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Abstract: Autonomous navigation in mining tunnels is challenging due to the lack of satellite
positioning signals and visible natural landmarks that could be exploited by ranging systems. Solu-
tions requiring stable power feeds for locating beacons and transmitters are not accepted because of
accidental damage risks and safety requirements. Hence, this work presents an autonomous naviga-
tion approach based on artificial passive landmarks, whose geometry has been optimized in order
to ensure drift-free localization of mobile units typically equipped with lidar scanners. The main
contribution of the approach lies in the design and optimization of the landmarks that, combined
with scan matching techniques, provide a reliable pose estimation in modern smoothly bored mining
tunnels. A genetic algorithm is employed to optimize the landmarks’ geometry and positioning, thus
preventing that the localization problem becomes ill-posed. The proposed approach is validated both
in simulation and throughout a series of experiments with an industrial skid-steer CAT 262C robotic
excavator, showing the feasibility of the approach with inexpensive passive and low-maintenance
landmarks. The results show that the optimized triangular and symmetrical landmarks improve the
positioning accuracy by 87.5% per 100 m traveled compared to the accuracy without landmarks. The
role of optimized artificial landmarks in the context of modern smoothly bored mining tunnels should
not be understated. The results confirm that without the optimized landmarks, the localization error
accumulates due to odometry drift and that, contrary to the general intuition or belief, natural tunnel
features alone are not sufficient for unambiguous localization. Therefore, the proposed approach
ensures grid-based SLAM techniques can be implemented to successfully navigate in smoothly bored
mining tunnels.

Keywords: underground mining robots; scan matching; localization and SLAM in tunnels; 2D lidar
navigation; GPS-denied environment

1. Introduction

Improving underground mining productivity requires loaders with increased levels
of autonomy in hauling and excavation tasks [1,2]. The capability of a machine to solve
its pose both locally and globally in the network of tunnels is essential to achieve high
autonomy levels.

The pioneering work [3] shows the feasibility of using simultaneous localization and
mapping (SLAM) techniques to map old abandoned mines. At the heart of the approach
in [3] is the scan matcher [4], which delivers locally consistent maps and estimates of
the robot’s motion relying on the existence of structural elements, such as pillars and
beams, that facilitate the data association. However, modern tunnel boring techniques
produce smooth tunnels in hard rock or soft ground, with new techniques that even
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avoid traditional support pillars [5]. This makes correct scan matching infeasible without
landmarks, unlike cases such as that of abandoned coal mines [3] or silver mines [6] several
decades old. Hence, an approach is proposed here that employs optimized artificial passive
landmarks that ensure correct data association for consistent mapping and can be cheaply
manufactured, installed, require little or no maintenance, and may be easily replaced if
damaged. Our results show that in environments such as smooth mining tunnels without
landmarks, the localization problem becomes the ill-posed environments, and SLAM cannot
be solved without the aid of landmarks or beacons, as noted by [7].

The design of a landmark’s optimized geometry and spacing is essential to ensure its
identifiability, as well as an accurate and reliable localization of existing semi-autonomous
tele-operated mining loaders equipped with standard 2D lidar scanners. Two landmark
models are proposed and evaluated, one which employs shape primitives and another
with a completely free shape described by a piecewise linear function. Hence, the main
contributions of this work are in the landmark parameters’ optimization using a genetic
algorithm, identifying suitable landmark shapes, and validating the localization approach
for loaders in underground tunnels. The methodology was implemented in a simulated
environment and validated experimentally using the semi-autonomous industrial CAT
262C skid-steer loader developed by the authors for research purposes [2]. The machinery
used is shown in Figure 1a, and the mock-up tunnel used for experimental validation can
be appreciated in Figure 1b,c.

(a)

(b) (c)

Figure 1. Experimental setup showing the semi-autonomous CAT 262C and the mock-up tunnel:
(a) CAT 262C and the front lidar Sick LMS 511; (b) Tunnel mock-up without landmarks; (c) Tunnel
mock-up with landmarks.

The applicability of the landmark-based localization approach and SLAM in real
mining environments is demonstrated in Section 5.3 using an accurate 3D model of a
100 m tunnel segment from the El Teniente mine located in Chile [8], which is the largest
underground copper mine in the world.

This paper is organized as follows. Section 2 discusses the related work concerning
autonomous navigation for robots in mining tunnels. Section 3 explains the preliminary
mathematical notions of localization by scan matching. Section 4 presents the proposed
approach, including the landmark models and their parametric description for optimiza-
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tion by means of a search strategy based on a genetic algorithm. The fifth section dis-
cusses the results obtained in simulations and experiments with an industrial skid-steer
compact excavator CAT 262C. Finally, the discussion and conclusions are mentioned in
Sections 6 and 7, respectively.

2. Related Work

Since the first Automated Guided Vehicles (AGVs) were introduced to the market in
1950s, AGVs have evolved from pure wire or magnetic tape following mobile platforms into
more sophisticated laser-guided vehicles (LGVs) or Autonomous Mobile Robots (AMRs).
Navigation strategies have become particularly important because they enable the local-
ization of mobile platforms by determining position and orientation. Early approaches
used beacons, barcodes, and a combination of sensors for wheel odometry and evolving
into more sophisticated laser scanning and vision systems for environmental recognition.
Landmarks are useful for mobile robot navigation because they provide references for
localization strategies that determine the position and orientation of mobile platforms.
Humans use landmarks as a spatial representation of the environment to locate themselves
and provide references to others. It is common to use landmarks to define the location
of other objects/regions or in the creation of maps [9]. A landmark is a building, place,
or object that is used for location and can be easily recognized. Robots, like humans, can
recognize landmarks from their environment, and according to Thrun [10] landmarks can
be those artificially placed in the environment or natural landmarks, which need to be
discovered through algorithms to detect walls, corners, colors, etc. The first studies in
the literature concerning localization methods for load-haul and dump (LHD) vehicles
considered dead reckoning and artificial beacons [11]. The beacons used to correct the
cumulative error from the odometry were retro-reflective markers in the roof detected
using passive optical switches or passive LC (inductive-capacitive) resonators detected
with simple antennas. Later developments included gyro sensors and laser-based guidance
control systems (GCS). Gyros provide heading information, while GCS laser sensors allow
locating the vehicles relative to the beacons using the beacons’ bearing angle [12]. This
approach requires the beacons’ position to be known in the map the environment. An
approach that combines RFID beacons as landmarks [13] combined with 2D lidar scanners
for accurate mapping with the aim of using the maps in later localization technology.

Recent publications [14,15] propose the use of lidar-based SLAM approaches for
autonomous navigation of LHDs. SLAM with laser scanners requires distinctive features
in the environment that could serve as natural landmarks or anchor points without which
the correct alignment of scans is not possible [16,17]. Unfortunately, unlike natural caves,
mining tunnels are relatively straight or slowly curving, with walls that do not have
distinctive uniquely identifiable elements, either because the walls have a repetitive coarse
texture or are relatively smooth because modern tunnel boring machines and shotcrete
spraying are employed in their construction.

Androulakis [18] uses a 2D lidar scanner to extract two types of features from pillar
coal mine: linear segments for modeling entrance ribs and significant points for modeling
intersection corners; however, between mine corners or entrances may be hundreds of
meters where platforms will not have a robust reference or landmark. Therefore, landmarks,
beacons, or some other kind of marker must be introduced in order to make SLAM-based
approaches truly feasible. Based on the above, artificial landmarks can be justified for
practical application in the navigation of mobile robots in harsh environments, and although
the approach may be considered somewhat old and rudimentary, there are some basic
issues in the design of optimized artificial landmarks that have not yet been resolved. In
particular, the design of the optimized shape and spacing of landmarks must be studied to
ensure their identifiability, as well as accurate and reliable localization of mobile robotic
platforms. It is worth mentioning that the localization problem by means of scan matching
can also be solved using different registration algorithms, such as the Iterative Closest Point
(ICP) algorithm [19] or the Normal Distribution Transform (NDT) [20], but its analysis is
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out of the scope of this work. For a comparison of scan-matching approaches applied to
the 3D mapping of underground mines, see, for example, the in-depth study by [21].

