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Abstract: Apples are one of the most widely planted fruits in the world, with an extremely high
annual production. Several issues should be addressed to avoid the damaging of samples during
the quality grading process of apples (e.g., the long detection period and the inability to detect the
internal quality of apples). In this study, an electronic nose (e-nose) detection system for apple quality
grading based on the K-nearest neighbor support vector machine (KNN-SVM) was designed, and the
nasal cavity structure of the e-nose was optimized by computational fluid dynamics (CFD) simulation.
A KNN-SVM classifier was also proposed to overcome the shortcomings of the traditional SVMs. The
performance of the developed device was experimentally verified in the following steps. The apples
were divided into three groups according to their external and internal quality. The e-nose data were
pre-processed before features extraction, and then Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) were used to reduce the dimension of the datasets. The recognition
accuracy of the PCA–KNN-SVM classifier was 96.45%, and the LDA–KNN-SVM classifier achieved
97.78%. Compared with other commonly used classifiers, (traditional KNN, SVM, Decision Tree, and
Random Forest), KNN-SVM is more efficient in terms of training time and accuracy of classification.
Generally, the apple grading system can be used to evaluate the quality of apples during storage.

Keywords: apple quality grading; electronic nose; computational fluid dynamics; K-nearest neighbor;
support vector machine

1. Introduction

A considerable number of countries in the world regard apples as a major consumer
fruit because of their strong ecological adaptability, high nutritional value, good storability,
and long supply cycle [1]. In terms of the fruit industry, the study focusing on the detection
of apple quality is crucial and urgent. The chemical analysis method is used because the tra-
ditional fruit quality assessment method has shortcomings of sample damage, complicated
operation procedures, long testing periods, and the inability to achieve real-time detection.
Among non-destructive testing methods, physical detection methods (e.g., near-infrared
spectroscopy and hyperspectral imaging) have emerged and rapidly developed in recent
years and have become popular in this field [2–5]. Nevertheless, the information obtained
by near-infrared spectroscopy and hyperspectral spectroscopy is easily obscured by the
spectral changes caused by the physical properties of food [6]. Furthermore, most of the
instruments used in this method are complicated and expensive.
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The electronic nose (e-nose), a novel intelligent bionic technology, has developed
rapidly in recent years. It detects simple and complex odors by a selective gas sensor array
and the associated pattern recognition algorithms. It has the advantages of simple and
destructive operation procedures, fast detection speeds, and good recognition effects [7,8].
The composition and concentration of aromatics volatilized by apples are closely related
to the variety, quality, and maturity of the apples, and many researchers have applied
the e-nose to the classification of different fruits, ripeness testing, and quality testing
of fruits [9]. Baietto et al. [10] explored the current and potential utilization of e-nose
devices with specialized sensor arrays as new effective tools for more efficient fruit aroma
analysis to replace conventional expensive methods used in fruit aroma assessments.
Solis-Solis et al. [11] used an e-nose to identify eight varieties of apricots by using PCA and
factor analysis. Calu et al. [12] used an e-nose with 18 metal oxide gas sensors to test the
apples of seven different varieties from different regions. The obtained data were analyzed
by Principal Component Analysis (PCA) and Discriminant Factor Analysis (DFA), and the
e-nose showed the ability to distinguish apple varieties. Hui et al. [13] used a self-made
e-nose to detect the ripeness of apples, and the results showed that the analysis of the
data using the stochastic resonance signal-to-noise spectrum could accurately distinguish
between fresh apples, partially ripe apples, and overripe apples. Sanaeifar et al. [14] applied
an e-nose system to identify bananas with different ripeness degrees. Through the analysis
and comparison using a Support Vector Machine (SVM), the classification accuracy of each
type of sample was 98.66%. Fu et al. [15] applied a self-made e-nose system to the prediction
and evaluation of the freshness of grapes, and the accuracy of recognition reached 83.3%
using PCA and multiple discriminant analysis methods. Shao et al. [16] used a self-made
e-nose to measure the quality of mangoes and used PCA and stochastic resonance for data
analysis. The linear fitting SR feature was used to establish a mango quality prediction
model, and the accuracy of identification reached 90%. Jia et al. [17] used the PEN3 e-nose
to detect and recognize fresh and moldy apples with a maximum prediction accuracy
of 96.3%.

