10.3390/s22082985 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6314-1084
https://orcid.org/0000-0002-4753-9375
https://orcid.org/0000-0002-4748-3500
https://orcid.org/0000-0003-3332-846X
https://orcid.org/0000-0002-2607-2032
https://orcid.org/0000-0002-7844-3261
https://doi.org/10.3390/s22082985
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082985?type=check_update&version=2

Sensors 2022, 22, 2985 2 of 29

researching various schemes and architectures. We can implement hardware solutions
on several platforms, and the FPGA (Field-Programmable Gate Array) is one important
technology that can support them. FPGAs have the capacity for reprogrammability; for
this reason, a wide variety of applications use them. Reprogrammability allow for reuse or
upgrades hardware designs after deployment [4].

Unfortunately, FPGAs are prone to errors in applications with several transmissions
and receptions over noisy environments. These errors are called transient, pseudoper-
manent, and permanent [5]. Temporary errors, such as mechanical vibrations, voltage
fluctuation, and particle radiation, cause transient failures. Transient errors in SRAM cells
cause pseudopermanent failures. Physical damages such as manufacturing defects or gate
oxide wear-out cause permanent failures. These types of failures affect FPGA devices.

For instance, Isaka, Y et al. [6] mention three types of degradation mechanisms relevant
to FPGA: (i) Time-Dependent Dielectric Breakdown: an accumulation of trapped charges or
defects created by a string-gate bias voltage leads to an increase in power consumption and
a slowing of switching speed; (ii) Hot Carrier Injection: a collection of defects between the
channel and the gate dielectric, causes an increase in threshold voltage, a decrease in carrier
mobility, and slower switching; and (iii) Electromigration: a mechanism where metal ions
migrate, leading to voids and deposits in interconnects, increasing trace impedance. A com-
bination of elevated voltage and temperature accelerates these effects. Benfica et al. [7]
evaluate the susceptibility of SRAM-based FPGA SEUs (Single-Event Upsets) to noise on
VDD power pins and total-ionizing dose, concluding that noise on power bus pins seems
more harmful to SEU cross-sections than VDD reductions. Additionally, Vargas J et al. [8]
show how systems such as autonomous vehicles that use a large number of sensors can
be affected by weather conditions (precipitation, fog, lightning, etc.). The sensors operate
in different spectral ranges of the electromagnetic spectrum, influenced by weather and
lighting conditions. Moreover, Andrew M et al. [9] generate results about classifications
of cosmic rays on low, medium, and high levels. Specifically, cosmic rays induce soft-
ware errors or faults at terrestrial altitudes on Earth, which is critical because FPGAs or
SRAM-based devices are affected by at least one bit. The result can change and be incorrect.
Furthermore, Buchner and McMorrow [10] mention that energetic particles coming from
solar wind, galactic cosmic rays, and radiation belts can interact with electronics in space,
avionics, and ground-based devices, causing an additional charge that alters the voltage,
leading ultimately to bit upsets (a “1” goes to “0” and a “0” goes to “1”) in the FPGA.

There are different fault detection and recovery types based on physical and tem-
poral characteristics, design, and information redundancy, such as minimum-distance
coding, repetition codes, parity bits, checksum, cyclic redundant check, cryptographic hash
function, Hamming Codes (HCs), and Triple-Modular Redundancy (TMR).

In this way, it is essential to highlight that hash functions are widely used to achieve
integrity, authentication, and digital signatures [1,11,12]; and implemented for practical
and essential solutions, e.g., blockchain [13–15]. A hash function, to be considered secure,
needs to comply with different properties [16]: (i) unidirectionality: it is infeasible to find
a message that results in a prespecified hash value; (ii) compression: some message of
any length must have a digest of fixed length; (iii) easy calculation: it needs to be easy to
obtain; (iv) diffusion: if only one bit of the original message is modified, the digest should
flip almost half of its bits; (v) simple collision: it is infeasible to find one message which
results in the same hash value as a prespecified message; and (vi) strong collision: it is
computationally infeasible to find any two messages which result in the same hash value.

Within the great diversity of hash functions, the SHA-3 family is a set of hash algo-
rithms suitable for FPGA hardware implementation since it contains simple operations,
and we can use the iterative, pipeline, or unfolded approaches. Therefore, SHA-3 hard-
ware design must reduce the impact of faults or errors to improve performance, it being
necessary to detect, locate, and recover the faults at run-time [17,18].

The aim of this work is the analysis and design of techniques for presenting an iterative
architecture for the SHA-3 algorithm; then, the developed architecture incorporates tech-

Sensors 2022, 22, 2985 3 of 29

niques based on data redundancy for error detection and correction. Therefore, this article
presents the design and a comparative analysis of four FPGA architectures: two without
fault tolerance and two with fault tolerance, which employ HCs to detect and correct faults
for SHA-3 using an Encoder and a Decoder at the step-mapping functions level.

We can summarize the main contributions of the paper as follows:

• A methodology for designing and developing two architectures without fault tolerance
is given. The design of the first iterative architecture implements the five step-mapping
functions into the Architecture with a Single Module (ArchSM), and the second
design implements the Architecture with Multiple Modules (ArchMM). We use both
architectures as a platform for developing two architectures with fault tolerance.

• An architecture with fault tolerance based on HCs (ArchHC) that can detect and
correct a maximum of one error for every register for a total of 120 errors for every
run of KECCAK-p by using HCs formed by an Encoder and a Decoder is given.

• An architecture with fault tolerance based on HCs and TMR (ArchTMR_HC) that can
detect and correct 240 errors for every run of KECCAK-p by implementing HCs to the
central registers and TMR to every step-mapping function, with a voting system that
determines the correct output, is given. Thus, 120 errors are detected and corrected in
the central registers, and TMR masks 120 errors.

• An analysis of incremental costs is given for the four developed architectures and error
coverage capacity for the two architectures with error correction and detection capacity
(ArchHC and ArchTMR_HC), as well as a resources comparison among architectures
without fault tolerance, with error detection and with error detection and correction.
The proposed fault-tolerant hardware architecture with the highest throughput is
ArchHC, whereas the one with the highest correction rate is ArchTMR_HC.

• To the best of our knowledge, no other SHA-3 architecture can detect and correct
errors in the state of the art. Therefore, the coverage capacity for the architectures with
error detection and recovery in the worst case is one error detection for every register.
Since there are five registers, a total of five errors can be detected and corrected for
every run of the Round function. Consequently, since KECCAK-p consists of 24 runs
of Rounds, there are a total of 120 errors that can be detected and corrected in the
worst case; if two runs are necessary, the error coverage grows to 240, and so on.

We show how our proposed architectures can be implemented in a VANET environ-
ment. In the VANET proposal system, every vehicle must contain an SHA-3 module for
authentication, which serves as transceiver (transmitter and receiver) by using a message
and a key for generating a message authentication code (MAC). The proposed SHA-3
fault-tolerant hardware architectures (ArchHC and ArchTMR_HC) can be part of a greater
system to provide integrity, authentication, and digital certificates and part of a blockchain
solution when undesirable conditions can generate and inject faults. The trade-off analysis
is focused on comparing their hardware architectures’ implementations on two main ideas:
space and time complexity. The ArchHC architecture provides our best throughput for
the SHA-3 algorithm, which can be used on applications that require at most 276.14 Mbps,
focusing on a transparent solution for the user and the system, when delivering the hash
with a fault-tolerant scheme. However, ArchTMR_HC reaches the best correction rate
with a higher cost of hardware resources but solves a high number of faults through TMR
and HC.

The paper is structured as follows: the Section 2 presents several studies for detecting
and correcting errors and faults using different FPGAs or hash functions. The Section 3
gives an overview of the SHA-3 algorithm, HCs, and TMR. The Section 4 describes our archi-
tectures and optimizations of hardware implementation. The Section 5 shows experimental
results and comparisons with related works. Finally, we conclude in the last section.

2. Related Work

Today, systems based on processors, microprocessors, computers, microcontrollers,
microcomputers, or FPGAs are critical technologies. Still, their settings or data storage can

Sensors 2022, 22, 2985 4 of 29

be affected by external factors such as noise, interference, weather conditions, or cosmic rays.
For example, an automotive system constituted by a central computer, ECUs, and sensors
can be affected by these factors, see Figure 1.

001101
010101
101001

Cosmic Rays

Automotive Systems

Satellite
Communications

Airplanes

SRAMs/FPGAs

1 10100
011010
101010

Figure 1. Automotive system affected by cosmic rays.

Detecting and correcting faults and errors are some of the main topics in communica-
tion, informatics, mobile, and embedded systems. There is a growing population of devices
coexisting in an environment of distinct types of communication networks. Previously,
other works proposed solutions for resolving redundancy schemes for the SHA-2 algo-
rithm, which has not presented security problems yet. Nevertheless, the SHA-3 proposal
offers a modern and exciting alternative to provide security services such as authentica-
tion, integrity, digital certificates, blockchain, etc. In this sense, it is necessary to evaluate
redundancy solutions and implement them for our proposal. To the best of our knowledge,
existing SHA-3 architectures mainly search to detect errors but not to correct them; thus,
works based on parity checking and properties of the algorithm can be found in the state
of the art. The research of Frank H. [19] presents additional considerations and design
techniques employed with an SRAM-based FPGA vulnerable to radiation-induced errors
(this situation does not occur with nonreconfigurable devices). These devices are used in
a space-based processing system to achieve high operational reliability. However, these
considerations and traditional techniques—such as configuration bitstream scrubbing,
TMR, error-correcting codes (ECC), user memory protection, and combined mitigation
approaches—can be used in terrestrial applications. Solutions based on replicating modules
require many hardware resources, low performance, and high power consumption.

Luo et al. [20] implemented a parity-checking-based error detection method for the
SHA-3. A cryptographic module, which computes every operation at the step-mapping
level, is helped by another module called the protector composed of three parts: the predictor,
compressor, and comparator. Each piece fulfills one different necessity: the predictor reads
the input, and the compressor reads the output after the transformations are made by
the cryptographic module; then, the comparator computes the results of the predictor and
compressor; if a mismatch occurs, an alarm is activated, and the error is detected. The authors
say that the system achieved a correct detection of 83.60% of injected faults.

Sensors 2022, 22, 2985 5 of 29

Bayat-Sarmadi et al. [21] made use of one property of the state array for the SHA-3
algorithm, where a random number rotates a lane before the step-mapping operations,
and then it is shifted back after operations. Two modules are implemented, one with
this property and another without modifications, the results are compared, and, if any
difference exists, the error can be detected. The authors mentioned that the proposed
method could detect 100% of multiple random fault injections.

Additionally, Juliato and Gebotys [22] proposed five different schemes for the SHA-
256: (i) full TMR, where the circuit is triplicated and a voting system is used to determine
the output; (ii) in TMR with shared encoded memory, the three SHA-256 modules share the
constant memory, HCs protect it, and then a voter system determines the output; (iii) the
TMR for registers and shared encoded memory scheme moves the TMR at the register level
and uses an encoded shared memory to protect the constants; (iv) in HCs for all registers,
an Encoder and Decoder are used in every register before any write and read operation;
and, finally, in (v) HCs for main registers, only the registers involved in some operation
are protected using Encoders and Decoders. The paper concludes that their proposed fault
tolerance scheme can be used in applications that require lower consumption, besides error
correction and detection.

In the work proposed by Michail H. et al. [23], two totally self-checking (TSC) devices
were implemented for the SHA-1 and SHA-256 algorithms. The TSC device is formed by:
(i) the Functional Circuit Module, which is composed of the Information Symbol Generator
and the Check Symbol Predictor, and (ii) the Checker Circuitry, which includes the Check
Symbol Complement Generator and an r-bit Two-Rail Checker. The results shown by
the authors demonstrate that TSCs can detect 100% of odd faulty bits and that it is more
efficient in terms of area, throughput/area, and power consumption than Duplicated with
Checking architectures.