Others fields where landmarks are applied for robot localization include:

• Navigation in fruit groves with large tree canopies that create tunnel-like conditions [22];
• Visual place recognition (VPR) in changing environments for autonomous navigation

exploiting landmarks to improve matching between images [23–25];
• Robotic guidance using sonar systems aided by landmarks that are inspired by the

shape of flowers that act as sonar reflectors to improve localization and navigation [26];
• Indoor navigation [10,27];
• Outdoor urban navigation [28–30].

Methods using landmarks, such as poles or trees, for localization in GPS-denied
agricultural and urban environments can be found in previous work by the authors [22,31]
and references therein.

3. Preliminary Notions of Localization by Scan Matching

Let qt = (xt, yt, θt) denote the pose vector of the mobile platform, composed by the
position coordinates (xt, yt) in the 2D plane and its orientation θt measured with respect
to the horizontal axis of the world reference frame at time t. Denote by Zt = {(rs

t,k, θs
t,k):

k = 1, 2, . . . , m} the set of lidar sensor measurements at time t expressed as a set of
points with polar coordinates of the sensor’s frame of reference, which, for simplicity of
exposition, is assumed to be coincident with the mobile platform’s frame of reference. Thus,
rs

t,k represents the k-th measured distance from the mobile robot’s center of mass to the
object reflecting the laser’s beam and θs

t,k the direction of the corresponding beam. For a
platform that is estimated to be located at q̂ = (x̂t, ŷt, θ̂t) at time t, the measurements in Zt
imply that that the estimated locations of objects in the map have Cartesian coordinates in
the world reference frame are given by:

m̂(q̂,Zt,k) =

[
(rs

t,k + nr) cos(θ̂t + θs
t,k + nθ) + x̂t + nx

(rs
t,k + nr) sin(θ̂t + θs

t,k + nθ) + ŷt + ny

]

where nr, nθ represent measurement noises in range and bearing, while nx and ny are
position estimate uncertainties. Thus, the set of coordinates corresponding to the esti-
mated location of objects in the world surrounding the robot isMt(q̂,Zt) = {ẑ(q̂,Zt,k):
k = 1, 2, . . . , m}. The robot localization problem can now be formulated as the problem of
finding an estimated pose vector q̂∗ that minimizes the matching error between the true
object locations in the map in the setM = {(xm,i, ym,i) : i = 1, 2, . . . , p} and the estimated
location of the objects in setMt(q̂,Zt):

q̂∗ = (x̂∗, ŷ∗, θ̂∗) = arg min
(x̂,ŷ,θ̂)

h̄K(M,Mt(q̂,Zt,k)) =
1
K

K

∑
i=1

hi(M,Mt(q̂,Zt)) (1)

where h̄K(A,B) is the modified Hausdorff distance computed with the K best-matching
object coordinates between sets of coordinates A and B. For further details, please see [4].

Scan matching (1) based on the Iterative Closest Point (ICP) algorithm [32] as a metric
for the distance between points in the map and the measurements set can also be employed
instead of the modified Hausdorff distance to solve the localization problem.

4. Proposed Approach for Reliable Localization

A key aspect of the navigation in tunnels using the Hausdorff-based localization ap-
proach is the adequate definition of landmarks that ensure that the scan-matching problem
can be solved unambiguously. To this end, the optimization of the landmarks’ geometry
and positioning requires adequate parametrization. Two landmark models were considered
and evaluated. Their characteristics are explained in the next subsections, together with the
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implementation aspects concerning the genetic algorithm search strategy, the simultaneous
localization and mapping strategy, and the optimized landmark search process.

The optimization of the parameters that define a landmark’s geometrical characteristics
for a given model is carried out using a genetic algorithm search strategy. The parameters
of each landmark model, such as height, width, spacing of shape primitives, or the steps
of a piecewise linear function (see Section 4.1 for specific details) are treated like genes
that characterize an individual in a population of living organisms. The goal is to find
a set of parameters (genes), which define the optimized genome or chromosome in the
sense that the optimized genome is the one that delivers the best value of a fitness function
(a performance or objective function of the optimization problem). In the context of robot
localization, the fitness function can be defined as the total localization mean square
error (MSE):

E =
1
N

N

∑
i=1

(xg
i − x̂∗i )

2 + (yg
i − ŷ∗i )

2 + (θ
g
i − θ̂∗i )

2 (2)

where (xg
i , yg

i , θ
g
i ) are the ground truth values, and (x∗i , y∗i , θ∗i ) are the estimated pose values

for samples i = 1, 2, . . . N of the robot’s trajectory along the tunnel with landmarks whose
optimized geometry was found by the genetic algorithm search strategy. The ground
truth values are available in simulation. In the validation experiments, the ground truth
data are generated with an RTK-DGPS (real-time kinematic differential GPS) that delivers
centimeter-level positioning accuracy (see Section 5 for specification details).

4.1. Landmark Parametrization

Two approaches for landmark generation are considered. The first one employs shape
primitives as the basis for the definition of the genome. With this approach, the genetic
algorithm seeks a combination of shape primitive that minimize the localization error
in the solution of (1). The second approach defines the landmark as a piecewise linear
function with points of varying heights. In this case, the genetic algorithm finds the height
values that minimize the localization error. A difference with the approach based on shape
primitives is that, in this second approach, the shape of the landmark is initially completely
free and not conditioned by the selection of primitives.

Before introducing the landmark models, it is convenient to introduce the following

definitions and notation. Let H(x)
de f
= {0 ∀x < 0; 1 ∀x ≥ 0} denote the Heaviside step

function, the boxcar function of height h and width δ centered at x can then be defined

as: uh,δ(x)
de f
= h · (H(x + δ/2)− H(x− δ/2)). Define the linear segment over interval

(−δ/2, δ/2] starting at a height a and ending at height b as lδ(x; a, b) = [((b− a)/δ)(x−
δ/2) + a] u1,δ (x).

4.1.1. Landmarks Based on Shape Primitives

To model a landmark using shape primitives the following four functions were considered:

• Shape 1 (triangular): s1(x; W, H)
de f
= ∧(x; W) = (1− |2x/W|) uH,W (x);

• Shape 2 (rectangular): s2(x; W, H)
de f
= uH,W(x);

• Shape 3 (parabolic): s3(x; W, H)
de f
= ∩(x; W) = (1− (2x/W)2) uH,W (x);

• Shape 4 (linear): s4(x; W, H)
de f
= lW(x; 0, 1)H uH,W (x)

The chromosome (sometimes called genotype or genome in the genetic algorithms
literature) that represents an individual (a realization of a particular landmark) is defined
in terms of genes that characterize the individual. A landmark model built using shape
primitives has the following genome:

GP = {W, H, D} (3)
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where the genes correspond to the landmark’s width W, its height H, and the separation
distance D between consecutive landmarks. The graphic representation of the width,
height, and separation between landmarks is shown in Figure 2. Regardless of the shape
geometry, whether it corresponds to a triangle, rectangle, parabola, or line, the shape can
be bounded by a box of width W and height H, as shown in the case of the triangle in
Figure 2a. Additionally, the separation between landmarks is defined by the reference
distance D, which can be the same between all landmarks, as shown in Figure 2b or defined
to randomly vary in a interval [D∗ − 0.625, D∗ + 0.625] m, where D∗ is the optimized
separation distance found with the search strategy explained in Section 4.4. In contrast,
piecewise linear landmarks have six positions whose heights must be optimized together,
with the overall width W and height H parameters, to produce an optimized shape with
more degrees of freedom as illustrated in Figure 2c and explained in more detail in the
next subsection.