In summary, the e-nose can be used for the quality detection, grading, and classification
of fruits. However, the existing research is limited to sensors, recognition algorithms, and
applications [18]. Additionally, attention is rarely paid to the nasal cavity structure, which
also has a significant influence on the performance of e-noses. Keyhani et al. [19] showed
that the process of organisms producing olfaction depended on the nasal cavity structure,
the velocity field of the gas flow, the diffusivity and adsorption of odor molecules in the
air and mucosa, and the thickness of the tissues. Similarly, the olfactory ability of an
e-nose is also related to its nasal cavity structure and airflow velocity field. Consequently,
the influence of the nasal cavity structure on the olfactory ability of an e-nose should be
considered when designing an e-nose system. Recently, there have been some studies on
this issue. Wu et al. [20] used CFD to optimize the sensing chamber in the e-nose, ensuring
the uniformity of airflow distribution in the chamber structure where the gas sensor array
was embedded. Dohare et al. [21] designed different sensing chambers, and the effect of the
baffle positions in the flow distribution was investigated through numerical simulations.
Annanouch et al. [22] applied a new 3D-printed prototype chamber (boat-shaped design)
compared with the commonly used testing chamber (cross-shape design), leading to an
increase in the dynamics. The performance of the whole system was improved. A novel
e-nose system was developed in this study. The fluid characteristics of the nasal cavity
structure in the e-nose system were numerically simulated. Then, the KNN-SVM (K-nearest
neighbor SVM) classifier was proposed to overcome the shortcomings of the traditional
SVMs. This provides a new technique for improving the efficiency of apple quality grading
in the harvesting and storage process. The main contributions of this study are as follows:

(1) An e-nose system was designed for apple quality grading, with the merits of conve-
nient sample treatment, low cost, and a good recognition effect.

(2) Two different nasal cavity structures of the e-nose were designed, and the optimal one
was selected for apple grading on the basis of computational fluid dynamics (CFD).
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(3) The features of the 18-dimensional gas data were extracted from the data collected by
the designed e-nose, and then the KNN-SVM classifier was proposed in this study to
achieve accurate and non-destructive apple grading.

2. Materials and Methods
2.1. Materials

Red Fuji apples of different qualities were used as the research objects. The fruits were
graded by human experts on the basis of their external quality and internal quality into
three grades, i.e., L1, L2, and L3, as detailed in Table 1. The volatilized gases of apples
mainly include CO2, alcohols, hydrocarbons, lipids, and a small number of amines and
nitrogen gases. The odor of an apple is closely related to its quality [23,24]; when apples
are degraded (e.g., rotted or broken), there is a change in the concentration of the gases
they emit, such as ethylene.

Table 1. Descriptions of the three levels of apple quality: L1, L2, and L3.

Level External Quality Internal Quality

L1
No stab wounds, broken skin, crushed wounds, disease

wounds, insect wounds, rot, or shrinkage on the surface of
apples; smooth and rosy surface.

No rot, shrinkage, or dryness inside the apples, which can
be eaten normally.

L2 Slight skin damage, stab wounds, or frostbite appear on
the surface of the apple, and there are a few black spots. No rot, shrinkage, or dryness inside apples.

L3 The surface of the apple is obviously damaged, with pests
and disease, and there is decay or shrinkage.

Rot, shrinkage, or dryness inside the apples, which cannot
be eaten normally.

2.2. Design of the Device
2.2.1. Overall Design of the Device

Figure 1 is the schematic illustration of the developed e-nose system. The system
consists of two subsystems: the hardware that reacts with gases and the software that
analyzes the data. The hardware includes a gas cylinder, a gas pipe, regulating valves, a
sensor array, control circuits, an A/D acquisition card, and a computer. The software was
developed to pre-process the data obtained by the sensor array and extract the features
from these datasets. The KNN-SVM method was used to grade the quality of apples.
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2.2.2. Nasal Cavity Structure

The device was designed as a highly-symmetrical circular tube to guarantee a uniform
and stable gas flow inside of the device [24]. The structure of the nasal cavity is detailed in
Figure 2, where the left part is the gas inlet and the right part is the exhaust outlet.
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Gas Sensor Array

The core component of the sensor unit is an array of sensitive devices consisting of
six SnO2 gas sensors (MQ-9, MQ-3, MQ-6, MQ-8, MQ-2, and MQ-135). According to the
gases emitted by the apples, six gas sensors were selected to form a circular sensor array for
detecting the concentrations of CO, CO2, alcohols, hydrocarbons, harmful gases (including
ammonia, sulfides, benzene vapors, etc.), and hydrogen gas. The details of the sensor are
shown in Table 2.

Table 2. Details of sensor.