In Table 1, we compare related works focused on secure hashing algorithms such
as SHA-1, SHA-2, and SHA-3. The works for SHA-3 present architectures that only have
detection capacities, different from our proposed architecture that can detect and correct
errors. We analyze the design techniques used for related work for the SHA-2 algorithm,
proposing two hardware architectures without tolerance and two architectures with toler-
ance. Hence, the last two SHA-3 hardware architectures take into account: (i) a structure
with fault tolerance that uses HCs in the central registers to detect and recover errors,
implementing an Encoder and a Decoder, and (ii) a structure implementing HCs and a
TMR in every step-mapping function, allowing for continued operation in the presence
of errors.

Table 1. Comparison with Related Work.

Work Algorithm Application Techniques Implementation Results

This work SHA-3 authentication in
noisy environments HC and TMR Virtex-7 FPGA Throughput: 234.63 Mbps

Luo et al. [20] SHA-3 protection against faults parity checking NanGate FreePDK45 Area: 52,867 um2

Bayat et al. [21] SHA-3 protection against faults rotated operands ASIC Area: 692.24 um2

Juliato and
Gebotys [22] SHA-256 security in satellites HC and TMR Altera Cyclone II Area: 6232 LEs

Michail et al. [23] SHA1
SHA-256

security for protocols
SET, PKI, IPSec, and VPN

parity codes and
hardware redundancy ASIC Area: 209,624 um2

3. Preliminaries

The propagation model in a VANET must consider the effects of potential interference
of wireless communication from other vehicles and the existence of largely deployed access
points [24]. In VANETs, the propagation model operates in three environments: highway,
city, and rural. The propagation model is usually assumed to be a free space on a highway;
nevertheless, the reflection of the wall panels around the roads affects the signal. In a city,

Sensors 2022, 22, 2985 6 of 29

communication is complex due to the variable vehicle density, buildings, trees, and obstacles
to signal propagation; such obstacles cause shadowing, multipath, and fading effects. In rural
environments, communication is affected due to complex topography; hence, it is important
to consider the signal reflection and the attenuation of the signal propagation.

In a VANET, we can integrate devices such as Commercial Reconfigurable Proces-
sors [25], Systems on Chip integrating FPGA [26–29], and FPGAs that have been integrating
processing cores for years as On-Board Systems. These devices present several problems
that can affect some change in the configurations or calculations stored in memories or
modules within the FPGA such as cosmic rays, noise effects such as temperature and
sounds, alterations by a read or write to another cell, and so on [5–8,18]. These problems
can change one bit from logic level 1 to logic level 0 or vice versa, and FPGAs are mainly
based on RAM, which provides many advantages, but in real situations, outdoor applica-
tions, and environments with many devices and communication networks (originated by
the growth of the IoT, IIoT, and Industry 4.0), these problems rise. On the one hand and
in certain applications, changing one bit is not a big problem, for example, changing one
bit in an audio, image, or video can generate imperceptible results, and this is originated
because they are sent as plain text and one bit does not provide great information, according
to Shannon’s fundamental theorems. On the other hand, this situation becomes critical
when we want to send secure messages, especially with encrypted solutions, where a
single change generates completely incomprehensible results, due to the high diffusion
that cryptographic algorithms provoke in their data processing and to the great amount of
information that each bit provides.

Therefore, in data transmission, no system can prevent errors caused by natural or
human phenomena, such as noise originated by electronic devices or radiation. However,
some techniques based on redundancy help detect whether the information received is
the same as the original data transmitted. Redundancy is the repetition of hardware or
information to increase the system’s reliability in which the cost and complexity increase.
Nevertheless, it is a rule to follow if we require a robust design for operating in environ-
ments that cause errors. There are several techniques for improving data communications;
specifically, some existing redundancy techniques are HCs and TMR.

HCs present an improvement compared to codes based on parity bits, since the latter
can find errors in one bit but not correct them. TMR, in contrast to HCs, has the advantage
of detecting errors and correcting them. TMR, as the name implies, provides three replicas
of the same module, which has the advantage that if one fails, the other two can mask the
fault and continue operating correctly, increasing the system’s robustness.

In the following subsections, we describe two main ideas: (1) the hash functions and
the operations involved in developing the SHA-3 algorithm such as step-mapping, Round,
KECCAK, KECCAK-p, and Sponge; and (2) the redundancy techniques for error detection
and correction based on HCs and TMR, which allow the hardware architecture for the
SHA-3 algorithm to robustify and strengthen.

3.1. Hash Function

Several hash algorithms have been developed to assure security properties. For in-
stance, the MD5 algorithm extends the MD4 message-digest algorithm [30]; MD5 takes
a message of an arbitrary length and produces an output of 128 bits. However, the MD5
algorithm is now broken since it suffers from extensive vulnerabilities. Another algo-
rithm is SHA-1, which was designed by the United States National Security Agency [31]
and takes a message of an arbitrary length less than 264 and produces an output of
160 bits [32]. RIPEMD is a family of cryptographic hash functions called RIPEMD, RIPEMD-
128, RIPEMD-160, RIPEMD-256, and RIPEMD-320, with RIPEMD-160 being the most com-
mon; however, RIPEMD and RIPEMD-128 are no longer considered secure, and RIPEMD-
160 is about 15% slower than SHA-1 [33].

Sensors 2022, 22, 2985 7 of 29

In 2011, NIST formally deprecated SHA-1; then, SHA-2 was adopted, a set of crypto-
graphic hash functions consisting of six elements called SHA-224, SHA-256 SHA-384, SHA-
512, SHA-512/224, and SHA-512/256 [34]. The SHA-2 algorithm follows the same structure
of message expansion and iterates state update transformation, as SHA-1. Nonetheless,
since the design still shows significant similarities with the SHA-1 hash algorithms, it is not
unlikely that vulnerabilities will be found in the (near) future [35].

One essential hash function is called Secure Hash Algorithm 3 (best known as SHA-3).
SHA-3 is a hash function family that consists of four fixed-length functions called SHA3-
224, SHA3-256, SHA3-384, and SHA3-512 and two extensible functions called SHAKE-128
and SHAKE-256 [36], which are based on an algorithm called KECCAK. We remark that
KECCAK was selected winner by the NIST (National Institute of Standards and Technology)
in the SHA-3 Cryptographic Hash Algorithm Competition [37,38]. SHA-3 has several
applications, such as generation and verification of digital signatures, key derivation,
and pseudorandom bit generation. In addition, SHA-3 has advantages for design and
security, allowing for flexibility in the implementation [39].

For instance, the KECCAK sponge function should stand by its security claim even if
the number of Rounds is divided by two; the sponge function is provably secure against
generic attacks; unlike SHA-1 and SHA-2, SHA-3 does not have the length-extension
weakness and hence does not need the HMAC nested construction. SHA-3 can be natively
used for hashing, full-domain hashing, randomized hashing, stream encryption, MAC
computation, and tree hashing. The instances for SHA-3 and SHAKE make use of a
single permutation for all security strengths, cutting down implementation costs compared
to hash function families by making use of two (or more) primitives, such as the SHA-
2 family. Additionally, SHA-3 excels in hardware performance and has overall good
software performance.

3.2. SHA-3 Algorithm

The SHA-3 algorithm is defined for a digest length d with size 224, 256, 384, or 512
and a message M with two bits “01” added at the end, such that SHA3 − d(M) =
KECCAK[c](M||01, d), where SHA3 and KECCAK are functions, M is the input string
to the SHA-3 algorithm, and the operator || indicates concatenation [36]. KECCAK is a
family of sponge functions that are parameterized for any choice of r and c, where r + c = b
and b = {25, 50, 100, 200, 400, 800, 1600}. KECCAK is described by the use of the SPONGE
function, such that KECCAK[c](N, d) = SPONGE[KECCAK − P[b, nr], pad10∗1, r](N, d)
where N = M||01 is the input string to functions SPONGE or KECCAK. In the SPONGE
function, an arbitrary number of bits are absorbed into the state of the function, and an
arbitrary number of bits are squeezed out of its state. The sponge function shown in Algo-
rithm 1 receives different arguments: the padding function pad, the KECCAK-p function f
(see Algorithm 2), the positive constants r and c, the message N, and the size of the hash d.

The padding function pad receives the positive integer r and a non-negative integer
m = len(N) as inputs. The output is a string P such that P = 1||0j||1, where j is obtained
by j = (−m − 2) mod r. The KECCAK-p algorithm consists of 24 permutations of the
Round function for the vector S of length b = 1600. Round is formed by five step-mapping
functions called θ, ρ, π, χ, and ι (see Algorithm 3): (i) in function θ, each bit in the state
array is operated with the parity of two columns; (ii) in function ρ, the bits of each lane
are rotated by a length called offset, the value t varies from 0 to 23, and in each iteration,
the x and y values take y and (2x + 3y)mod5 values, respectively; (iii) in function π, lane
positions are rearranged; (iv) in function χ, each bit of a row is XOR-ed with the result of
a nonlinear function of two other bits of the same row; and (v) in function ι, some bits in
Lane(0, 0) are modified by the Round constants RC, see Table 2.

Sensors 2022, 22, 2985 8 of 29

Algorithm 1: SPONGE Algorithm
Input: pad, f, r, c, N, d

1 begin
2 P = N||pad(r,len(N))
3 n = len(P)/r
4 c = b-r
5 P = P0||...||Pn−1

6 S = 0b

7 for i from 0 to n− 1 do
8 S=f(S ⊕ (Pi||0c))

9 concatenate: Z = Z||Truncr(s)
10 if d ≤ |Z| then
11 return Truncd(Z)
12 else
13 continue

14 let S = f (S) and continue to concatenate
15 return S

Algorithm 2: KECCAK-p Algorithm
Input: S, b, nr

1 begin
2 θ: for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w do
3 A[x, y, z]=S[w(5y + x) + z]

4 concatenate: Z = Z||Truncr(s)
5 for ir from 12 + 2l − nr to 12 + 2l − 1 do
6 round(A, ir)

7 for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w do
8 S’[w(5y + x) + z] = A[x, y, z]

9 return S’

Algorithm 3: ROUND Algorithm
Input: A, ir

1 begin
2 Operations for θ:
3 for all pairs (x, y) such that 0 ≤ x < 5, 0 ≤ z < w do
4 C[x, z]=A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z]
5 D[x, z]=C[(x-1) mod 5, z] ⊕ C[(x+1) mod 5, (z-1) mod w]

6 for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, 0 ≤ z < w do
7 Aθ[x, y, z]=A[x, y, z] ⊕ D[x, z]

8 Operations for ρ:
9 for all z such that 0 ≤ z < w do

10 Aρ[0, 0, z] = Aθ[0, 0, z]

11 let (x,y)=(1,0)
12 for t from 0 to 23 do
13 for all z such that 0 ≤ z < w do
14 Aρ[x, y, z]=Aθ[x, y, (z-(t+1)(t+2)/2) mod w]

15 x, y=(y,(2x+3y) mod 5)

16 Operations for π:
17 for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w do
18 Aπ[x, y, z]= Aρ[(x + 3y) mod 5, x, z]

19 Operations for χ:
20 for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w do
21 Aχ[x, y, z] = Aπ[x, y, z] ⊕ ((Aπ[(x+1) mod 5, y, z] ⊕ 1) ·Aπ[(x + 2) mod 5, y, z]

22 Operations for ι:
23 for all triples (x, y, z) such that 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w do
24 Aι[x, y, z] = Aχ[x, y, z]

25 let RC = 0w

26 for j from 0 to l do
27 RC[2j − 1] = rc(j + 7ir)

28 for all z such that 0 ≤ z < w do
29 Aι[0, 0, z] = Aι[0, 0, z] ⊕ RC[z]

30 return A

Sensors 2022, 22, 2985 9 of 29

Table 2. Round constants.