(a)

(b) (c)

Figure 2. General size parameters of landmarks in terms of height H, width W in (a) and separation
between landmarks D in (b). Shape parameters hi, i = 1, 2, . . . , 6 of the piecewise linear free shape
landmarks define segment height (c).

4.1.2. Landmarks Based on Piecewise Linear Functions

The n-segments landmark of width W can be defined as a piecewise linear function
with points of height hi, i = 1, 2, . . . , n as:

L(x; W, H, h1, h2, . . . , hn)
de f
=

n

∑
k=1

H l(W/n)(x− (k− 1)W/n + W/2; hk−1, hk)

where h0 = 0. It is to be noted that the landmark model L(x; W, H, h1, h2, . . . , hn) is centered
at x = 0.

A landmark model built using a piecewise linear function has the following genome:

GL = {W, H, D, h1, h2, h3, h4, h5, h6} (4)
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where the genes correspond to the landmark’s height points hi, i = 1, 2, . . . , 6, its width
scaling W, its height scaling H, and the separation distance D between consecutive land-
marks. A graphical representation of the piecewise linear landmark model is shown in
Figure 2c. The range of values for each gene is summarized in Table 1 of the next section.
The number of sections in the piecewise linear function considers the fact that polygonal
shapes with more points for a given width W can be made smoother, but given sensor
noise, additional smoothness does not provide additional distinctiveness. Using two or
three segments would result in linear, triangular, or rectangular shapes already considered
as part of the shape primitives. Therefore, to determine whether two consecutive shapes,
e.g., two triangles or a triangle and a rectangle, offer an additional advantage, the piecewise
linear free shape must have at least six parameters. Of course, it is possible to explore even
more intricate geometries at the expense of an increased computational burden. Here, it
was decided to limit the number of segments to six, but to compensate this limitation by
also testing variants that can be easily computed, such as the horizontal symmetry and the
vertically inverted landmark variations, as will be shown in the numerical computations
and simulation Section 5.1.

Table 1. Minimum and maximum parameter values for the landmark models.

Parameter Values (Genes)

Landmark Model Units H W D h1 h2 h3 h4 h5 h6

Primitive shape Min. m 0.01 0.01 0 - - - - - -
Max. m 0.30 0.60 100 - - - - - -

Piecewise linear Min. m 0.01 0.05 0 −2.00 −2.00 −2.00 −2.00 −2.00 −2.00
Max. m 0.35 0.150 750 2.00 2.00 2.00 2.00 2.00 2.00

4.2. Genetic Algorithm Implementation

Once N individuals characterized by chromosomes Gi = {gi,1, gi,2, . . . , gi,n},
i = 1, 2, . . . , N of the form (3) or (4) have been initially created by sampling from a uniform
distribution U[gmin

j , gmax
j ] with lower and upper bound values gmin

j , gmax
j from Table 1 for

each gene gi,j to build an initial population, the genetic algorithm implemented iterates
over the standard steps of fitness evaluation of each individual, selection of individuals,
crossover (recombination) of individuals, mutation individuals, and insertion of offspring
into the new generation as explained in [33,34]. The population size employed was of
N = 100 individuals. This number of individuals was empirically found to provide a good
trade-off between ensuring a sufficiently large population for convergence while, at the
same time, keeping computation time as low as possible.

The fitness evaluation function is the total localization MSE (2). The fitness score
of each individual is employed to rank individuals, i.e., sort them in terms of ascending
MSE. The selection of individuals employs a stochastic sampling known as stochastic
universal sampling or systematic resampling [35,36], in which an initial random number
p0 ∈ U[0, 1/N] is generated. Individuals laying along a line in which each one has a
length proportional to its fitness value are selected by a pointer that takes constant size
steps according to pk = (k − 1)F/N + p0, where F is the total fitness (the sum of each
individuals’ fitness) [35]. The reproduction step selects the best 5% of the total population
and employs 75% of the remaining population for crossover. The crossover rule selects
the genes (parameters) of consecutive parents according to a selection function in which a
random binary vector of the length of the chromosome containing 0’s and 1’s is generated
to indicate whether the gene value must be taken from one parent or the other. Next, the
mutation step generates small random variations δi,j of the i-th child gene j by sampling
a normal distribution δi,j ∼ N(0, σ2), where σ = (gmax

j − gmin
j )/2, and sets the gene gi,j of

offspring i to a new value gi,j + δi,j. The reinsertion step simply creates a new population
which includes the best 5% individuals and the remaining reproduced population. The
number of offsprings generated in each iteration by crossover and mutation is such that
the total amount of individuals N is kept constant from one iteration to the other. The
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stopping condition included a maximum number of iterations of 100, which was never
reached because the condition on average relative decrease of the fitness function of 0.1%
was met first, as shown in the results Section 5.

4.3. Simultaneous Localization and Mapping

For fast online computation, we employ an Extended Kalman filter and a likelihood
field for map probability; see [37,38] for further details. The approach in [37], known as
GMapping, is a popular algorithm that employs a Rao–Blackwellized particle filter to
estimate the joint posterior. Our approach is similar to that of [38] in that it combines the
scan matching and an adaptive update of the likelihood field instead of particle filters
proposed in [37] to achieve similar results in terms of the root mean square (RMS) error
and low execution time for practical real-time implementation.

In order to make the localization more efficient and accurate, the tunnel walls are
removed in order to extract the landmarks and improve the localization’s accuracy. Tunnel
walls may have some variability or roughness, but this variability is insufficient for unam-
biguous localization because the magnitude of the variability is comparable to the accuracy
of commercially available lidars. Thus, tunnel walls are perceived as practically smooth
straight or gradually curving walls. The background removal for landmark extraction is
performed using the Random Sample and Consensus (RANSAC) algorithm [27,39]. To
account for the possible curvature of the tunnel trajectory, tunnel walls are modeled as a cu-
bic polynomial [40]. All points in the measurements set that do not fit the cubic polynomial
within a tolerance margin are labeled as landmark points, as shown in Figure 3b, and are
employed in the solution of the localization problem (1).

(a)

(b) (c)

Figure 3. Top view of an ideal tunnel with triangular landmarks showing the matching of noisy lidar
measurements to the map (a), the classification of landmark and wall points (b), and the estimated
position using the proposed methodology (c).
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A top view of a machine moving along a tunnel is presented in Figure 3, which shows
the matching of lidar measurements to the triangular landmarks in the map, and the
resulting pose estimated using the Hausdorff-based scan-matching approach. To illustrate
the matching process, Figure 3a presents an ideal predefined map consisting of lateral
tunnel walls with symmetrically and equally spaced triangular landmarks. Despite these
landmarks not being optimized in shape and separation, the simulated lidar measurements,
including noise in range, are matched, minimizing the modified Hausdorff distance (1).
Once the matching has been carried out, the landmarks are classified into wall and landmark
measurements. The black points in Figure 3b correspond to wall points as detected by the
RANSAC algorithm. The remaining points are treated as landmarks. The matching process
considering only the landmarks yields the pose, i.e., position and orientation, thus solving
the localization of the machine relative to the landmarks. The pose measurements obtained
with the matching procedure can be filtered to generate position and orientation estimates,
which are compared in Figure 3c.