Sensor Target Gas Manufacturer

MQ-9 CO, CH4 Hanwei Electronics Co., Ltd., Zhengzhou, China
MQ-3 alcohols Hanwei Electronics Co., Ltd., Zhengzhou, China
MQ-6 C3H8, C4H10 Hanwei Electronics Co., Ltd., Zhengzhou, China
MQ-8 H2 Hanwei Electronics Co., Ltd., Zhengzhou, China
MQ-2 liquefied gas Hanwei Electronics Co., Ltd., Zhengzhou, China

MQ-135 NH3, benzene vapors Hanwei Electronics Co., Ltd., Zhengzhou, China

The six sensors were evenly mounted on the ring to reduce the error caused by the
sensor position. The specific structure of the sensor array is detailed in Figure 3.

Steady Flow Plate

The SnO2 sensor detects the gas through the change in the conductivity caused by
the adsorption and desorption of gas molecules on the semiconductor surface [25]. The
flow condition in the sensing chamber strongly influences the e-nose’s ability to recognize
and quantify odors [26]. Therefore, the detection accuracy of the sensor is related to the
stability of the gas flow. Porous steady flow plates were designed in this study, as shown
in Figure 4. The two kinds of nasal cavity structures with and without steady flow plates
were compared and simulated by CFD simulation to select the optimal one.

Air Inlet Dimensions

The size of the inlet is required for the calculation of the Reynolds number for flow field
simulation; hence, we demonstrate the size of the inlet in Figure 5. According to the size
and other characteristics of this device, it is appropriate to use laminar flow for simulation.
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2.2.3. Experimental Verification by CFD Simulation

CFD is a discipline that uses numerical methods to solve governing equations to
discover the laws of various flow phenomena. The designed e-nose system was analyzed
by CFD simulation to explore whether the addition of the steady flow plates could improve
the detection accuracy of the e-nose. ANSYS 2019 R1 software was used for grid division,
model solving, and post-processing for CFD simulation in this study with an Inter (R)
Core (TM) i5-6500 CPU @ 3.20 GHz × 4, 16 G memory, NVIDIA GeForce GTX 750 Ti
graphics card.

Construction of the 3D Electronic Nose Model

The 3D e-nose model was designed using SolidWorks according to the above analysis,
as demonstrated in Figure 6, where (a) is a model without steady flow plates, and (b) is a
model with steady flow plates.
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Governing Equations

The governing equations of gas molecule transmission include continuity Equation (1),
mass conservation Equation (2), and component mass conservation Equation (3) [27], as
expressed by:

∂u∗i
∂x∗i

= 0 (1)

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (2)

∂(ρcs)

∂t
+ div(puics) = div(Dsgrad(ρcs)) + Ss (3)

where xi is the position vector, ui is the velocity vector, ρ is the fluid density, t is the
time, u, v, and w are the components of the velocity vector in the x, y, and z directions,
respectively, cs is the volume concentration of component s, ρcs is the mass concentration
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of the component, Ds is the diffusion coefficient of the component, and Ss is the mass
of the component produced by the chemical reaction per unit volume in unit time. The
Reynolds number is Re = ρuinDin

µ , where uin is the average velocity at the inlet, Din is the
inlet diameter, and µ is the dynamic viscosity.

Meshing

Meshing was performed using the ANSYS workbench mesh. The physics preference
was divided by CFD. Because of the complex internal structure, FILL was used to obtain the
internal watershed in the DM, and non-structural meshing was adopted for the watershed.
The model without steady flow plates was divided into 813,176 nodes and 4,271,631 cells,
as shown in Figure 7a. The model with steady flow plates was divided into 1,907,501 nodes
and 9,878,409 cells, as shown in Figure 7b.
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Setting Boundary Conditions

The parser uses Fluent in the ANSYS component. The Reynolds number obtained in
the calculation of the e-nose model was less than 2320, so the numerical simulation process
was a laminar flow process. The boundary conditions for simulating the flow field are
shown in Table 3.

Table 3. The boundary conditions for simulating the flow field.

Parameters Values

Simulated state Steady state
model Laminar

Air density (kg/m3) 1.225
Dynamic Viscosity (Pa·s) 1.83 × 10−5

Inlet Velocity—inlet
Outlet Pressure—outlet

2.3. Data Analysis
2.3.1. Data Collection and Feature Extraction

Before the formal test, MQ-135 was used to conduct a pre-collection test to compare
the data collection before and after the optimized design of the e-nose. As can be seen in
Figure 8, the data collected by the optimized device were more stable than those before
optimization, which is conducive to feature extraction later.