0 0000000000000001 12 000000008000808B

1 0000000000008082 13 800000000000008B

2 800000000000808A 14 8000000000008089

3 8000000080008000 15 8000000000008003

4 000000000000808B 16 8000000000008002

5 0000000080000001 17 8000000000000080

6 8000000080008081 18 000000000000800A

7 8000000000008009 19 800000008000000A

8 000000000000008A 20 8000000080008081

9 0000000000000088 21 8000000000008080

10 0000000080008009 22 0000000080000001

11 000000008000000A 23 8000000080008008

Additionally, there are two SHA-3 extendable output functions called SHAKE-128
and SHAKE-256, which are defined from the KECCAK[c] by appending a four-bit suffix to
the message M and for any output length d such that SHAKE128(M, d) = KECCAK[256]
(M||1111, d) and SHAKE256(M, d) = KECCAK[512] (M||1111, d).

3.3. Hamming Codes

HCs are a class of linear codes [40] invented in 1950 by Richard Hamming [41] to detect
and correct errors. The errors can be detected and corrected by adding m redundant bits to
a binary message of length 2m −m− 1, forming a code word of 2m − 1 bits. The redundant
bits are placed in powers of two, while the data bits of the message are placed in the empty
spaces; thus, ri corresponds to the redundant bits and di corresponds to the message such
that i ∈ N, as is shown in Figure 2.

Figure 2. Codeword.

The redundant bits used by HCs are parity bits, which can be of two different types:
even and odd. For even parity bits, the number of ones is counted in a set of bits; if the count
is odd, the parity bit takes the value of one, and if the count is already even, the parity bit
takes the value of zero. For odd parity bits, if the count of ones is even, the parity bit takes
a value of one, and if the count is odd, the parity bit value is zero. Counting is conducted
with an XOR operation, either for odd or even parity. The codeword is received for error
detection and correction (containing the redundant and data bits). The HCs Algorithm
calculates bn check bits (one for every redundant bit) by XOR-ing all bits whose binary
representations have a one in the i-th least significant bit for the i-th check bit. The check
bits are placed from the b1 check bit in the least significant position to the bn check bit in the
most significant position, such that e = bnbn−1bn−2 . . . b1; therefore, it is possible to obtain
a value that indicates the position of the error. If there is no error, all check bits will have
a value of zero; in contrast, if a value different than zero is obtained, there is an error in
the position of the obtained value; thus, a bit-flip in that position is made for correcting
the error.

Sensors 2022, 22, 2985 10 of 29

3.4. Triple-Modular Redundancy

In TMR, three replicas of a component run in parallel and a majority voting system
processes the result to produce a single output [42]. The circuit of the voting system is
composed of three AND gates (operator ·) and two OR gates (operator +), as shown in
Equation (1).

output = i1 · i2 + i1 · i3 + i2 · i3 (1)

where ij with j = 1, 2, and 3 are the inputs to the system, analogously, the voting system
can be seen as an if statement, with four possible outputs: (1) if i1 is equal to i2 and i3 is
different, then i1 (or i2, since they have the same value) is the obtained output; (2) if i1 is
equal to i3 and i2 is different, the output is i1 (or i3); (3) if i2 is equal to i3 and i1 is different,
in this case, the obtained output is i2 (or i3); and (4) if the three inputs are different, in this
case, a correct output cannot be determined.

The logic equation represents the behavior of TMR using logic gates; however, the fi-
nal design depends on the tool used for synthesis and implementation and the type of
programming. In this case, TMR was created using if-else instructions in Vivado 2020.1 (a
tool for developing VHDL code), resulting in a combination of 3217 LUTs and 1602 FFs.
Using other tools and a different type of implementation may give different results.

4. Methods

In the VANET paradigm, there is an exchange of safety (road accident, roadblock, acci-
dent information, etc.) and nonsafety communication (tolling information or entertainment)
among vehicles. For vehicle-to-vehicle (V2V), the communication is made using a multihop
technique, as long as the vehicles are in the transmission range of each other, in contrast to
V2I communication, where the communication is made also using the multihop technique
with the help of roadside infrastructure such as roadside units (RSU) [43,44]. These trans-
mitted messages among vehicles need some calculation made by computers in order to
evaluate different characteristics: For providing sufficient quality of service in V2V commu-
nication, it is necessary to compute how far the message propagates and how long it takes
to deliver the message to the vehicles to help the drivers to make appropriate decisions
on time; thus, the analysis of transient behavior is crucial in many safety scenarios [45].
For congestion protocols for VANETs, there are probabilistic model-checking techniques
in order to analyze uncertain and unpredictable behaviors [46]. Salvador Gonzalez and
Victor Ramos [47] studied the loss process of broadcast packets over the control channel in
VANETs; they said that for most of the messages, an increase in packet delivery time does
not have a significant impact on network performance. On the contrary, it is very important
that messages arrive correctly; however, for safety and critical messages, the packet delivery
time and consequently the loss rate have great importance. In contrast, hardware elements
that contain the data to be transmitted are susceptible to noise and radiation, which may
affect one or more bits inside registers or affect the functioning of some LUTs by voltage
oscillation, for example, which is a huge problem because they are used in the SHA-3
function, resulting in a gap in security, since a completely different result can be obtained.

Every vehicle contains one SHA-3 module for authentication, which serves as sender
and receiver by using a message and a key for generating a message authentication code
(MAC). A vehicle in the VANET network sends the generated MAC along with the message
to another vehicle in the network, which uses the SHA-3 algorithm for generating another
MAC, using the received message and its key; then, the receiver compares its MAC to the
MAC of the sender, and if they are equal, the message is authenticated. In the opposite
case, the message can be rejected.

Designing and developing fault and error detection architectures requires us to know
and evaluate the different processes that are carried out and defined by the SHA-3 algorithm,
so the general methodology is described in four steps:

Sensors 2022, 22, 2985 11 of 29

1. Analysis and design of forwarding iterative architectures without error detection
and correction;

2. Design and implementation of a hardware architecture for detecting and correcting
based on HCs;

3. Analysis and improvement of the previous architecture for developing a new archi-
tecture for fault tolerance;

4. Comparison among proposed architectures and comparison against related works.

Following these steps, four architectures are developed and analyzed:

• An integral architecture for SHA-3 without fault detection (ArchSM);
• A modular architecture for SHA-3 without fault detection (ArchMM);
• An SHA-3 architecture for error detection and correction using HCs (ArchHC);
• An SHA-3 architecture using HCs and TMR (ArchTMR_HC).

It is important to emphasize that our methodology offers an additional advantage
related to the possibility of directly and fairly comparing the two architectures without
error detection and correction against the two architectures with detection and correction
of errors. Hence, we can compare the hardware design between (1) the base architectures
(without tolerance) and (2) the modified architectures (with tolerance). This comparison
provides an adequate reference measurement and an evaluation of what characteristics
are obtained and lost, such as a trade-off in terms of latency, LUT, FF, minimum period,
maximal frequency, throughput, and efficiency.

The process for providing the final architecture ArchTMR_HC is shown in Figure 3,
where the four developed SHA-3 hardware architectures present different modules and
report individual implementation results.

The proposed architectures, see Figure 3, use an FPGA VIRTEX 7 and Vivado 2020.1
(a tool for developing VHDL code) as platforms to carry out the tasks of design, devel-
opment, analysis, and testing. However, we remark that the four proposed architectures
have a generic approach allowing their implementation on several FPGA platforms (Vir-
tex, Spartan, Cyclone, Stratix, Arria, Certus, and CrossLink, among others) and ASICs
(application-specific integrated circuits). Our proposed designs do not specialize in tak-
ing advantage of specific resources (LUTs, flip-flops, array structure, slices, DSPs, chip
technology, etc.) of any FPGA technology by some manufacturer such as Xilinx, Altera,
Lattice, Actel, etc. In addition, the architectures can behave better or worse in different
FPGA technologies, depending on their internal structures, their hardware resources, algo-
rithms, and the Place/Route strategies of the implementation tools. This fact requires other
research topics to explore different FPGAs and which ones can deliver better results.

The basic architecture is called ArchSM, where we implement the five step-mapping
functions in a single module. If some error occurs in ArchSM, the hash in the output will
have a completely different result. Then, we implement the five step-mapping functions
separately, forming five separate modules and five central registers. This new architecture
is called ArchMM; however, now the errors can occur in the register and the step-mapping
functions, which leads to the development of a new architecture. Implementing HCs in
the registers that store the vector makes it possible to recover the original vector if one
error occurs. This architecture is called ArchHC; nevertheless, if one error occurs in some
step-mapping function, the hash will be different than the expected one since they have
no protection.

Sensors 2022, 22, 2985 12 of 29

1600

l

ArchSM

Hamming
Protection

A0 VS

?1

A1 VS

?1

VS A2

? 1

? 2

? 3

VSA4

?1

?2

?3

 A3VS

?1

?2

?3

?2

?3

?2

?3

input A0 ? ?

?

A1

A2 A3

? A4 ?

?? ?? ?? ?? ?

ArchMM

Hamming
Protection

ArchHC

ArchTMR_HC

input output

stop2stop1

stop3stop4

stop5

input

output

1600

l l l

lll

l l l

1600 1600 1600 1600

160016001600

1600 1600 1600

output

l

input A0 ? ?

?

A1

A2A3

? A4 ?

l l l

lll

l l l

1600 1600 1600 1600

160016001600

1600 1600 1600

output

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

1600

1600

1600

1600

1600

1600

1600
1600

1600

1600

1600

1600

1600

1600

1600
1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600
1600

1600

1600

1600

1600

1600

1600

Figure 3. Development of architectures from ArchSM to ArchTMR_HC.

To protect step-mapping functions against errors, we implement the TMR to each one.
If one error occurs in some module of some step-mapping function, the voting system
ignores such a fault. The correct vector will pass to the following step-mapping function;
nevertheless, if the three inputs are different, we cannot obtain a correct output, and a stop
flag is activated. By combining TMR and HCs, we construct the final architecture, called
ArchTMR_HC.

The sponge function is the same for all architectures; the state machine in all archi-
tectures is centered at the KECCAK-p level since step-mapping functions are implicit.
For notation in the state machine, the ok suffix is equivalent to READY; thus, ok indicates
when some function has been completed; for example, if θok = 1, then θ output is ready to
be communicated to the next module.

4.1. System Model

In Figure 4, we show how our proposed architectures can be implemented in a VANET
environment. In the system, every vehicle contains one SHA-3 module for authentication,
which serves as sender and receiver by using a message and a key for generating a mes-
sage authentication code (MAC). A vehicle in the VANET network sends the generated
MAC along with the message to another vehicle in the network, which uses the SHA-3
algorithm for generating another MAC, using the received message and its key. Then,
the receiver compares its MAC to the MAC of the sender, and if they are equal, the message
is authenticated. In the opposite case, the message can be rejected.

Sensors 2022, 22, 2985 13 of 29

Figure 4. System model to implement SHA-3 architectures in VANETs.

4.2. SHA-3 Architecture

The SHA-3 architecture, shown in Figure 5, receives the input message M, whose
maximum size is 1600 − 2 × d; then, it is padded for getting a vector of size r, which
is mapped to obtain the 1600 bits that enter through the multiplexer to the round Archi
function, (where i can be SM, MM, HC, or TMR_HC). Next, the vector is feeded back
until the 24 Rounds are completed, and when the counter is equal to 24, a flag is activated
through a comparator, and the correct truncated hash with size d is obtained.