4.4. Optimized Landmark Search Process

The process implemented to find the best landmark shapes and spacing is illustrated
in Figure 4. The process starts by considering a reference tunnel without landmarks T , a
known state trajectory of the robot moving along the tunnel x, and a set G1 containing N in-
dividuals whose chromosomes or genomes define N tentative geometries and distances be-
tween landmarks. The initial set of chromosomes G1 is employed to generate a first setM1
containing N variations of tunnel T populated with landmarks according to the separation
distance parameter. When creating the map, the spacing between consecutive landmarks
d`, ` = 1, 2, 3, . . ., is drawn from a uniform distribution d` ∼ U[D∗ − 0.625, D∗ + 0.625] m,
where the value D∗ is the value of the optimized landmark separation found in the previous
iteration. Hence, the position of landmark ` = 1, 2, 3, . . . , is defined as p` = p`−1 + d`
with p0 = 0. The randomly varying distance in a bounded interval is important in order
to avoid ambiguous matching of consecutive landmarks due to repeating landmark sep-
arations. Then, the SLAM problem is solved for the simulated robot following trajectory
x in the N maps inM1. The fitness function for the pose error (2) is evaluated for the N
maps. Unless the stopping conditions explained in the subsection concerning the genetic
algorithm implementation are met, the genetic algorithm must select the best candidates,
produce crossover, and iterate until a chromosome G∗ defining the optimized landmark
geometry is returned.
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Generate landmaks and maps

Generate N different landmark shapes 

from Gk    and a set of N maps Mk as 

variations of tunnel T.

Solve SLAM for N maps

Initial data
1. Robot State Trajectory: x.

2. Reference tunnel T.

3. Initial set of N chromosomes G1  .
4. Set iteration counter k=0.

Genetic Algorithm
 Select or crossover landmark 

chromosomes from Gk    according to the 

associated N fitness values and generate 

a new set of chromosomes Gk+1.

Evaluate fitness

 Evaluate fitness function for each N 

maps in set Mk.

GA
stopping

conditions
met?

Update iteration counter

k=k+1

Optimized landmark found

Return optimal landmrk, i.e. optimal 

chromosome G*   .

No 

Yes

Figure 4. Implemented search scheme for optimized landmark geometries and spacing.

5. Results

The proposed approach is evaluated both in simulations and experimentally. The
implementation of the robot trajectory simulation and SLAM, as well as the genetic al-
gorithm, were implemented in Python without using other libraries than the standard
mathematical function libraries NumPy and SciPy for numerical computations with arrays
and matrices, integration of the ordinary differential equation of the robot’s dynamics
using the odeint function. The motion model equations are explained in detail in [2] and
describe motion dynamics of a semi-autonomous industrial compact skid-steer loader CAT
262C employed in the experiments. The simulations use a grid map with a 1 cm2 per pixel
resolution and a position sensor model with a distance RMS error of 5 cm, which means
95% of the measurements are contained in an 8.65 m radius circle. The sampling frequency
of the simulated system is 1 kHz and it is assumed that the same clock rate is employed
for all sensors and the control loop. For the visualization of results, we use PyGame and
Matplotlib libraries.

The experiments employ a semi-autonomous industrial compact skid-steer loader CAT
262C equipped with one Sensor STIM300 inertial measurement unit (IMU), two VectorNav
IMU’s, one Piksi SwiftNav RTK-DGPS, two torque sensors by Manner Sensortelemetrie,
four Sick LMS 511 lidars, wheel encoders, TE Connectivity MEAS inclination sensors,
control, and navigation computer (running ROS Melodic, sampling sensors at 100 Hz)
and wireless communication interfaces. The Sick LMS 511 lidar is designed for industrial
operation outdoors even with dust or rain, allowing for multiple echoes and materials
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with different absorption/reflectance levels. The reflectance of soil/rocks is typically
in the range of 50–60% [41,42], and given the laser beam power employed by LMS 511
and the manufacturer specifications [43], this lidar can scan soil or rocks up to 60–65 m
without the aid of retro-reflective markers. In the experiments, we used common cardboard
landmarks, which have a reflectance in the operating wavelength of lidar equivalent to that
of soil/rocks [41].

The skid-steer loader in the test site is shown in Figure 1. The experiments were
carried out in a mock-up of the tunnel without and with the optimized landmarks found in
simulation to validate the approach. Following previously published work [44], we have
selected the RMS error to assess the localization error.

The Hausdorff scan matching implemented in this work considered 80% of the best
matching points that minimize the modified directed Hausdorff distance with respect
to the reference model in order to improve the data association following the tuning
recommendations in [4], i.e., K in (1) is set K = 0.8m, where m is the total number of
measurements. Since the scan matching procedure sorts the lidar measurements starting
with the best fitting points, discarding the worst 20% of the matched points removes the
matching bias and ensures sufficient measurements are available so that the matching
does not become an ill-posed problem. An adaptive threshold K may be implemented in
terms of an expectation-maximization strategy, but this aspect necessitates new theoretical
developments beyond the scope of the current work to ensure the optimality of a dynami-
cally adjusted threshold. To show that the choice of the fixed 80% threshold is adequate
for practical applications, consider Figure 5, which presents the outcome of a simulation
experiment in which 300 noisy lidar measurement points must be aligned to a reference
model. The lidar ranging error is considered to have zero-mean Gaussian distribution with
standard deviation σ = 0.05 cm, which is a typical value for the Sick LMS 511 employed in
our experimental validation. The Sick LMS 511 can deliver 720 scan points with an angular
resolution of 0.25◦ covering a 180◦ field-of-view. Here, we are using less than half the points
that may be obtained using Sick LMS 511 for testing purposes. In practice, the number of
scan points covering a landmark will depend on the distance to the landmark and scanning
angular resolution, which can be adjusted to different values between 0.042◦ and 1◦ in the
case of Sick LMS 511. As shown in Figure 5a, when a 100% of the lidar measurements are
employed, there exists a bias in the final alignment due to spurious measurements. On
the other hand, when the 80% best-matching points are selected in the computation of
the modified Hausdorff distance (1), the noisy point cloud is fitted more accurately to the
reference model, as shown in Figure 5b.
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Figure 5. Scan-matching results using Hausdorff distance considering all measurements (a) and 80%
of the best matching points (b).
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5.1. Numerical Computation and Simulation Results

The robot simulation and the genetic algorithm to find the optimized landmarks were
implemented in Python. The following trials were considered: P1—triangular primitive;
P2—rectangular primitive; P3—parabolic primitive; P4—linear primitive; F1—piecewise
linear free shape; F2—piecewise linear inverted free shape; F3—piecewise linear symmetric
free shape; and F4—piecewise linear symmetric inverted free shape. If s(x) is a shape, then
the inverted shape is 1− s(x). A symmetric shape is a shape that is an even function, i.e.,
s(x) is symmetric if s(x) = s(−x). In the implementation of the genetic algorithm, the
parameters (genes of each individual’s chromosome) were allowed to take values in an
interval whose lower and upper bounds are summarized in Table 1.

The convergence of the RMS position error component of fitness function for each
iteration of the genetic algorithm while searching for an optimized landmark geometry
and separation is shown in Figure 6. The resulting piecewise linear models are shown
in Figure 7. The different curves that are shown in each graph of Figure 7 represent a
realization of the best individual’s chromosome for a given generation. After several
iterations, the best individuals of each generation evolve and converge to overlapping
shapes that strongly coincide, thus confirming that an optimized geometry minimizing
the pose error (2) exists. It is to be noted that the relative average decrease in the fitness
function (2) becomes less than 0.1% for either the ICP or Hausdorff matching approaches
after 20 iterations when using the shape primitives and at least 40 iterations when using
the linear piecewise landmark model because it has more parameters. The optimized
landmarks found in iteration 45 for the different shapes and models were selected when
testing the localization performance to make a fair comparison and remove the differing
amount of iterations as a possible advantage factor.
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Figure 6. Convergence of the square root of the trace of the matching error covariance matrix for shape
primitives (a,c) and piecewise linear functions (b,d) using ICP and Hausdorff matching, respectively.
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Figure 7. Optimized piecewise linear shapes found by the genetic algorithm after 45 iterations:
F1—free (a,b); F2—inverted (c,d); F3—symmetric free shape (e,f); F4—symmetric inverted (g,h). The
graphs show the evolution of multiple iterations superimposed showing the convergence to the
optimized landmark geometry.