The odor information of the three groups of apples was collected using the designed
device. Firstly, the gas in the sample box was exhausted. After the apples were placed in
the sample box for 2 min, the device began to extract the gas in the sample box, and the gas
passed through the steady flow plates then contacted the sensor array, causing a change
in the output voltage of the sensor, and the output voltage ranged from 0 V to 3.3 V. The
output voltage was then transferred to the computer after AD conversion. Take the change
in the sensor data for L1 apple quality over time as an example. Figure 9 shows that the
data were gradually stable after 20 s. The data were selected as the response data of the
sensor after 20 s to facilitate the extraction of data features. Figure 10 demonstrates the raw
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response curves of six sensors for L1, L2, and L3. The ordinate is the voltage value output
of the sensor, and the abscissa is the frequency of collection.
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The features were extracted from the original curves to verify whether the device
could grade the quality of apples. Jitter was observed in the sampled value because of
the existence of interference, as indicated in Figure 10. The SG (Savitzky–Golay) filtering
algorithm [28] was used to obtain the final data. The SG algorithm uses the least squares
method and moves the window on the basis of a polynomial in the time domain. This
method preserves the detailed features of signals while filtering out the noise. Figure 11
is the pre-processed curve. After repeated comparisons, the maximum value, the stable
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value, and the average value were extracted from the curve as a set of features. Thus, the
18-dimensional features were obtained by the six sensors. For each apple, ten features
were collected, and a total of 300 sets of the feature were collected. In order to observe the
relationship between feature parameters of each sensor more intuitively, the feature values
were visualized, as shown in Figure 12.
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2.3.2. Principal Component Analysis (PCA)

PCA transforms multidimensional indicators into a few comprehensive indicators [29].
Since gas sensors often have cross-sensitivity with each other [30], the sole analysis at the
variable level ignores the potential link between variables. When using PCA to analyze the
data, the raw data can be transformed into a set of linearly independent dimensions. The
method for extracting PCA feature vectors is described as follows.

Let the dataset be m d-dimensional data X = {x1, x2, · · · , xm}.
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Step 1: Calculate the population mean u of the sample by:

u =
1
m

m

∑
j=1

xj (4)

Step 2: Calculate the covariance matrix S of the sample by:

S =
1

m− 1

m

∑
j=1

(
xj − u

)
(xj − u)T (5)

Step 3: Perform feature decomposition on the covariance matrix and select the largest
features in S to form a new feature vector.

2.3.3. Linear Discriminant Analysis (LDA)

The basic idea of LDA is to project high-dimensional samples into the optimal dis-
criminant vector space to achieve the purpose of extracting classification information and
compressing the dimensions of the feature space [17]. The LDA method can find the opti-
mal projection direction of the feature vector, which can maximize the ratio of the inter-class
matrix to the intra-class dispersion matrix of the post-projection vector, thereby improving
the recognition accuracy. The LDA feature vector was extracted using the following steps.

Step 1: Calculate the inter-class dispersion Sb of the dataset x in the d-dimensional
feature space by:

Sb =
L

∑
i=1

(ui − u)(ui − u)T (6)

where ui is the mean vector of the ith sample category, and L is the number of categories.
Step 2: Calculate the intra-class dispersion Sw of the d-dimensional feature space by:

Sw =
L

∑
i=1

L

∑
k=1

(ui − xk)(ui − xk)
T (7)

Step 3: Solve the features of the matrix S−b
w Sb and select the vector consisting of the

largest features as the new feature vector.

2.4. KNN-SVM Classifier

The K-nearest neighbor (KNN) algorithm is a popular machine learning algorithm.
The principle of this algorithm is that if the majority of the k samples closest to a sample
in a feature space belong to a specific category, then the sample also belongs to this
category [31,32]. The distance can adopt the Euclidean distance, Manhattan distance, norm,
etc. This study uses Euclidean distance, as given by:

L
(
xi, xj

)
= (

n

∑
l=1

∣∣∣x(l)i − x(l)j

∣∣∣2) 1
2

(8)

SVM [33] focuses on how to build a learning machine and how to implement classifica-
tion on the basis of statistics and optimization. The idea of SVM is to find the best separation
hyperplane in the feature space so that the intervals of the positive and negative samples
on the training set are the largest, thus minimizing the structural risks. SVM is mainly
used to research the classification of two categories. The commonly used methods are the
one-to-one method and the one-to-many method for multi-classification problems [34]. The
one-to-many method is the earliest and currently the most extensively used. This study
adopts the one-to-many approach.