Round(Arch) is a function where the parameter Arch can be substituted for any of the
four architectures without (ArchSM and ArchMM) and with (ArchHC and ArchTMR_HC)
fault tolerance that are described next.

Figure 5. SHA-3 general architecture.

4.3. SHA-3 Architecture without Fault Tolerance

We propose two SHA-3 hardware architectures without fault tolerance: the first archi-
tecture is called ArchSM (Architecture Single-Module) and implements five step-mapping
functions in a single module. The second architecture is called ArchMM (Architecture
Multi-Module) and implements five step-mapping functions as different modules.

4.3.1. ArchSM

The five step-mapping functions (θ, ρ, π, χ, ι) were implemented in the same module
(see Figure 6a), which has four inputs—IN, enable (EN), clock (CLK), and reset (RST)—
and two outputs—OUT and a control signal called READY that pinpoints when the process
has been completed.

Sensors 2022, 22, 2985 14 of 29

(a) (b)

Figure 6. ArchSM at Round level and ArchSM state machine at KECCAK-p level. (a) ArchSM at
Round level. (b) ArchSM state machine at KECCAK-p level.

The input IN is operated by five step-mapping functions; then, bus OUT is obtained;
Round constants are stored inside the module as arrays and operated on directly in ι. After
24 runs of Round, the state machine (see Figure 6b) indicates that KECCAK-p function
has been completed. The process starts in state S0; when the EN signal takes a value of 1,
a transition to state S1 is made, and then 24 runs of Round function are counted. When this
counter takes a value of 24, the process has been completed; in state S2, signal RST allows a
new run of KECCAK-p.

4.3.2. ArchMM

Each one of the five step-mapping functions was implemented as a different module
(see Figure 7a). Each module has four inputs—IN, enable (EN), clock (CLK), and reset
(RST)—and two outputs—OUT and a control signal called READY, which indicates when
the process has been completed. The output of θ and its READY signal are connected to ρ
input and to its EN signal since ρ is activated when θ has been completed; the process is
repeated for the remaining functions until ι output is obtained.

(a) (b)

Figure 7. ArchMM at Round level and ArchMM state machine at KECCAK-p level. (a) ArchMM at
Round level. (b) ArchMM state machine at KECCAK-p level.

Round constants are stored as arrays, and they are multiplexed into ι by a control
signal of five bits, corresponding to variable ir. Figure 7b shows the ArchMM state machine,
which introduced extra states since step-mapping functions were implemented as separate
modules. There are eight states in the ArchMM state machine, going from S0 to S7; the
initial state corresponds to S0 and the final state to S7. The module θ is represented by
S1, ρ by S2, π by S3, χ by S4, and ι by S5. State S6 controls if 24 runs of Round have been
completed. The Round constants are disclosed by cryptographic systems’ definition and

Sensors 2022, 22, 2985 15 of 29

also the algorithm used with all its internal processes. The algorithm’s strength lies in the
computational complexity of the direct and inverse mathematical calculations.

4.4. SHA-3 Architecture with Fault Tolerance

We propose two SHA-3 hardware architectures with fault tolerance. The first is called
ArchHC, which uses HCs, implementing two extra modules: a Hamming Encoder and a
Hamming Decoder. The second is called ArchTMR_HC, which uses HCs and TMR.

4.4.1. ArchHC

The five step-mapping functions implemented as modules in ArchMM were reused in
ArchHC along with two extra modules: Hamming Encoder and Hamming Decoder.
Hamming Encoder: The input length is 1600; thus, eleven redundant bits are necessary.
Hamming Encoder calculates the position of eleven redundant bits and then calculates their
values. These positions are 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 210 for a total of 1611 bits;
thus, the output size is 1611; each value of the redundant bits is calculated using even
parity and an XOR operation over every bit whose value in ith position is equal to one for
the ith redundant bit. Hamming Encoder has four inputs—IN, enable (EN), clock (CLK),
and reset (RST)—and two outputs—OUT and a control signal called READY.

Hamming Decoder: It is implemented before every step-mapping function and detects
one error in any bit using parity check, which allows for detecting incorrect bit position,
and finally, a gate not corrects this error. Hamming Decoder has four inputs—coded
signal (IN), EN, CLK, and RST—and two outputs—decoded signal OUT and a valid output
indicator (READY). ArchHC is shown in Figure 8a; Hamming Encoders and Hamming
Decoders protect every register against faults (Hamming protection) since errors can be
detected and corrected. The registers are named A0, A1, A2, A3, and A4; these registers are
the inputs to the step-mapping functions θ, ρ, π, χ, and ι, respectively.

(a) (b)

Figure 8. ArchHC at Round level and ArchHC state machine at KECCAK-p level. (a) ArchHC at
Round level. (b) ArchHC state machine at KECCAK-p level.

The control process for ArchCH is shown in the state machine of Figure 8b. In addition
to states representing step-mapping functions, extra states are necessary since we introduce
Hamming Encoders and Hamming Decoders.

The state machine of ArchHC has 18 states, going from S0 to S17; the initial state is
S0, the final state is S17, and the counter for determining 24 runs of Round corresponds to
state S16. States S3, S6, S9, S12, and S15 correspond to step-mapping functions, whereas the
remaining states represent Hamming Encoders and Hamming Decoders.

4.4.2. ArchTMR_HC

This architecture implements TMR in every step-mapping module, and then a voting
system (VS) determines the winner output. The five central registers are protected by Ham-
ming Encoders and Hamming Decoders, which allow for error detection and correction
capacity; ArchTMR_HC architecture is shown in Figure 9a.

Sensors 2022, 22, 2985 16 of 29

(a) (b)

Figure 9. ArchTMR_HC at Round level and ArchTMR_HC state machine at KECCAK-p level.
(a) ArchTMR_HC at Round level. (b) ArchTMR_HC state machine at KECCAK-p level.

The input is stored into A0; then, it is sent to θ, which is triplicated (TMR). The process
in each module θ is executed, and we obtain three outputs. These outputs enter the voting
system, where a combinational circuit is executed and a single winner output is obtained,
which is stored in A1. If the three inputs are different, a correct result cannot be obtained;
thus, a flag indicates the error, and the algorithm stops. This process is repeated for
the remaining registers and step-mapping modules until an output of the final voting
system (connected to ι) is obtained. Hamming protection (formed by Hamming Encoders
and Hamming Decoders) allows for detecting and correcting errors at the register level.
In contrast, TMR applied at step-mapping allows for continuing operating correctly in the
presence of errors. We show the state machine for ArchTMR_HC in Figure 9b; in addition
to states of step-mapping modules and Hamming Encoders and Decoders, extra states for
the voting systems are introduced. The state machine is formed by 23 states, from S0 to
S22; the initial state is S0, and the final state is S22; state S21 controls 24 runs of Round.
Step-mapping modules correspond to states S3, S7, S11, S15, and S19; voting systems to
states S4, S8, S12, S16, and S20; and remaining states correspond to Hamming Encoders
and Hamming Decoders.

The Hamming Encoding is applied after the voting system since the winner output
needs to be protected before sending it to the next step-mapping function. If there is an error
in this stage, we identify three possible faults for ArchTMR_HC: (1) errors in one module,
(2) errors in two modules, and (3) errors in three modules. Each voting system stage has
a “stop” signal, which is activated if there are errors in at least two of the three modules
(points 2 and 3). In this case, it cannot be determined which output is correct since this is
the nature of the TMR approach. The voting system is implemented as if-else instructions.
Thus, the resources needed for its development depend on the instrument used and the
type of codification; in our case, Vivado 2020.1 requires 3217 LUTs and 1602 FFs. We can
infer that the synthesis is made bit by bit. Finally, it could be any number of faults in one
module; this will result in one vector of 1600 bits different from the other two vectors;
then, the majority voting system will ignore the faulty vector, and the correct one will be
transmitted to the next module.

Next, these four architectures are evaluated, making fair comparisons among our
designs, which provide analysis as references, as well as making comparisons with work
related to both fault-tolerant and nontolerant schemes.

5. Results

This section provides results for the developed SHA-3 architectures such as resources
comparison, incremental costs, and error coverage capacity.

Sensors 2022, 22, 2985 17 of 29

5.1. Resources Comparison for SHA-3 Architectures with and without Fault Tolerance

When algorithms are implemented on some platform, we might computationally
compare their implementations on two main ideas: time and space complexity. The first
quantifies the time to execute as a function, and the second quantifies the required amount
of space or memory. In this work, hardware implementations are developed, tested,
and compared. The parameters used for comparing are:

• Time: latency, minimum period, and clock frequency.
• Space: look-up tables, flip-flops, and hash size.
• Time and space: throughput and efficiency rates for combining both parameters.

In the end, comparisons on hardware can be unfair if different technologies are used,
but the implementation results enable us to provide values as references, see Table 3.

A fair comparison is challenging. It depends on each technology, and the same design
can represent benefits by the FPGA of one manufacturer and be penalized by the FPGA of
another one or other technology such as ASIC. Therefore, we present the trade-off analysis,
highlighting that (1) we compare our fault-tolerant designs against fault-tolerant related
work as black boxes since a fair comparison is complicated (e.g., different goals, platforms,
and results); (2) trying to solve the above, we propose our nontolerant architecture to
compare with our tolerant architecture and have a fair comparison with implementation
results that give a reference in hardware architectures in a better way; and (3) we present
our nontolerant architecture against nontolerant related works to show that the design
is competitive.

Results for the two architectures without fault tolerance (ArchSM and ArchMM) and
for the two architectures with fault tolerance (ArchHC and ArchTMR_HC) are shown in
Table 3.

Table 3. Results comparison of SHA-3 hardware architectures without and with fault tolerance.

Architecture Hash Latency LUT FF Minimum Period
(ns)

Max. Frequency
(Mhz)

Throughput
(Mbps)

Efficiency
(Mbps/LUT)

ArchSM

224 27 2339 2361 4.38 228.25 13,526 5.78

256 27 2453 2457 5.14 194.32 11,516 4.69

384 27 2346 2841 4.27 233.75 13,852 5.90

512 27 2332 3225 4.33 230.62 13,667 5.86

ArchMM

224 199 2947 10,124 10.47 95.46 768 0.26

256 199 2947 10,188 9.99 100.01 804 0.27

384 199 2947 10,444 10.43 95.80 770 0.26

512 199 2947 10,700 10.51 95.10 765 0.25

ArchHC

224 299 28,703 18,192 21.79 45.89 246 0.0085

256 299 28,702 18,256 24.33 41.09 220 0.0076

384 299 28,695 18,512 20.85 47.95 257 0.0089

512 299 27,224 18,768 19.37 51.60 276 0.010

ArchTMR_HC

224 443 27,226 26,197 15.72 63.58 230 0.0084

256 443 27,233 26,261 16.95 58.97 213 0.007

384 443 27,244 26,517 15.70 63.66 230 0.0084

512 443 27,222 26,773 15.39 64.96 235 0.0086

For architectures without fault tolerance, we show in Table 3 that ArchSM achieved a
latency of 27 clock cycles in all four hash sizes, a maximum throughput of 13 852 Mbps in
the hash size 384, and maximum efficiency of 5.90 Mbps/LUT, also in the hash size 384,
whereas ArchMM achieved a latency of 199 clock cycles in the four hash sizes, a maximum

Sensors 2022, 22, 2985 18 of 29

throughput of 804 Mbps in the hash size 256, and maximum efficiency of 0.27 Mbps/LUT
in the hash size 256. These results show that ArchSM is superior in all evaluation metrics.
For architectures with fault tolerance, we show in Table 3 that ArchHC had a latency of
299 clock cycles in the four hash sizes, a maximum throughput of 276 Mbps in the hash
size 512, and maximum efficiency of 0.01 Mbps/LUT, also in the hash size 512. In the
case of ArchTMR_HC, the achieved latency in the four hash sizes is 443, the maximum
throughput was obtained by the hash size 384 with 230 Mbps, and the maximum efficiency
was obtained by the hash size 512 with 0.008 Mbps/LUT. ArchHC reports better results
in most evaluation metrics, and the determination of the better architecture with fault
tolerance depends on the number of errors that the architecture can detect and correct. We
show and discuss these results in the Error Coverage Capacity for SHA-3 Architectures
with Fault Tolerance section.