Regardless of the type of landmark, the results Figure 6 show that the Hausdorff
matching converges with less variability than ICP. The genetic algorithm not only identified
the best shapes for accurate matching, but also identified the optimal distance D between
the landmarks, which was found to be between 8 and 10 m. Figure 8 shows that for the
different landmarks, the initial proposed distance values D are approximately uniformly
distributed. Regardless of the matching approach (ICP or Hausdorff), the distribution after
41 iterations of the gene associated to the separation D between landmarks concentrates
around 9–10 m when using the shape primitives P1, P2, P3, or P4 landmarks, and they
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around 7–8 m when using the piecewise linear free shape landmarks F1, F2, F3, and F4. It
is to be noted that in the case of landmarks F1, F2, F3, and F4, ICP tends to prefer closer
landmarks with D ≈ 7 m, while the Hausdorff matching produces lower RMS localization
errors with landmarks separated by D ≈ 8 m, as shown in Figure 8.
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Figure 8. Histogram of the optimized distances between landmarks found by the genetic algorithm
after 41 iterations (G41) compared to the initial distribution of distance genes (G1) for the primitive
shapes P1, P2, P3, P4 (a,c,e,g), and the free piecewise linear shapes F1, F2, F3, F4 (b,d,f,h).
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From the simulations presented in Table 2, it is possible to confirm that the triangular
shape model (P1) yields the smallest RMS localization error for the robot in a simulated tun-
nel that was 10 m long, with an error of 22 mm using the Hausdorff matching strategy. The
second best landmark is the symmetric inverted piecewise linear model (F4) resembling an
inverted double triangular shape or “W” shown in Figure 7h, which yields an RMS localiza-
tion error of 24 mm using the Hausdorff matching strategy. The results in Table 2 show that
the best results are achieved with the Hausdorff matching strategy when compared to the
ICP method. Even if ICP had a better performance than the Hausdorff matching strategy
with two of the linear piecewise models, the Hausdorff matching technique delivers better
results in all other cases because the RMS errors are 30–70% smaller.

Table 2. RMS localization error for each type of landmark found by the genetic algorithm.

RMS Error [m] RMS Error [m]

Primitive
Shape Models ICP Hausdorff Piecewise

Linear Model ICP Hausdorff

P1 0.042 0.022 F1 0.073 0.052
P2 0.091 0.026 F2 0.043 0.064
P3 0.063 0.028 F3 0.033 0.068
P4 0.065 0.026 F4 0.035 0.024

5.2. Experimental Validation

The experimental validation using the semi-autonomous CAT 262C skid-steer loader
consisted of 15 repetitions each, first in a 10 m mockup tunnel without landmarks (ex-
periment 1), then using the triangular shape primitive model P1 identified by the genetic
algorithm (experiment 2), and, finally, the symmetric inverted piecewise linear landmark
model F4 (experiment 3). The localization was solved with both the ICP and the Hausdorff
matching strategy. The results in terms of average RMS localization error and 95% confi-
dence intervals are summarized in Table 3. The experimental results reported in Table 3
employed the best landmarks evaluated in simulation as reported in Table 2, which are
landmarks P1 (triangular shape primitive) and F4 (symmetric inverted piecewise linear
free shape).

Table 3. RMS localization error using the optimized landmarks during experimental validation.

RMS Localization Error [m]

Experiment ICP Hausdorff

1 Without landmarks 20.765 ± 0.074 19.748 ± 0.113
2 P1—Triangular shape landmark 0.258 ± 0.046 0.235 ± 0.035
3 F4—Symmetric inverted landmark 0.206 ± 0.096 0.219 ± 0.093

The experimental results confirm that the symmetric inverted landmark F4 is slightly
better compared to the triangular shape landmark model P1. However, the 26 mm differ-
ence on average is within the 95% confidence interval, which for the symmetric inverted
landmark, is 93 mm. Compared to the case with no landmarks, which has an RMS localiza-
tion error of almost twice the traveled distance (10 m) in the experiments, the localization
approach with the proposed landmarks is very accurate and proves to be suitable for the
localization of underground mining loaders and trucks. It is also to be noted that ICP
performed better with an RMS localization error 13 mm smaller than the RMS localiza-
tion error obtained with the Hausdorff matching strategy using the symmetric inverted
landmark model F4. However, with the simpler triangular landmark model P1, ICP yields
an RMS localization error that is 23 mm larger. Comparing the RMS errors presented
in Tables 2 and 3, it is possible to observe that the experimental RMS positioning error is
approximately 10 times larger than the RMS positioning error obtained in the simulations.
This is mainly explained by the fact that the performance of the RTK-DGPS had, in practice,
an RMS error of 8.3 cm, which means that about 95% of the measurements fall within a
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circle with a 14.4 cm radius. On the other hand, the clock rate of the different subsystems
is different. The control loop was implemented at 100 Hz, but the RTK-DGPS provides
measurements at 10 Hz, while the lidar and RTK-DGPS have 10 Hz sampling rates. Since
the RTK-DGPS measurements are employed as ground truth, the practical RMS error
includes the GPS error, but also the lidar’s accuracy, which are approximately 5 cm.

5.3. Validation with an Underground Mine Dataset

A validation of the approach and the optimized landmarks is also carried out using the
publicly available 3D point cloud dataset of the El Teniente copper mine located in Chile [8].
A 100 m section of one of the tunnels was extracted from the dataset and artificial landmarks
P1 were added with randomly varying distances D ∼ U[9.25, 10.5] m around the optimized
value found by the genetic algorithm to ensure non-uniform spacing between landmarks
and thus avoid ambiguous matching of consecutive landmarks due to repeating landmark
separations. The triangular landmark geometry P1 was chosen for validation with the data
underground mine data set because it is a simpler geometry to manufacture and because
it yielded an RMS localization error in the real-world experiments that is similar to that
of the best landmark geometry F4 (see Table 3). Furthermore, the RMS localization error
obtained in the runs of the Genetic Algorithm give a slight advantage to P1 over F4, when
using the Hausdorff matching strategy, as shown in Table 2. A physically accurate model
of the skid-steer loader developed in [2] was simulated to evaluate the effectiveness of the
landmarks for SLAM using the scan matching procedure based on the modified Hausdorff
distance [4]. The results are shown in Figure 9, which shows the traversed trajectory in
Figure 9a, the matched point clouds in Figure 9b, the distance transform of the point
clouds employed for matching using the modified Hausdorff distance in Figure 9c, and the
resulting map and measured trajectory (red) compared to the trajectory ground truth (blue)
in Figure 9d. The ground truth corresponds to the skid-steer loader’s trajectory obtained
by the model simulation assuming noise-free position sensors. On the other hand, the map
considers a grid with a resolution of 10 × 10 cm2 per pixel, while the measurement model
considers the ranging error to be zero-mean Gaussian distributed with standard deviation
σ = 0.05 cm, which is a typical value for the Sick LMS 511. An RMS localization error
between the true position and the measured position of 0.163 ± 0.072 m was obtained after
15 repetitions, i.e., the simulation was repeated 15 times with a virtual machine driving in
the tunnel considering the sensor noise parameters. The obtained localization error was
registered to compute the RMS error across the 15 realizations and the 95% confidence
interval of the RMS localization error. It is to be noted that without the landmarks, it is not
possible to solve the SLAM problem correctly because the tunnel walls are almost smooth,
thus causing the matching to diverge due to the lack of anchor points that could be used
for reliable scan alignment. The RMS localization error in the dataset without landmarks
obtained with the Hausdorff matching approach was 194.3 ± 0.22 m, while IPC resulted in
an RMS localization error of 201.7 ± 0.15 m.
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Figure 9. SLAM solution of the El Teniente tunnel showing the ground truth map, trajectory, and
distance between landmarks (a); the laser rangefinder scan (b); the Voronoi distance transform of the
scan (c); and the estimated grid map and trajectory results (d).