The SVM solves support vectors using quadratic programming, where storage and
computation consume substantial machine memory and runtime. Therefore, SVM al-
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gorithms are challenging to use for processing large-scale training samples. Because of
this problem, this study proposes a KNN-SVM classifier. The KNN-SVM classifier was
constructed as follows:

For the classification of the samples to be tested, first, the KNN algorithm was used to
select K values from the training samples that were the nearest neighbors of the samples
to be tested. If K values belong to the same category, the samples to be tested belong to
this category. If K values do not belong to the same category, K sample values are taken as
the new training set, and the SVM training model is used. The kernel function of the SVM
adopts the Gaussian radial kernel function, expressed by:

k(x, xi) = exp(−‖x− xi‖2

σ2 ) (9)

The optimal values of the k in the KNN, the kernel width of the kernel function in
the SVM, and the error multiplication parameter C were selected by the cross-validation
of the sample. The classification model trained by the new training set had a better
classification effect on the samples to be tested compared with the model trained by the
original large-scale data. The process of the KNN-SVM algorithm is shown in Figure 13.
Experimental results showed that compared with the traditional SVM algorithm, KNN-
SVM was improved in both classification accuracy and speed, and it is suitable for large-
scale data.
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2.5. Classic Classifiers

Commonly used classification algorithms include the KNN algorithm, SVM algorithm,
Decision Tree, Random Forest, etc. Decision Tree analysis is a classification algorithm for
data mining. Decision Tree exists logically in the form of a tree, including root nodes,
internal nodes, and leaf nodes. The root nodes contain a set of all data in the dataset. Each
internal node is a judgment condition and includes a set of data in the dataset that satisfies
all the conditions from the root node to the node. The data corresponding to the internal
node are classified into two or more child nodes according to the testing result of the
judgment condition of the internal node. The leaf node is the final category, and the data
contained in the leaf node belong to the category [35]. Random Forest is constructed on the
basis of multiple Decision Trees. The integrated learning idea of Bagging is adopted in a
Decision Tree, and random feature selection is adopted in the process of training a Decision
Tree. The steps for implementing a Decision Tree are as follows. Firstly, N samples are
randomly selected from the original dataset, and then the training algorithm is performed
on the N samples to obtain N decision trees. When using Random Forest for classification,
the N Decision Trees are used for prediction, and the final classification is determined by
voting for the final prediction result of each Decision Tree [36]. In the experiment, the above
classic classifiers were compared with the proposed KNN-SVM classifier.

3. Results and Discussion
3.1. Simulation Results of the Flow Fields in Two Nasal Cavity Structures

The flow field simulations of the two nasal cavity structures are shown in Figures 14 and 15.
In the simulation, the inlet velocity was set at 0.1 m/s. It can be seen from the figures that for
the device without steady flow plates, the gas inside the device returned after hitting the pipe
wall, causing a disorder in the airflow around the sensor. Therefore, the measured gas data were
unstable. By contrast, for the device with steady flow plates, the gas inside the device smoothly
and evenly passed through the sensor array. As a result, there was a need to add steady flow
plates in the nasal cavity structure.
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The gas molecules must smoothly pass through the sensor array to make sure the
odorous gas can be accurately detected by the gas sensor in the nasal cavity. It can be seen
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from the simulation results that the second nasal cavity structure was superior to the first
one. Therefore, the second structure was selected to verify the feasibility of the designed
e-nose. The overall design is shown in Figure 16.
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3.2. Results of Apple Quality Classification
3.2.1. Results of PCA and LDA

PCA and LDA were performed on the 300 sets of 18-dimensional data, and the
partial features, variance contribution rates, and cumulative variance contribution rates
corresponding to PCA and LDA were obtained, as shown in Table 4. For the LDA, since
the contribution rate of the component from the third item was much lower than 1, it is not
listed in the table. It can be seen in Table 4 that the variance contribution rate of the second
component after PCA processing was not more than 1, the cumulative contribution rate of
PC1 and PC2 was 97.8%, and the cumulative contribution rate of LD1 and LD2 by LDA was
99.96%. Thus, the cumulative contribution rates were all greater than 95%, indicating that
the first two components of the two analytical methods could reflect all the information of
the collected data. The grading results by PCA and LDA are shown in Figure 17. It can be
seen from the figure that more than 90 percent of the data have no overlap, and the same
kind of data are clustered together, which indicates that the designed e-nose system could
accurately measure the odor data of one category of apples. In the data analysis section.
we used Python 3.7 language and Pycharm 2020 (JetBrains, CZE).