5.2. Example of Detection and Correction of Errors

An example of how the errors can be detected and corrected is shown in Table 4,
consisting of seven different steps, taking the first seven bits of a total of 1600 and the theta
step-mapping function. The process can be extended to any function and the 11 redundant
bits necessary for covering the 1600 bits. (1) The first seven bits (called m) of a total of 1600
are taken. (2) The XOR operation calculates the i-th parity bit whose binary representation
has a one in the i-th least significant bit, in this case, p1, p2, p3, and p4. They are added to
the message m for forming a message m′; this process is shown in Table 5a. (3) One error is
generated in a random bit; in this case, the bit at position seven is changed from one to zero.
(4) The error is detected and corrected when the data are transmitted through the Hamming
Decoder by using four parity check bits (pc1, pc2, pc3, and pc4), which determine the
position of the error; in this case, the obtained value is seven (0111); this process is shown
in Table 5b. The bit at the seventh position is changed using a not instruction. (5) After
correcting the error, the original message is recovered and is transmitted to the three theta
modules (θ1, θ2, and θ3). (6) Errors are generated in a random module, for example, in θ1,
which causes a different output than the outputs of θ2 and θ3. (7) The outputs of the three
theta modules are the inputs to the voting system that determines the output through a
majority vote.

Letter di represents the data with i = 1, 2, 3, 4, 5, 6, 7, and pj represents the parity
bits with j = 1, 2, 3, 4, in the Hamming Encoder process (see Table 5a). For calculating
p1, the data bits whose binary representations have a one in the first position are XOR-ed.
The data bits for calculating p1 are d1, d2, d4, d5, and d7. For calculating p2, the data bits
whose binary representations have a one in the second position are XOR-ed. The same idea
is applied for calculating the remaining parity bits. Table 5b shows the process for detecting
and correcting the injected error (bit d4 was changed from one to zero), where four parity
check bits (pc) are necessary. For calculating pc1, all data bits and parity bits whose binary
representations have a one in the first position are XOR-ed, and so on. In general, for
calculating pci, all data bits whose binary representations have a one in the i-th position are
XOR-ed. The four pc bits indicate the presence or absence of errors. If the four pc bits have
a value of zero, there is no error. Otherwise, there is an error in the position obtained, such
that pc4 pc3 pc2 pc1. In the developed example, the obtained value in binary was 0111; then,
the bit in position seven has an error. As last step, the process is finalized when a operation
not corrects the error.

Sensors 2022, 22, 2985 19 of 29

Table 4. Error detection and correction algorithms execution.

(1) First seven bits are considered
m = 1001010

(2) Four parity bits are added using the Hamming Encoder (Table 5a)
p1 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0, p1 = 1
p2 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0, p2 = 0
p3 = 1 ⊕ 0 ⊕ 1, p3 = 0
p4 = 1 ⊕ 0 ⊕ 0, p4 = 1
m′ = 10011010001

(3) One error is generated in a random bit
m′ = 10010010001

(4) The error is detected and corrected when the data are transmitted through the Hamming Decoder
pc1 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1, pc1 = 1
pc2 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0, pc2 = 1
pc3 = 0 ⊕ 0 ⊕ 1 ⊕ 0, pc3 = 1
pc4 = 1 ⊕ 0 ⊕ 0 ⊕ 1, pc4 = 0
The error is detected at position seven (0111); a not instruction corrects the error
m′ = 10011010001

(5) The original message m at the output of the decoder is transmitted to θ1, θ2, and θ3
inθ1 = 1001010
inθ2 = 1001010
inθ3 = 1001010

(6) Errors are generated in a random module i, for example, θ1
outθ1 = 1010000
outθ2 = 0001110
outθ3 = 0001110

(7) The voting system determines the output by a majority vote
outputVS = outθ1 × outθ2 + outθ1 × outθ3 + outθ2 × outθ3, outputVS = 0001110

Table 5. Hamming Encoder and Decoder processes for error detection and correction in the example
of seven bits.

(a) Hamming Encoder process for the example of seven bits

d7 d6 d5 p4 d4 d3 d2 p3 d1 p2 p1

position 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001
original word 1 0 0 1 0 1 0

p1 1 0 1 1 0 1

p2 1 0 1 0 0 0

p3 1 0 1 0

p4 1 0 0 1

original + parity 1 0 0 1 1 0 1 0 0 0 1

(b) Hamming Decoder process for the example of seven bits with one error

d7 d6 d5 p4 d4 d3 d2 p3 d1 p2 p1 parity check

position 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

original + parity 1 0 0 1 0 0 1 0 0 0 1

pc1 1 0 0 1 0 1 1

pc2 1 0 0 0 0 0 1

pc3 0 0 1 0 1

pc4 1 0 0 1 0

If there is no error, the HCs will have a pc value of zero, indicating no error; for TMR,
since the three inputs are equal, the output can only have the correct value.

Sensors 2022, 22, 2985 20 of 29

If there is more than one error, HCs cannot detect them, since the pc bits indicate only
one position. For TMR, if there are errors in at least two modules (for example, in θ1 and
θ2), the three outputs outθ1, outθ2, and outθ3 are different; thus, the voting system is unable
to detect a majority output.

The communication channel of VANET is highly dynamic due to the mobility of nodes,
the frequent topology change, and the high variability in nodes’ density and neighborhood.
Therefore, packet loss estimation impacts the transmission quality of VANETs. The link
quality is affected by buildings, trees, road surfaces, and even the weather. Having a good
knowledge of the VANET link is vital for designing the upper-layer protocols. According
to Jian et al. [48], the node-to-node distance impacts the quality of the link in VANET. There
are several error sources, for example, the packet error sequence may be represented as
a binary sequence Xk where Xk = 1 if the kth packet is in error and Xk = 0 otherwise.
The node-to-node distance impacts the link quality of VANET. The packet error rates will
increase with the distance between nodes, and the range of the packet error rate also
increases with distance. If the distance is less than 20 m, the packet loss rate will be under
0.05, and it will become larger obviously if the distance is more than 30. The link qualities at
different times are more or less similar. The link quality does not vary with time. Whether
the car traffic is heavy or light, the packet error rates under the same scenario share the
same probability distribution if the node-to-node distance is in the same range. To estimate
the packet error rate at the wireless link of VANET, we can use two methods. The first is a
passive measurement method based on PLM (packet-level Makov). The second is RPEE
(real-time packet error estimation). For further reference to these two methods, we can
consult [48].

5.3. Incremental Costs for SHA-3 Architectures with and without Fault Tolerance

It is crucial to highlight that Table 6 serves to make two types of comparisons: (A) com-
parisons between our architecture without fault tolerance and the fault-tolerant architecture,
which evaluates within the same design’s ideas, and the advantages and disadvantages
that tolerant architectures entail and (B) comparisons between our architectures and related
work to understand the contribution by grouping and comparing for two cases, tolerant
architectures and nontolerant architectures. If there were no results from the nontolerant ar-
chitecture of type A, it would be challenging to compare fault-tolerant works because there
are no previous works. In this way, comparing our architectures ArchSM and ArchMM
against our architectures ArchHC and ArchTMR_HC, there is an increase in hardware
resources due to the number of modules based on Hamming Codes and Triple-Modular
Redundancy, as well as an increase in latency and minimum period and consequently a
decrease in the maximum operating frequency, throughput, and efficiency, although solv-
ing faults at different levels. In type B, Table 6 shows that comparing only nontolerant
architectures, case A, our architecture reports high performance and high efficiency against
related nontolerant architectures, so this design presents an important proposal within
this group of ideas. Comparing only our tolerant architectures against tolerant related
work, case B, we have the highest performance operating at a lower frequency of operation,
improving both time and space complexities.

In Table 6, we show the incremental costs for architectures ArchHC and ArchTMR_HC,
taking ArchSM and ArchMM as references, where they are measured in terms of through-
put, the cost of adding five step-mapping functions as different modules in ArchMM,
Hamming Encoders and Decoders in ArchHC, and Hamming Encoders and Decoders and
triplication of step-mapping functions in ArchTMR_HC.

Sensors 2022, 22, 2985 21 of 29

Table 6. Incremental costs.

(a) Taking ArchSM as a basis

Architecture/Hash Throughput
(Mbps)

Performance
Degradation (%)

ArchSM

224 13,526.42 -
256 11,515.59 -
384 13,852.09 -
512 13,666.80 -

ArchHC

224 245.57 98.18
256 219.92 98.09
384 256.62 98.14
512 276.14 97.97

ArchTMR_HC

224 229.66 98.30
256 213.01 98.15
384 229.95 98.33
512 234.63 98.28

(b) Taking ArchMM as a basis

Architecture/Hash Throughput
(Mbps)

Performance
Degradation (%)

ArchMM

224 767.56 -
256 804.10 -
384 770. 28 -
512 764.64 -

ArchHC

224 245.57 68
256 219.92 72.65
384 256.62 66.68
512 276.14 63.88

ArchTMR_HC

224 229.66 70.07
256 213.01 73.50
384 229.95 70.14
512 234.63 69.31

We take as a base the ArchSM architecture for measuring the number of bits that archi-
tectures with fault tolerance can process. Thus, it is necessary to measure the throughput of
architectures ArchSM, ArchHC, and ArchTMR_HC; consequently, the performance degra-
dation is calculated using a rule of three. The architecture ArchSM implements the five
step-mapping functions into one single module and takes one clock cycle for completing
one run of Round. ArchHC implements every step-mapping function as a different module
and introduces HCs by developing an Encoder and a Decoder for protecting the registers.
Some clock cycles are necessary by the Encoder for calculating parity bits at positions
that are a power of two. In contrast, extra clock cycles are necessary by the Decoder for
recovering the original vector and correcting if there is one error in any position. This
implementation increases every run of Round to 12 clock cycles. Therefore, the throughput
decreases to a maximum of 245.57 Mbps, corresponding to a performance degradation of
98.18% for the hash size of 224 bits; we show these results in Table 6a. ArchTMR_HC is
an improvement of ArchHC. ArchTMR_HC also implements each step-mapping function
as a different module and HCs as an Encoder and a Decoder; nevertheless, for achieving
higher robustness, a TMR was applied by triplicating every step-mapping function. TMR
requires extra clock cycles to determine the majority output using the voting system; then,
every run of Round takes 18 clock cycles; consequently, the throughput of ArchTMR_HC
decreases to a maximum of 229.95 Mbps, which corresponds to a performance degradation
of 98.33% for the hash size of 384 bits. Table 6b shows these results.

In Table 6b, ArchMM is the base for measuring the number of bits that architectures
with fault tolerance can process. ArchMM implements every step-mapping as a different
module and takes eight clock cycles to complete one run of Round; in addition, it is the
basis for forming ArchHC. Since the latter implements HCs, the degradation reaches a
throughput of 219.92 Mbps with a performance degradation of 72.65% for the hash size of
256 bits. Similarly, the extra clock cycles necessary for the voting system in ArchTMR_HC

Sensors 2022, 22, 2985 22 of 29

decrease the throughput to a maximum of 213.01 Mbps with a performance degradation of
73.50% for the hash size of 256 bits.