6. Discussion

The main findings after the experimental validation of the proposed strategy for
navigation in mining tunnels are discussed as follows, considering both their significance
and limitations:

1. The approach based on optimized artificial landmarks’ geometry and spacing is
suitable for localization and mapping in smoothly bored underground mining tunnels,
where no GPS signal is available and where deploying and maintaining a network of
active RF or optical beacons is costly and difficult.

2. Without landmarks, it is not possible to solve the localization problem using lidar
information in smooth tunnels because the localization problem becomes ill-posed,
as evidenced by the cumulative error of the positioning without landmarks reported
in Table 3. Even if different SLAM techniques have been developed to reduce the
well-known localization slip or drift problem [45], reliable underground localization
and mapping requires accurate positioning drift-free strategies [7] to ensure industrial
grade safety standards. Therefore, artificial landmarks are an essential part of the
proposed solution for operation in adverse and challenging underground mining
conditions. Other solutions, relying on SLAM algorithms and variants that employ
natural landmarks may work partially and exhibit drift sporadically; thus, the use of
natural landmarks is still not applicable for 24/7 working schedules required by the
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mining industry. On the other hand, passive artificial landmarks may be cheaper to
manufacture, install, and maintain compared to active RFID or IR beacons.

3. The optimization of landmark geometries for the different models (shape primitives
and piecewise linear) yields expected positioning errors in the range 20–90 mm de-
pending on the geometry. Considering the approximately 50 mm difference between
the worst and best model, it is possible to conclude that adequate landmark design
and optimization is worth the effort.

4. In addition to the development of an optimization scheme for the landmarks’ ge-
ometry and spacing presented in Section 4.4) to improve localization, important
contributions that are of practical relevance are the validation of: (i) the feasibility of
the approach through experimental validation for localization in relatively smooth
tunnels, in which traditional scan matching and visual features do not work due to the
lack of sufficiently distinctive features that could be matched without ambiguity (see
Table 3); (ii) the advantage of Hausdorff-based matching compared to the ICP method
(see Table 2); and (iii) the gains in localization accuracy than can be achieved by
optimizing the geometry and spacing of landmarks by means of a genetic algorithm
search strategy (see Table 2).

5. The experiments were conducted with a mock-up of a smooth tunnel both with and
without landmarks. Modern machine-bored tunnels are relatively smooth and lack
features. Thus, the mock-up replicates a challenging geometry for matching and
localization rather than visual appearance. In order to further validate the approach,
an accurate 3D model of a 100 m section of one of the tunnels of the Chilean El Teniente
copper mine from the dataset by [8] was employed. Fifteen iterations assuming
typical motion disturbances and sensor noise, with magnitudes equivalent to those
of the CAT 262C [2] and Sick LMS 511 lidar, were carried out to ensure statistical
significance. Future work considers creating a new dataset and additional testing in
different underground tunnels, which during this research has not been possible due
to increased restrictions to access mining sites during the pandemic.

6. The RMS positioning error obtained in the experimental validation of Section 5.2 is
influenced by the accuracy of the RTK-DGPS (RMS error of approximately 8.3 cm),
which was employed as the ground truth. Another limitation arises from the accuracy
and resolution of the lidar scanner, which is approximately 5 cm. We expect that the
positioning accuracy measured in our experiments should improve with ongoing
technological advances and the development of more accurate lidar and GPS sensors.

7. Concerning the practical implementation of the approach, two important aspects need
to be considered: (i) the execution time and (ii) the environment’s visibility conditions.
The results presented in Section 5.3 show that the execution time is adequate for
real-time implementation applicable to underground machines operating at standard
speeds of 20 to 30 km/h. The effects of environmental visibility due to dust were not
tested as part of this study. However, there exist laser range scanners and other vision
systems that have been successfully employed in commercial collision avoidance
systems for mining equipment, e.g., SICK’s MINESIC100 EPS, MINESIC100 TCW or
Visionary-B.

8. The accurate localization of artificial landmarks on the map does not need to be
performed using accurate georeferencing or topographic stations since the landmark’s
location can be jointly estimated with the position. Once the landmarks have been
deployed, practically no maintenance is required unless some are damaged and need
to be replaced. The low-maintenance requirements are an advantage of the proposed
solution compared to systems requiring energy supply and network connectivity for
active optical and RF beacons.

9. Our ongoing research efforts are focused on improving the proposed approach with
deep learning techniques and neural networks for different purposes, which include
visual feature extraction, scene recognition, ego-motion estimation, and map matching.
Techniques based on deep neural networks have shown promising results to improve
lidar matching, e.g., OverlapNet by Chen et al. (2021) [46], and optical flow estimation,
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e.g., Flownet by Fischer et al. (2015) [47], including RGB-D SLAM with convolutional
neural networks [48] and 3D indoor scene mapping [49]. Hence, these techniques
may improve the accuracy and robustness of lidar and visual matching, as well as
motion estimation, which are essential for SLAM in underground tunnels. It is to
be noted that an important challenge for the application of visual techniques in the
harsh mining environments is the poor visibility in tunnels due to low illumination
conditions and dust, as well as machine vibrations, which are typically not a problem
in indoor or urban robotics.

7. Conclusions

An approach for reliable autonomous navigation in modern smoothly bored mining
tunnels which ensures drift-free localization and consistent mapping has been developed
and validated. The approach relies on the optimization landmark geometry and positioning
(distance between landmarks). Finding the optimized parameters was achieved with a
genetic algorithm search strategy. The results show that optimizing a free shape using a
piecewise linear function leads to a inverted double triangular shaped landmark, while
very similar results are obtained with the optimized triangular shape primitive. From a
practical perspective, it may be more convenient to use simple optimized triangular-shaped
landmarks because the positioning accuracy is on average around 22 cm, with a small
difference of 2.6 cm, which is within the ±9.3 cm confidence interval of the piecewise
linear inverted double triangular shape. The experimental validation using a compact
skid-steer excavator CAT 262C shows that without landmarks, the cumulative drift error
steadily grows, and correct localization is not possible due to the ambiguity in lidar scan
matchings. The experimental results thus confirm that using shape-optimized passive
landmarks are a reliable alternative for localization and navigation in modern underground
smoothly bored mining tunnels, for which electrically powered active optical or RF beacons
are less likely to be accepted by the underground mining industry due to concerns on
maintenance cost involved to prevent malfunctioning risks and ensure operational safety
in case of a loss of power supply. The applicability of the localization approach for SLAM
in real underground mines was verified using an accurate 3D model of a 100 m tunnel
section of El Teniente mine in Chile, which is the largest underground copper mine in
the world. Ongoing research is concerned with improving the accuracy and robustness
of the proposed localization and mapping approach with deep learning techniques for
ego-motion estimation, map matching, and the extraction of visual features that could be
used as landmarks. An important challenge for the application of visual techniques in
the harsh mining environments is the poor visibility in tunnels due to low illumination
conditions and dust, as well as machine vibrations, which are typically not a problem
in indoor or urban robotics. Our work in progress also considers improvements to the
proposed approach for navigation in fruit groves and forests with large tree canopies that
create tunnel-like conditions.
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Abbreviations
The following abbreviations are used in this paper:
AGV Automated Guided Vehicle
AMR Autonomous Mobile Robot
DGPS Differential GPS
EKF Extended Kalman Filter
EM Expectation-maximization algorithm
F1 Piecewise linear free shape
F2 Piecewise linear inverted free shape
F3 Piecewise linear symmetric free shape
F4 Piecewise linear symmetric inverted free shape
GCS Guidance control system
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial measurement unit
LC Inductive-capacitive
LGV Laser-guided vehicle
LHD Load-haul and dump
MSE Mean square error
NDT Normal Distribution Transform
P1 Triangular primitive
P2 Rectangular primitive
P3 Parabolic primitive
P4 Linear primitive
RANSAC Random Sample and Consensus
RMS Root mean square
RTK Real time kinematic
SLAM Simultaneous localization and mapping