Table 4. The features and component contribution rate.

Component Feature Variance Contribution
Rate (%)

Cumulative
Contribution Rate (%)

PCA

PC1 1.048 69.52 69.52
PC2 0.427 28.34 97.87
PC3 0.015 1.00 98.87
PC4 0.012 0.83 99.7

LDA
LD1 3.046 95.68 95.68
LD2 0.137 4.28 99.96

3.2.2. Rapid Classification of Apple

In this study, the dataset was divided with a ratio of 4:1; 240 sets of independent
sample data were used as the training set to train the model in the test, and 60 sets of
independent sample data were used as the test set. The PCA 2D feature vector, the LDA
2D feature vector, and the original 18-dimensional feature vector were input into the KNN-
SVM classifier. Since LDA belongs to supervised dimensionality reduction, the projection
vector obtained from the training set was used in the dimensionality reduction of the test
set, and the data were input into the classifier after dimensionality reduction. The results
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are shown in Table 5. The recognition rate in the table takes an average of the recognition
results in the test set. It can be seen that after the dimensions of the data were effectively
reduced, the recognition accuracy was improved, and the training time was significantly
reduced. Because of the cross-sensitivity of the gas sensors, the features of the original data
affect each other. The generation of 2D linear independent feature vector groups using PCA
and LDA not only reduces the data training time but also improves recognition accuracy.
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Table 5. The influence of the feature vector with the result of training.

Feature Vector
Training Time

(Unit: t/s)

Recognition Rate (%)

L1 L2 L3 Average Recognition Rate

The original 18-dimensional
feature vector 3.653 93.35 92.45 94.19 93.33

PCA 2D feature vector 0.618 96.66 95.45 97.24 96.45
LDA 2D feature vector 0.614 98.50 96.66 98.18 97.78

The KNN algorithm was used as the training sample, and the model parameters of
the SVM were constantly adjusted to learn the optimal classification hyperplane, which is
the advantage of this algorithm. The proposed algorithm was compared with four popular
classifiers: KNN, SVM, Decision Tree, and Random Forest. The data whose dimensions
were reduced by PCA and LDA were used as the input, and the result with the highest
accuracy was taken as the final result. The results are shown in Table 6. The data in the
table expresses that the proposed classification method has certain advantages in accuracy
and training time compared with other classification methods. The recognition accuracies
of the four classic classifiers were 93.3%, 83%, 93%, and 91%, respectively. By contrast,
the recognition accuracy of the proposed method was 97.78%. The training times of the
four classic classifiers were 0.307 s, 0.858 s, 0.860 s, and 0.350 s, respectively, while that
of the proposed method was 0.614 s. Overall, the training time of the proposed method
was slightly longer than that of the traditional KNN and Decision Tree, whereas the
recognition accuracy of the former was significantly improved. The e-nose device used in
this study had a higher recognition rate for determining apple quality than the device used
by Nturambirwe [33]. Compared with the studies of Rasekh et al. [37] and Tatli et al. [38],
the e-nose technology applied in apple detection in this study achieved higher accuracy.
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Table 6. The comparison results of the five kinds of classifiers.

Method Training Time
(Unit: s)

Recognition Rate
(%)

KNN 0.307 93.30
SVM 0.858 83.00

Random Forest 0.86 93.00
Decision Tree 0.35 91.00

The proposed algorithm of this study 0.614 97.78

4. Conclusions

In this study, an e-nose system with an optimized nasal cavity structure was designed.
The flow fields of the two nasal cavity structures with and without the steady flow plates
were simulated. It was found that the airflow of the nasal cavity with the constant flow
plates was more even and stable. Therefore, the steady flow plate was adopted in the e-nose
to grade the apples on the basis of their quality. PCA and LDA were performed for the
data collected from the designed e-nose. The features of the 18-dimensional gas data were
extracted. Although some data were overlapped, they could still be generally distinguished.
Then, the KNN-SVM classifier was constructed, and the original 18-dimensional data,
dimension-reduced PCA data, and dimension-reduced LDA data were used as the input of
the classifier. The accuracy of classification for the LDA data was 97.78%. On the basis of a
comparison between the proposed classifier and other popular classifiers, it was discovered
that the former had a better performance in both accuracy and speed. The e-nose device
only took several seconds for data processing after the pre-work of detection was ready,
which demonstrates the effectiveness of the device for apple grading. The method might
be applicable to other fruit quality assessments.
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