The architecture without fault tolerance (ArchSM) can process a maximum of
13,852.09 Mbps for the hash size of 384 bits. Hence, we recommend this architecture for
applications requiring considerable processing data with noise-free ambient conditions to
provide integrity and authenticity. In contrast, we recommend the two architectures with
fault tolerance (ArchHC and ArchTMR_HC) when it is more important to give preference
to the protection for generating the hash in the presence of noisy environments, since the
change in one single bit can generate a completely different hash due to the avalanche effect.

5.4. Error Coverage Capacity for SHA-3 Architectures with Fault Tolerance

Error coverage capacity shows the number of bits that architectures ArchHC and
ArchTMR_HC can handle, in this case, error detection and correction capacity, where
ArchHC is based on HCs and ArchTMR_HC on HCs and TMR. HCs’ algorithm can detect
and correct one error in any bit; therefore, the developed architectures are limited by the
HCs’ capacity. Figures 8a and 9a show the proposed architectures with their five main
functions in a single run, operating concurrently and allowing us to implement Hamming
protection against errors. If 24 runs are required, then up to 120 errors can be reviewed
(this is the case for ArchHC). Each of the five central registers has Hamming protection,
which involves one implementation of the HCs for every register. There is a maximum
of one error that can be detected and corrected for each register (named A1, A2, A3, A4,
and A5), for each run of Round, and KECCAK-p has 24 runs of Round. We remark that it is
possible that the SHA-3 algorithm can have n runs of KECCAK-p, depending on the size of
the message; thus, the total possible number of errors is represented by Equation (2).

E =
n−1

∑
k=0

23

∑
j=0

4

∑
i=0

eijk such that 0 ≤ i < 5,

0 ≤ j < 24, 0 ≤ k < n, 0 ≤ E ≤ 120, e : {0, 1} (2)

where E is the total number of errors in the registers, eijk is the error in the i-th register at the
j-th run of Round for the k-th run of KECCAK-p. Thus, eijk can take the value zero if there
is no error and one if there is an error. The worst scenario that the architecture ArchHC
can afford is the case when each register has one error. In Figure 10a, we represented
this scenario; however, if any error occurs in the step-mapping modules, they cannot be
detected or corrected, leading to the development of ArchTMR_HC.

(a) (b)

Figure 10. Error injection for ArchHC and ArchTMR_HC. (a) Error injection in ArchHC at Round
level. (b) Error injection in ArchTMR_HC at Round level.

Sensors 2022, 22, 2985 23 of 29

Architecture ArchTMR_HC is an improvement of architecture ArchHC since both
implement HCs. ArchTMR_HC also can detect and correct a maximum of one error for each
register. ArchTMR_HC also implements TMR for the step-mapping functions, allowing
the architecture to continue operating if there is one error in one of the three replicas for
each step-mapping function (θ, ρ, π, χ, and ι), as shown in Figure 10b. Nevertheless, if the
three inputs are different, we cannot obtain a correct output, and a stop flag is activated.
Hamming protection can detect and correct errors in the five central registers, and TMR
allows for operating correctly in the presence of errors at the step-mapping level.

On the one hand, ArchHC error coverage capacity in the worst case is one error in
every register. Therefore, since there are five registers, a total of five errors can be detected
and corrected for every run of Round; consequently, since KECCAK-p consists of 24 runs
by Round. There are a total of 120 errors that can be detected and corrected in the worst
case. On the other hand, ArchTMR_HC error coverage capacity in the worst case is one
error in every register and one error in every step-mapping function. Hence, since there
are five registers and five step-mapping functions, a total of ten errors per every run of
Round can be detected and corrected, for a cumulative total of 240 errors for every run
of KECCAK-p.

In Figure 11, the number of detected and corrected errors for every run of KECCAK-p
for architectures with fault tolerance is shown, where ArchTMR_HC duplicates the ArchHC
capacity. If two KECCAK-p runs are necessary, each architecture duplicates its capacity.
If three runs are required, each architecture triplicates its capacity, extending this behavior
to any number of runs of KECCAK-p.

5.5. Comparison with Other Works

In Table 7, we compare our architectures with other works. We consider architectures
without fault tolerance and error detection capacity and with error detection and correction
capacity. To the best of our knowledge, the only SHA-3 architectures that can detect and
correct errors in the state of the art are ArchHC and ArchTMR_HC. For this reason, no fair
comparison with Luo [20] or Bayat [21] can be made, since these last two only can detect
errors but not correct them. Nevertheless, Table 7 allows us to illustrate how the techniques
of HC and TMR have been implemented in other contexts, identifying the space and time
complexity of each work.

Figure 11. Error coverage capacity.

Sensors 2022, 22, 2985 24 of 29

Table 7. Results comparison among different architectures.

Design Hash Latency LUT’s FF Area
(um2)

Timing
(ns)

Frequency
(Mhz)

Throughput
(Mbps)

Efficiency 1
(Mbps/LUT)

Efficiency 2
(Mbps/Slice)

Without Fault
Tolerance

ArchSM

224 27 2339 2361 - 4.38 228.25 13,526 5.78 -

256 27 2453 2457 - 5.14 194.32 11,516 4.69 –

384 27 2346 2841 - 4.27 233.75 13,852 5.90 -

512 27 2332 3225 - 4.33 230.62 13,667 5.86 -

ArchMM

224 199 2947 10,124 - 10.47 95.46 768 0.26 -

256 199 2947 10,188 - 9.99 100.01 804 0.27 -

384 199 2947 10,444 - 10.43 95.80 770 0.26 -

512 199 2947 10,700 - 10.51 95.10 765 0.25 -

Moumni [49]

224 24 - - - - - 19,860 - 13.87

256 24 - - - - - 18,750 - 13.10

384 24 - - - - - 14,340 - 10.02

512 24 - - - - - 9,930 - 6.93

224 2 - - - - - 33,350 - 2.14

256 2 - - - - - 31,500 - 2.02

384 2 - - - - - 24,090 - 1.55

512 2 - - - - - 16,670 - 1.07

Gangwar [50] - 24 - - - - 309.6 14,040 - 11.24

Error Detection
Luo [20] - - - - 52,867.2 4.5 - - - -

Bayat [21] - - - - 69.24 - 1192 25,400 - -

Error Detection
and Correction

ArchHC

224 299 28,703 18,192 - 21.79 45.89 246 0.008555 -

256 299 28,702 18,256 - 24.33 41.09 220 0.0076 -

384 299 28,695 18,512 - 20.85 47.95 257 0.0089 -

512 299 27,224 18,768 - 19.37 51.60 276 0.010 -

ArchTMR_HC

224 443 27,226 26,197 - 15.72 63.58 230 0.0084 -

256 443 27,233 26,261 - 16.95 58.97 213 0.007 -

384 443 27,244 26,517 - 15.70 63.66 230 0.0084 -

512 443 27,222 26,773 - 15.39 64.96 235 0.0086 -

The highest throughput and lowest latency in architectures without fault tolerance
was achieved by Moumni [49], with a maximum of 33,350 Mbps and two clock cycles,
both in the hash size 224; they also reported a throughput of 9930 Mbps and a latency
of 24 in the hash size 512, being overcome by the same hash size 512 by ArchSM, which
achieved a throughput of 13,667 Mbps. For architectures with error detection, Luo et al. [20]
and Bayat et al. [21] did not report the latency. For architectures with error detection and
correction, ArchHC achieved a latency of 229 due to HCs and ArchTMR_HC a latency
of 443 since HCs and TMR were applied. Other authors did not report the number of
LUTs and FFs; however, for architectures without fault tolerance in the proposed work,
the numbers of LUTs and FFs are less than those of architectures with error detection and
correction. The area was reported only by Luo et al. [20] and Bayat et al. [21] (architectures
with error detection), with a better result achieved by Bayat et al. [21] (using an ASIC
implementation with an area of 69.249 um2). The minimum period for the proposed work
is less in architectures without fault tolerance than in architectures with error detection
and correction capacity. The previous result was expected since the number of processes
such as HCs and TMR adds complexity to the system; Luo et al. [20] reported a minimum
period of 4.5 ns, bigger than proposed architectures without fault tolerance. The maximum
achieved frequency is 1192 MHz by Bayat et al. [21] in architectures for error detection,
and, similar to minimum period, the frequency results are better in architectures without
fault tolerance (reaching a maximum of 233.75 MHz in ArchSM for proposed architectures
and a value of 309.6 MHz by Gangwar et al. [50]) than in architectures with error detection
and correction capacity, where the maximum is 64.96 MHz in ArchTMR_HC for the hash

Sensors 2022, 22, 2985 25 of 29

size of 512 bits. Two different kinds of efficiency were reported, Mbps/LUT (called Effi-
ciency 1) by the proposed work and Mpbs/Slice (called Efficiency 2) by Moumni et al. [49]
and Gangwar et al. [50]. For Efficiency 1, higher results were obtained by architectures
without fault tolerance than by architectures with error detection and correction capacity.
For Efficiency 2, the higher result was obtained by Moumni et al. [49] in the hash size of
224 bits with a value of 13.87 Mbps/Slice.

We remark that if rerunning is executed, then the approach named Time Redundancy
is applied, which requires additional hardware for storing intermediate results and logic
circuits for selecting a correct response, if the latter exists. Additionally, the critical path
can be longer due to store and select output. This idea must be implemented to obtain
performance results, make fair comparisons, and avoid assumptions. Another idea for
future work, which authors had not considered, is to create an automatic process for rerun
until a fault-free result is obtained. The implementation of this idea is not obvious nor
direct, since we must consider controversies, such as what to do if there is no convergence
to a fault-free result, creating a work queue and how much to store while the corrections are
applied, what costs are regarding the temporal and spatial complexities (more hardware
resources and larger latency are necessary), the hardware architecture being very different,
and that specialized modules must be created, among other situations. These problems can
be new research work for a new article.

6. Conclusions

Noise or interference might appear in real applications such as automotives (mobile
system navigation in diverse environments), Industry 4.0 (a significant amount of machin-
ery, control, and power electronics), and IoT (too many devices communicating on multiple
networks), among others, and they can affect cryptographic services because if one error
occurs in just a single bit at the input or internal modules, the output will be completely
different due to the diffusion, leading to failures of integrity and authentication. The SHA-3
algorithm has advantages for hardware design, security, and flexibility, and it can help to
provide security properties such as integrity and authentication.

For these reasons, we implemented two hardware architectures with fault tolerance,
which directly contribute to the state of the art. To the best of our knowledge, there are no
hardware architectures that can detect and correct errors for the SHA-3 implementations.
ArchHC and ArchTMR_HC, can detect and correct (for every run of KECCAK-p) 120 and
240 errors, respectively. Thus, ArchTMR_HC has double the capacity as ArchHC for error
correction and detection since a TMR scheme was implemented in the five step-mapping
functions. On the other hand, we implemented two architectures without fault tolerance
for fair comparisons and trade-off analysis, using them as base references to measure their
resources and performances versus our architectures with fault tolerance. We demon-
strated that tolerant architectures require more hardware resources, causing more power
consumption and higher latency and providing an advantage: fault-tolerant transmission.