References
1. Rigotti-Thompson, M.; Torres-Torriti, M.; Auat Cheein, F.; Troni, G. H∞-based Terrain Disturbance Rejection for Hydraulically

Actuated Mobile Manipulators with a Non-Rigid Link. IEEE/ASME Trans. Mechatron. 2020, 25, 2523–2533. [CrossRef]
2. Aguilera-Marinovic, S.; Torres-Torriti, M.; Auat-Cheein, F. General Dynamic Model for Skid-Steer Mobile Manipulators with

Wheel–Ground Interactions. IEEE/ASME Trans. Mechatron. 2017, 22, 433–444. [CrossRef]
3. Thrun, S.; Thayer, S.; Whittaker, W.; Baker, C.; Burgard, W.; Ferguson, D.; Hahnel, D.; Montemerlo, D.; Morris, A.; Omo-

hundro, Z.; et al. Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 2004, 11, 79–91.
[CrossRef]

4. Donoso-Aguirre, F.; Bustos-Salas, J.P.; Torres-Torriti, M.; Guesalaga, A. Mobile robot localization using the Hausdorff distance.
Robotica 2008, 26, 129–141. [CrossRef]

5. Zhang, X.; He, M.; Yang, J.; Wang, E.; Zhang, J.; Sun, Y. An Innovative Non-Pillar Coal-Mining Technology with Automatically
Formed Entry: A Case Study. Engineering 2020, 6, 1315–1329. [CrossRef]

6. Lösch, R.; Grehl, S.; Donner, M.; Buhl, C.; Jung, B. Design of an Autonomous Robot for Mapping, Navigation, and Manipulation
in Underground Mines. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018; pp. 1407–1412. [CrossRef]

7. Thrybom, L.; Neander, J.; Hansen, E.; Landernas, K. Future Challenges of Positioning in Underground Mines. IFAC-PapersOnLine
2015, 48, 222–226. [CrossRef]

8. Leung, K.; Lühr, D.; Houshiar, H.; Inostroza, F.; Borrmann, D.; Adams, M.; Nüchter, A.; del Solar, J.R. Chilean underground mine
dataset. Int. J. Robot. Res. 2017, 36, 16–23. [CrossRef]

9. Hu, H.; Gu, D. Landmark-based Navigation of Industrial Mobile Robots. Ind. Robot Int. J. 2004, 27, 458–467. [CrossRef]
10. Thrun, S. Finding landmarks for mobile robot navigation. In Proceedings of the 1998 IEEE International Conference on Robotics

and Automation, Leuven, Belgium, 16–20 May 1998; Volume 2, pp. 958–963. [CrossRef]
11. Mäkelä, H.; Lehtinen, H.; Rintanen, K.; Koskinen, K. Navigation System for LHD Machines. IFAC Proc. Vol. 1995, 28, 295–300.

[CrossRef]
12. Scheding, S.; Dissanayake, G.; Nebot, E.M.; Durrant-Whyte, H. An experiment in autonomous navigation of an underground

mining vehicle. IEEE Trans. Roboti. Autom. 1999, 15, 85–95. [CrossRef]

http://doi.org/10.1109/TMECH.2020.2983072
http://dx.doi.org/10.1109/TMECH.2016.2601308
http://dx.doi.org/10.1109/MRA.2004.1371614
http://dx.doi.org/10.1017/S0263574707003657
http://dx.doi.org/10.1016/j.eng.2020.01.014
http://dx.doi.org/10.1109/IROS.2018.8594190
http://dx.doi.org/10.1016/j.ifacol.2015.08.135
http://dx.doi.org/10.1177/0278364916679497
http://dx.doi.org/10.1108/01439910010378879
http://dx.doi.org/10.1109/ROBOT.1998.677210
http://dx.doi.org/10.1016/S1474-6670(17)46988-6
http://dx.doi.org/10.1109/70.744605


Sensors 2022, 22, 3038 21 of 22

13. Lavigne, N.; Marshall, J. A landmark-bounded method for large-scale underground mine mapping. J. Field Robot. 2012,
29, 861–879. [CrossRef]

14. Wu, D.; Meng, Y.; Zhan, K.; Ma, F. A LIDAR SLAM Based on Point-Line Features for Underground Mining Vehicle. In Proceedings
of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2879–2883. [CrossRef]

15. Ren, Z.; Wang, L.; Bi, L. Robust GICP-based 3D LiDAR SLAM for underground mining environment. Sensors 2019, 19, 2915.
[CrossRef] [PubMed]

16. Guivant, J.E.; Masson, F.R.; Nebot, E.M. Simultaneous localization and map building using natural features and absolute
information. Robot. Auton. Syst. 2002, 40, 79–90. [CrossRef]

17. Fairfield, N.; Kantor, G.; Wettergreen, D. Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels. J.
Field Robot. 2007, 24, 3–21. [CrossRef]

18. Androulakis, V.; Sottile, J.; Schafrik, S.; Agioutantis, Z. Navigation system for a semi-autonomous shuttle car in room and pillar
coal mines based on 2D LiDAR scanners. Tunnell. Underground Space Technol. 2021, 117, 104149. [CrossRef]

19. Donoso, F.; Austin, K.; McAree, P. Three new Iterative Closest Point variant-methods that improve scan matching for surface
mining terrain. Robot. Auton. Syst. 2017, 95, 117–128. [CrossRef]

20. Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007,
24, 803–827. [CrossRef]

21. Magnusson, M.; Nüchter, A.; Lörken, C.; Lilienthal, A.J.; Hertzberg, J. 3D mapping the Kvarntorp mine: A field experiment for
evaluation of 3D scan matching algorithms. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Workshop on 3D Mapping, Nice, France, 22–26 September 2008.

22. Auat Cheein, F.; Torres-Torriti, M.; Rosell-Polo, J.R. Usability analysis of scan matching techniques for localization of field
machinery in avocado groves. Comput. Electron. Agricult. 2019, 162, 941–950. [CrossRef]

23. Hou, Y.; Zhang, H.; Zhou, S.; Zou, H. Use of Roadway Scene Semantic Information and Geometry-Preserving Landmark Pairs to
Improve Visual Place Recognition in Changing Environments. IEEE Access 2017, 5, 7702–7713. [CrossRef]

24. Holliday, A.; Dudek, G. Scale-Robust Localization Using General Object Landmarks. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 1688–1694. [CrossRef]

25. Suenderhauf, N.; Shirazi, S.; Jacobson, A.; Dayoub, F.; Pepperell, E.; Upcroft, B.; Milford, M. Place Recognition with ConvNet
Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free. In Proceedings of the Robotics: Science and Systems, Rome,
Italy, 13–17 July 2015. [CrossRef]

26. Simon, R.; Rupitsch, S.; Baumann, M.; Wu, H.; Peremans, H.; Steckel, J. Bioinspired sonar reflectors as guiding beacons for
autonomous navigation. Proc. Natl. Acad. Sci. USA 2020, 117, 1367–1374. [CrossRef]