Nowadays, several applications and solutions are based on hash algorithms, such as
authentication of safety critical messages in VANET [51] or blockchain-assisted authentica-
tion schemes to provide message authentication, privacy-preserving, and delay solutions
for vehicular networks [52], where SHA-3 is an alternative. The analysis on effects of the
faults of the SHA-3 algorithm have been analyzed and modeled from diverse perspectives,
for example, Ref. [53] explored attacks for evaluating fault injections and revealing internal
states, providing how this injection affects the hash computation and obtaining bounds.

The proposed SHA-3 fault-tolerant hardware architectures (ArchHC and ArchTMR_HC)
are a transparent solution for VANET applications. In this sense, both architectures can
be part of a greater system to provide integrity, authentication, and digital certificates
and be part of a blockchain solution when undesirable conditions can generate and inject
faults. The model propagation for VANETs can be affected by outdoor contexts such as
climatic elements, environments, terrain factors, buildings, noises occurring by motors,
integrated circuits operating at high frequencies, parasitic inductance, capacitance, multiple-

Sensors 2022, 22, 2985 26 of 29

transmitting communication networks, among others. One altered bit can change the final
hash, causing a failure to authenticate or check integrity, which is critical in automotive
applications due to negating resources or access.

We obtained two main results concerning the trade-off of the SHA-3 fault-tolerant
hardware architectures (ArchHC and ArchTMR_HC). The first one is related to the through-
put measure, where our best results were provided by the ArchHC architecture for the
SHA-3 algorithm, which can be used on applications that require at most 276.14 Mbps,
focusing on a transparent solution for the user and the system, delivering the hash with a
fault-tolerant scheme with a higher cost of hardware resources but solving a high number
of faults through TMR and HC. The hardware architecture can not be directly compared
with another state-of-the-art FPGA implementation in fault-tolerant contexts, and it can
only be unfairly compared with an ASIC architecture [21], where the performance exceeds
the 512-bit ArchHC by an order of 92.02 times, working with a frequency of clock that beats
us by an order of 23.1 times, which is only used for reference. The second one considers
fault tolerance as a measure of performance. In this case, ArchTMR_HC architecture detects
and corrects 50% more errors than ArchHC. Therefore, when an architecture robust against
errors is needed, ArchTMR_HC should be the choice, although its throughput is lower
by 14.85%, since ArchHC reports 276 Mbps and ArchTMR_HC reports 235 Mbps, that is,
a difference of 41 Mbps.

Future work may be focused on examining alternatives to HC, such as Hsiao codes,
SEC, SEC-DED, OLS (Orthogonal Latin Square), Reed–Muller (RM), Reed–Solomon (RS),
and BCH (Bose–Chaudhuri–Hocquenghem). The analysis of these alternatives could reduce
the complexity and, consequently, critical path, improving performance. In addition,
a prominent result would be to obtain a measure of the impact of implementing the
proposed architectures over a VANET scenario, analyzing the functional behavior at the
subsystem and system levels.

Author Contributions: Conceptualization, A.T.-A., L.A.M.-R. and I.A.-B.; Data curation, F.L.-H.;
Formal analysis, L.A.M.-R., I.A.-B., M.L.-B. and J.C.L.-P.; Funding acquisition, L.A.M.-R. and I.A.-B.;
Investigation, A.T.-A.; Methodology, L.A.M.-R., I.A.-B. and M.L.-B.; Software, A.T.-A.; Supervision,
L.A.M.-R. and I.A.-B.; Validation, I.A.-B., F.L.-H., M.L.-B. and J.C.L.-P.; Visualization, A.T.-A. and
F.L.-H.; Writing—original draft, A.T.-A., L.A.M.-R. and I.A.-B.; Writing—review and editing, F.L.-H.,
M.L.-B. and J.C.L.-P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Mexican National Council for Science and Technology
(CONACYT) through Research Projects 882 and 613.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ArchHC Architecture with fault tolerance based on HC
ArchMM Architecture with Multiple Modules
ArchSM Architecture with a Single Module
ArchTMR_HC Architecture with fault tolerance based on HCs and TMR
Constants r[x,y] rotation constants
Constants RC Round constants
E number of errors
ECU engine control unit
FPGA Field-Programmable Gate Arrays
Function pad padding
Functions θ, ρ, π, χ, ι main functions of SHA-3

Sensors 2022, 22, 2985 27 of 29

HC Hamming Codes
I4.0 Industry 4.0
IIoT Industrial Internet Of Things
IoT Internet Of Things
LUT look-up table
MAC message authentication code
MAC layer medium-access control layer
MD4 message-digest algorithm 4
MD5 message-digest algorithm 5
Operator ⊕ XOR operation
Operator ROT(W, r) rotation of W by r times
RSU roadside units
SDRAM static random-access memory
SHA Secure Hash Algorithm
TMR Triple-Modular Redundancy
VANET vehicular ad hoc network
V2I vehicle-to-infrastructure
V2V vehicle-to-vehicle
Variable d output size
Variable c capacity
Variable M message
Variable N input bit string
Variable r rate or block size

References
1. Sharma, A.; Mittal, S.K.; Mittal, S. Attacks on Cryptographic Hash Function and Advances. Int. J. Inf. Comput. Sci. 2018,

5, 89–96. Available online: https://www.researchgate.net/profile/Arvind-Sharma-2/publication/328980679_Attacks_
on_Cryptographic_Hash_Functions_and_Advances/links/5bee74c592851c6b27c263b2/Attacks-on-Cryptographic-Hash-
Functions-and-Advances.pdf (accessed on 5 February 2022).

2. Viel, F.; Augusto Silva, L.; Leithardt, V.R.Q.; De Paz Santana, J.F.; Celeste Ghizoni Teive, R.; Albenes Zeferino, C. An Efficient
Interface for the Integration of IoT Devices with Smart Grids. Sensors 2020, 20, 2849. [CrossRef] [PubMed]

3. Alkhudhayr, F.; Alfarraj, S.; Aljameeli, B.; Elkhdiri, S. Information Security: A Review of Information Security Issues and
Techniques. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS),
Riyadh, Saudi Arabia, 1–3 May 2019; pp. 1–6. [CrossRef]

4. Babu, P.; Parthasarathy, E. Reconfigurable FPGA architectures: A survey and applications. J. Inst. Eng. (India) Ser. B 2021, 102,
143–156. [CrossRef]

5. Aranda, A.; Ruano, O.; Garcia-Herrero, F.; Maestro, J.A. Reliability Analysis of ASIC Designs With Xilinx SRAM-Based FPGAs.
IEEE Access 2021, 9, 140676–140685. [CrossRef]

6. Isaka, Y.; Ahmed, F.; Shintani, M.; Inoue, M. Unsupervised Recycled FPGA Detection Based on Direct Density Ratio Estimation.
In Proceedings of the 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), Torino,
Italy, 28–30 June 2021; pp. 1–6. [CrossRef]

7. Benfica, J.; Green, B.; Porcher, B.C.; Poehls, L.B.; Vargas, F.; Medina, N.H.; Added, N.; de Aguiar, V.A.P.; Macchione, E.L.A.;
Aguirre, F.; et al. Analysis of FPGA SEU sensitivity to combined effects of conducted EMI and TID. In Proceedings of the 2016
Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 17–21 May 2016; Volume 1,
pp. 887–889. [CrossRef]

8. Vargas, J.; Alsweiss, S.; Toker, O.; Razdan, R.; Santos, J. An Overview of Autonomous Vehicles Sensors and Their Vulnerability to
Weather Conditions. Sensors 2021, 21, 5397. [CrossRef]

9. Keller, A.M.; Wirthlin, M.J. Terrestrial Cosmic Ray Induced Soft Errors and Large-Scale FPGA Systems in the Cloud, SPACE-
GRANT. Utah Space Grant Consortium. 2019; pp. 1–8. Available online: https://digitalcommons.usu.edu/spacegrant/2019
/Session_three/1/ (accessed on 5 February 2022).

10. Buchner, S.; McMorrow, D. Overview of single event effects. In Proceedings of the 11th Internation School Effects Radiation
Embedded System Space Applications (SERESSA), Puebla, Mexico, 30 November–4 December 2015; pp. 62–69. Available online:
https://www.inaoep.mx/seressa2015/archivos/Lunes_16_30%20%20Buchner.pdf (accessed on 5 February 2022).

11. Li, Y.; Ge, G. Cryptographic and parallel hash function based on cross coupled map lattices suitable for multimedia communication
security. Multimed. Tools Appl. 2019, 78, 17973–17994. [CrossRef]

12. Muthukumaran, V. Efficient Digital Signature Scheme for Internet of Things. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12,
751–755. [CrossRef]

13. Salman, T.; Zolanvari, M.; Erbad, A.; Jain, R.; Samaka, M. Security Services Using Blockchains: A State of the Art Survey. IEEE
Commun. Surv. Tutor. 2019, 21, 858–880. [CrossRef]

https://www.researchgate.net/profile/Arvind-Sharma-2/publication/328980679_Attacks_on_Cryptographic_Hash_Functions_and_Advances/links/5bee74c592851c6b27c263b2/Attacks-on-Cryptographic-Hash-Functions-and-Advances.pdf
https://www.researchgate.net/profile/Arvind-Sharma-2/publication/328980679_Attacks_on_Cryptographic_Hash_Functions_and_Advances/links/5bee74c592851c6b27c263b2/Attacks-on-Cryptographic-Hash-Functions-and-Advances.pdf
https://www.researchgate.net/profile/Arvind-Sharma-2/publication/328980679_Attacks_on_Cryptographic_Hash_Functions_and_Advances/links/5bee74c592851c6b27c263b2/Attacks-on-Cryptographic-Hash-Functions-and-Advances.pdf
http://doi.org/10.3390/s20102849
http://www.ncbi.nlm.nih.gov/pubmed/32429513
http://dx.doi.org/10.1109/CAIS.2019.8769504
http://dx.doi.org/10.1007/s40031-020-00508-y
http://dx.doi.org/10.1109/ACCESS.2021.3119633
http://dx.doi.org/10.1109/IOLTS52814.2021.9486698
http://dx.doi.org/10.1109/APEMC.2016.7522900
http://dx.doi.org/10.3390/s21165397
https://digitalcommons.usu.edu/spacegrant/2019/Session_three/1/
https://digitalcommons.usu.edu/spacegrant/2019/Session_three/1/
https://www.inaoep.mx/seressa2015/archivos/Lunes_16_30%20%20Buchner.pdf
http://dx.doi.org/10.1007/s11042-018-7122-y
http://dx.doi.org/10.17762/turcomat.v12i5.1480
http://dx.doi.org/10.1109/COMST.2018.2863956

Sensors 2022, 22, 2985 28 of 29

14. Conley, J.P. Encryption, Hashing, PPK, and Blockchain: A Simple Introduction, Vanderbilt University Department of Economics
Working Papers, VUECON-19-00013. 2019. Available online: http://www.accessecon.com/Pubs/VUECON/VUECON-19-00013
.pdf (accessed on 5 February 2022).

15. Pierro, M.D. What Is the Blockchain? Comput. Sci. Eng. 2017, 19, 92–95. [CrossRef]
16. Rjaško, M. Properties of Cryptographic Hash Functions. Mikulášska Kryptobesıdka. 2008; pp. 53–62. Available online:

https://ia.cr/2008/527 (accessed on 5 February 2022).
17. Boneh, D.; DeMillo, R.A.; Lipton, R.J. On the importance of eliminating errors in cryptographic computations. J. Cryptol. 2001, 14,

101–119. [CrossRef]
18. Fatahi, M.; Ahmadi, A. Fault Tolerant FPGA: A survey. Acad. Res. 1999, 2, 6. [CrossRef]
19. Frank Hall Schmidt, Fault Tolerant Design Implementation on Radiation Hardened By Design SRAM-Based FPGA, United States

Air Force Academy. 2013. Available online: http://hdl.handle.net/1721.1/82490 (accessed on 5 February 2022).
20. Luo, P.; Li, C.; Fei, Y. Concurrent error detection for reliable SHA-3 design. In Proceedings of the 2016 International Great Lakes

Symposium on VLSI (GLSVLSI), Boston, MA, USA, 18–20 May 2016; pp. 39–44. [CrossRef]
21. Bayat-Sarmadi, S.; Mozaffari-Kermani, M.; Reyhani-Masoleh, A. Efficient and Concurrent Reliable Realization of the Secure

Cryptographic SHA-3 Algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2014, 33, 1105–1109. [CrossRef]
22. Juliato, M.; Gebotys, C. SEU-resistant SHA-256 design for security in satellites. In Proceedings of the 2008 10th International

Workshop on Signal Processing for Space Communications, Rhodes, Greece, 6–8 October 2008; pp. 1–7. [CrossRef]
23. Michail, H.E.; Athanasiou, G.S.; Theodoridis, G.; Gregoriades, A.; Goutis, C.E. Design and implementation of totally-self checking

SHA-1 and SHA-256 hash functions’ architectures. Microprocess. Microsyst. 2016, 45, 227–240. 2016.05.011. [CrossRef]
24. Cunha, F.; Villas, L.; Boukerche, A.; Maia, G.; Viana, A.; Mini, R.A.F.; Loureiro, A.A.F. Data communication in VANETs: Protocols,

applications and challenges. Ad Hoc Netw. 2016, 44, 90–103. [CrossRef]
25. ATMEL. Rad-Hard 32 bit SPARC V8 Reconfigurable Processor:ATF697FF. Available online: https://www.microchip.com/

content/dam/mchp/documents/OTH/ProductDocuments/DataSheets/ATF697FF.pdf (accessed on 5 February 2022).
26. Davidson, A. A New FPGA Architecture and Leading-Edge FinFET Process Technology Promise to Meet Next Generation System

Requirements. High-End FPGA Products, San Jose, CA, USA, 2015. Available online: https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/wp/wp-01220-hyperflex-architecture-fpga-socs.pdf (accessed on 14 March 2022).

27. Intel. Intel Arria 10 FPGAs & SoCs. Available online: https://www.intel.com/content/www/us/en/products/details/fpga/
arria/10.html (accessed on 5 February 2022).

28. Intel. Intel MAX 10 FPGA. Available online: https://www.intel.com/content/www/us/en/products/details/fpga/max/10
.html (accessed on 5 February 2022).

29. Sasidharan, A.; Nagarajan, P. VHDL Implementation of IEEE 754 floating point unit. In Proceedings of the International
Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27–28 February 2014; pp. 1–5.
[CrossRef]

30. Rivest, R.; Dusse, S. The MD5 Message-Digest Algorithm. 1992. Available online: http://altronic-srl.com.ar/md5%20algoritmo.
pdf (accessed on 5 February 2022).

31. Eastlake, D.; Jones, P. US Secure Hash Algorithm 1 (SHA1). 2001. Available online: https://www.hjp.at/(st_a)/doc/rfc/rfc3174.
html (accessed on 5 February 2022).

32. Wang, X.; Yin, Y.L.; Yu, H. Finding collisions in the full SHA-1. In Lecture Notes in Computer Science, Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 17–36._2. [CrossRef]

33. Dobbertin, H.; Bosselaers, A.; Preneel, B. RIPEMD-160: A strengthened version of RIPEMD. In Lecture Notes in Computer
Science, Proceedings of the International Workshop on Fast Software Encryption, Cambridge, UK, 21–23 February 1996; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 71–82._44. [CrossRef]

34. Dang, Q.H. Secure Hash Standard; FIPS 180-4; Federal Inf. Process. Stds. (NIST FIPS); NIST Pubs: Gaithersburg, MD, USA, 2015.
35. Penard, W.; van Werkhoven, T. On the secure hash algorithm family. National Security Agency. Tech. Rep. 2008. Avail-

able online: https://blog.infocruncher.com/resources/ethereum-whitepaper-annotated/On%20the%20Secure%20Hash%20
Algorithm%20family%20(2008).pdf (accessed on 5 February 2022).

36. Dworkin, M. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; Federal Inf. Process. Stds. (NIST FIPS);
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [CrossRef]

37. Chang, S.; Perlner, R.; Burr, W.; Sonmez, M.; Kelsey, J.; Paul, S.; Bassham, L. Third-Round Report of the SHA-3 Cryptographic Hash
Algorithm Competition; NIST Interagency/Internal Report (NISTIR); National Institute of Standards and Technology: Gaithersburg,
MD, USA, 2012. [CrossRef]

38. Bertoni, G.; Daemen, J.; Peeters, M.; Van Assche, G. Keccak. In Lecture Notes in Computer Science, Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, 26–30 May 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 313–314._19. [CrossRef]

39. Bertoni, G.; Daemen, J.; Hoffert, S.; Peeters, M.; Van Assche, G.; Van Keer, R. Strengths of Keccak. Recover 6, September 2021, from
Team Keccak Website. 2008–2021. Available online: https://keccak.team/keccak_strengths.html (accessed on 5 February 2022).

40. Rurik, W.; Mazumdar, A. Hamming codes as error-reducing codes. In Proceedings of the 2016 IEEE Information Theory Workshop
(ITW), Cambridge, UK, 11–14 September 2016; pp. 404–408. [CrossRef]

http://www.accessecon.com/Pubs/VUECON/VUECON-19-00013.pdf
http://www.accessecon.com/Pubs/VUECON/VUECON-19-00013.pdf
http://dx.doi.org/10.1109/MCSE.2017.3421554
https://ia.cr/2008/527
http://dx.doi.org/10.1007/s001450010016
http://dx.doi.org/10.13140/RG.2.1.1999.7606
http://hdl.handle.net/1721.1/82490
http://dx.doi.org/10.1145/2902961.2902985
http://dx.doi.org/10.1109/TCAD.2014.2307002.
http://dx.doi.org/10.1109/SPSC.2008.4686705
http://dx.doi.org/10.1016/j.micpro.2016.05.011
http://dx.doi.org/10.1016/j.adhoc.2016.02.017
https://www.microchip.com/content/dam/mchp/documents/OTH/ProductDocuments/DataSheets/ATF697FF.pdf
https://www.microchip.com/content/dam/mchp/documents/OTH/ProductDocuments/DataSheets/ATF697FF.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01220-hyperflex-architecture-fpga-socs.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01220-hyperflex-architecture-fpga-socs.pdf
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/max/10.html
http://dx.doi.org/10.1109/ICICES.2014.7033999
http://altronic-srl.com.ar/md5%20algoritmo.pdf
http://altronic-srl.com.ar/md5%20algoritmo.pdf
https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html
https://www.hjp.at/(st_a)/doc/rfc/rfc3174.html
http://dx.doi.org/10.1007/11535218_2
http://dx.doi.org/10.1007/3-540-60865-6_44
https://blog.infocruncher.com/resources/ethereum-whitepaper-annotated/On%20the%20Secure%20Hash%20Algorithm%20family%20(2008).pdf
https://blog.infocruncher.com/resources/ethereum-whitepaper-annotated/On%20the%20Secure%20Hash%20Algorithm%20family%20(2008).pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.IR.7896
http://dx.doi.org/10.1007/978-3-642-38348-9_19
https://keccak.team/keccak_strengths.html
http://dx.doi.org/10.1109/ITW.2016.7606865

Sensors 2022, 22, 2985 29 of 29

41. Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [CrossRef]
42. Lyons, R.E.; Vanderkulk, W. The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM J. Res. Dev. 1962, 6,

200–209. [CrossRef]
43. Paranjothi, A. Performance Analysis of Message Dissemination Techniques in VANET using Fog Computing. arXiv 2020,

arXiv:2003.04354.
44. Ucar, S.; Ergen, S.C.; Ozkasap, O. Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message

Dissemination. IEEE Trans. Veh. Technol. 2016, 65, 2621–2636. [CrossRef]
45. Mahmood, D.A.; Horváth, G. Analysis of the Message Propagation on the Highway in VANET. Arab J. Sci. Eng. 2019, 44,

3405–3413. [CrossRef]
46. Konur, S.; Fisher, M. Formal Analysis of a VANET Congestion Control Protocol through Probabilistic Verification. In Proceedings

of the 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, 15–18 May 2011; pp. 1–5. [CrossRef]
47. Gonzalez, S.; Ramos, V. A simulation-based analysis of the loss process of broadcast packets in WAVE vehicular networks. Wirel.

Commun. Mob. Comput. 2018, 2018, 7430728. [CrossRef]
48. Jiang, H.; Yang, Y.; Xu, J.; Wang, L. Estimation of Packet Error Rate at Wireless Link of VANET. In Advances in Wireless Sensors and

Sensor Networks; Mukhopadhyay, S.C., Leung, H., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 64._15. [CrossRef]

49. Moumni, S.E.; Fettach, M.; Tragha, A. High throughput implementation of SHA3 hash algorithm on field programmable gate
array (FPGA). Microelectron. J. 2019, 93, 104615. [CrossRef]

50. Gangwar, P.; Pandey, N.; Pandey, R. Novel Control Unit Design for a High-Speed SHA-3 Architecture. In Proceedings of the
2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019;
pp. 904–907. [CrossRef]

51. Smitha, A.; Pai, M.M.M.; Ajam, N.; Mouzna, J. An optimized adaptive algorithm for authentication of safety critical messages in
VANET. In Proceedings of the 2013 8th International Conference on Communications and Networking in China (CHINACOM),
Guilin, China, 14–16 August 2013; pp. 149–154. [CrossRef]

52. He, X.; Niu, X.; Wang, Y.; Xiong, L.; Jiang, Z.; Gong, C.A. Hierarchical Blockchain-Assisted Conditional Privacy-Preserving
Authentication Scheme for Vehicular. Ad Hoc Networks. Sensors 2022, 22, 2299. [CrossRef] [PubMed]

53. Luo, P.; Fei, Y.; Zhang, L.; Ding, A.A. Differential Fault Analysis of SHA-3 Under Relaxed Fault Models. J. Hardw. Syst. Secur.
2017, 1, 156–172. [CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1147/rd.62.0200
http://dx.doi.org/10.1109/TVT.2015.2421277
http://dx.doi.org/10.1007/s13369-018-3535-1
http://dx.doi.org/10.1109/VETECS.2011.5956327
http://dx.doi.org/10.1155/2018/7430728
http://dx.doi.org/10.1007/978-3-642-12707-6_15
http://dx.doi.org/10.1016/j.mejo.2019.104615
http://dx.doi.org/10.1109/MWSCAS.2019.8885323
http://dx.doi.org/10.1109/ChinaCom.2013.6694582
http://dx.doi.org/10.3390/s22062299
http://www.ncbi.nlm.nih.gov/pubmed/35336471
http://dx.doi.org/10.1007/s41635-017-0011-4

	Introduction
	Related Work
	Preliminaries
	Hash Function
	SHA-3 Algorithm
	Hamming Codes
	Triple-Modular Redundancy

	Methods
	System Model
	SHA-3 Architecture
	SHA-3 Architecture without Fault Tolerance
	ArchSM
	ArchMM

	SHA-3 Architecture with Fault Tolerance
	ArchHC
	ArchTMR_HC

	Results
	Resources Comparison for SHA-3 Architectures with and without Fault Tolerance
	Example of Detection and Correction of Errors
	Incremental Costs for SHA-3 Architectures with and without Fault Tolerance
	Error Coverage Capacity for SHA-3 Architectures with Fault Tolerance
	Comparison with Other Works

	Conclusions
	References