27. Nguyen, V.; Martinelli, A.; Tomatis, N.; Siegwart, R. A comparison of line extraction algorithms using 2D laser rangefinder
for indoor mobile robotics. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Edmonton, Canada, 2–6 August 2005; pp. 1929–1934. [CrossRef]

28. Choe, Y.; Ahn, S.; Chung, M.J. Online urban object recognition in point clouds using consecutive point information for urban
robotic missions. Robot. Auton. Syst. 2014, 62, 1130–1152. [CrossRef]

29. Javanmardi, M.; Javanmardi, E.; Gu, Y.; Kamijo, S. Precise mobile laser scanning for urban mapping utilizing 3D aerial surveillance
data. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama,
Japan, 16–19 October 2017; pp. 1–8. [CrossRef]

30. Guevara, D.J.; Gené-Mola, J.; Gregorio Lopez, E.; Torres-Torriti, M.; Reina, G.; Auat Cheein, F. Comparison of 3D scan matching
techniques for autonomous robot navigation in urban and agricultural environments. J. Appl. Remote Sens. 2021, 15, 024508.
[CrossRef]

31. Veronese, L.d.P.; Auat Cheein, F.; Bastos-Filho, T.; Ferreira De Souza, A.; de Aguiar, E. A Computational Geometry Approach for
Localization and Tracking in GPS-denied Environments. J. Field Robot. 2016, 33, 946–966. [CrossRef]

32. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D
Digital Imaging and Modeling, Quebec City, Canada, 28 May–1 June 2001; pp. 145–152. [CrossRef]

33. Chipperfield, A.J.; Fleming, P.J.; Pohlheim, H.; Fonseca, C.M. A genetic algorithm toolbox for Matlab. In Proceedings of the Tenth
International Conference on Systems Engineering (ICSE ’94), Conventry, United Kingdom, 6–8 September 1994; pp. 200–207.

34. Man, K.F.; Tang, K.S.; Kwong, S. Genetic algorithms: Concepts and applications [in engineering design]. IEEE Trans. Ind. Electron.
1996, 43, 519–534. [CrossRef]

35. Baker, J.E. Reducing Bias and Inefficiency in the Selection Algorithm. In Proceedings of the Second International Conference on
Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge, MA, USA, 28–31 July 1987; pp. 14–21.

36. Douc, R.; Cappé, O.; Moulines, E. Comparison of resampling schemes for particle filtering. In Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, ISPA 2005, Zagreb, Croatia, 15–17 September 2005; pp. 64–69.
[CrossRef]

37. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE
Trans. Robot. 2007, 23, 34–46. [CrossRef]

38. Pedrosa, E.; Lau, N.; Pereira, A. Online SLAM Based on a Fast Scan-Matching Algorithm. In Progress in Artificial Intelligence;
Correia, L., Reis, L.P., Cascalho, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 295–306.

39. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

http://dx.doi.org/10.1002/rob.21415
http://dx.doi.org/10.1109/CAC.2018.8623075
http://dx.doi.org/10.3390/s19132915
http://www.ncbi.nlm.nih.gov/pubmed/31266207
http://dx.doi.org/10.1016/S0921-8890(02)00233-6
http://dx.doi.org/10.1002/rob.20165
http://dx.doi.org/10.1016/j.tust.2021.104149
http://dx.doi.org/10.1016/j.robot.2017.05.003
http://dx.doi.org/10.1002/rob.20204
http://dx.doi.org/10.1016/j.compag.2019.05.024
http://dx.doi.org/10.1109/ACCESS.2017.2698524
http://dx.doi.org/10.1109/IROS.2018.8594011
http://dx.doi.org/10.15607/RSS.2015.XI.022
http://dx.doi.org/10.1073/pnas.1909890117
http://dx.doi.org/10.1109/IROS.2005.1545234
http://dx.doi.org/10.1016/j.robot.2014.04.007
http://dx.doi.org/10.1109/ITSC.2017.8317833
http://dx.doi.org/10.1117/1.JRS.15.024508
http://dx.doi.org/10.1002/rob.21594
http://dx.doi.org/10.1109/IM.2001.924423
http://dx.doi.org/10.1109/41.538609
http://dx.doi.org/10.1109/ISPA.2005.195385
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1145/358669.358692


Sensors 2022, 22, 3038 22 of 22

40. Tapia-Espinoza, R.; Torres-Torriti, M. Robust lane sensing and departure warning under shadows and occlusions. Sensors 2013,
13, 3270–3298. [CrossRef]

41. Speta, M.; Rivard, B.; Feng, J.; Lipsett, M.; Gingras, M. Hyperspectral imaging for the characterization of athabasca oil sands drill
core. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia,
21–26 July 2013; pp. 2184–2187. [CrossRef]

42. Leblon, B.; Gallant, L.; Granberg, H. Effects of shadowing types on ground-measured visible and near-infrared shadow
reflectances. Remote Sens. Environ. 1996, 58, 322–328. [CrossRef]

43. Sick AG. LMS5xx Laser Measurement Sensors Operating Instructions; Sick AG: Waldkirch, Germany, 2015.
44. Auat Cheein, F.; Torres-Torriti, M.; Hopfenblatt, N.B.; Prado, A.J.; Calabi, D. Agricultural service unit motion planning under

harvesting scheduling and terrain constraints. J. Field Robot. 2017, 34, 1531–1542. [CrossRef]
45. Zhang, J.; Singh, S. Laser-visual-inertial Odometry and Mapping with High Robustness and Low Drift. J. Field Robot. 2018,

35, 1242–1264. [CrossRef]
46. Chen, X.; Läbe, T.; Milioto, A.; Röhling, T.; Behley, J.; Cyrill Stachniss, C. OverlapNet: A siamese network for computing LiDAR

scan similarity with applications to loop closing and localization. Auton. Robots 2022, 46, 61–81. [CrossRef]
47. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazirbas, C.; Golkov, V.; Smagt, P.V.D.; Cremers, D.; Brox, T. FlowNet: Learning

Optical Flow with Convolutional Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 11–18 December 2015; pp. 2758–2766. [CrossRef]

48. Xu, G.; Li, X.; Zhang, X.; Xing, G.; Pan, F. Loop Closure Detection in RGB-D SLAM by Utilizing Siamese ConvNet Features. Appl.
Sci. 2022, 12, 62. [CrossRef]

49. Weinmann, M.; Wursthorn, S.; Weinmann, M.; Hübner, P. Efficient 3D Mapping and Modelling of Indoor Scenes with the
Microsoft HoloLens: A Survey. PFG J. Photogramm. Remote Sens. Geoinform. Sci. 2021, 89, 319–333. [CrossRef]

http://dx.doi.org/10.3390/s130303270
http://dx.doi.org/10.1109/IGARSS.2013.6723248
http://dx.doi.org/10.1016/S0034-4257(96)00079-X
http://dx.doi.org/10.1002/rob.21738
http://dx.doi.org/10.1002/rob.21809
http://dx.doi.org/10.1007/s10514-021-09999-0
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.3390/app12010062
http://dx.doi.org/10.1007/s41064-021-00163-y

	Introduction
	Related Work
	Preliminary Notions of Localization by Scan Matching
	Proposed Approach for Reliable Localization
	Landmark Parametrization
	Landmarks Based on Shape Primitives
	Landmarks Based on Piecewise Linear Functions

	Genetic Algorithm Implementation
	Simultaneous Localization and Mapping
	Optimized Landmark Search Process

	Results
	Numerical Computation and Simulation Results
	Experimental Validation
	Validation with an Underground Mine Dataset

	Discussion
	Conclusions
	References

