
Citation: Huang, Y.; Zhang, J.; Wei,

W.; Qin, T.; Fan, Y.; Luo, X.; Yang, J.

Research on Coverage Optimization

in a WSN Based on an Improved

COOT Bird Algorithm. Sensors 2022,

22, 3383. https://doi.org/10.3390/

s22093383

Academic Editors: Mikołaj Leszczuk,

Szymon Łukasik and Szymon Szott

Received: 9 April 2022

Accepted: 25 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Coverage Optimization in a WSN Based on an
Improved COOT Bird Algorithm
Yihui Huang 1 , Jing Zhang 1 , Wei Wei 2, Tao Qin 1, Yuancheng Fan 3, Xuemei Luo 1 and Jing Yang 1,4,*

1 Electrical Engineering College, Guizhou University, Guiyang 550025, China; gs.yhhuang20@gzu.edu.cn (Y.H.);
zhangjing@gzu.edu.cn (J.Z.); tqin@gzu.edu.cn (T.Q.); xmluo1@126.com (X.L.)

2 Power China Guizhou Electric Power Engineering Co., Ltd., Guiyang 550025, China;
weiwei-gzy@powerchina.cn

3 Power China Guizhou Engineering Co., Ltd., Guiyang 550001, China; fanyc-gzgc@powerchina.cn
4 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University,

Guiyang 550025, China
* Correspondence: jyang7@gzu.edu.cn

Abstract: To address the problems of uneven distribution and low coverage of wireless sensor net-
work (WSN) nodes in random deployment, a node coverage optimization strategy with an improved
COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the
population, increase the diversity of the population, and lay the foundation for the global search for
the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions
to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based
learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance
the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is
applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a
faster convergence speed and better search accuracy than several other typical algorithms on 23 bench-
mark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by
9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO),
butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization
algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This
means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate
compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively
improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage
optimization problems.

Keywords: wireless sensor networks; COOT bird optimization algorithm; chaotic tent map; Lévy
flight; opposition-based learning; coverage optimization

1. Introduction
1.1. Background of Problem

Wireless sensor networks (WSNs) are composed of a large number of low-power sensor
nodes with communication functions, and have been widely used in military, industrial, and
agricultural control, urban management, biomedicine, environmental detection, disaster
relief, and other fields [1,2]. The coverage problem is one of the most fundamental problems
in wireless sensor networks, and coverage is an important indicator for evaluating coverage
optimization strategies, which has a great impact on the quality of service of wireless sensor
networks because it directly determines the monitoring capability of the target monitoring
area in the wireless sensor network. Rational and effective deployment of sensor nodes
not only minimizes the network cost, but also reduces energy consumption in the sensor
power optimization problem [3–6]. In coverage applications of wireless sensor networks, in
order to improve coverage efficiency, all aim to deploy a minimum number of sensor nodes

Sensors 2022, 22, 3383. https://doi.org/10.3390/s22093383 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093383
https://doi.org/10.3390/s22093383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4451-9651
https://orcid.org/0000-0002-3732-7432
https://orcid.org/0000-0002-6407-1276
https://doi.org/10.3390/s22093383
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093383?type=check_update&version=2

Sensors 2022, 22, 3383 2 of 33

to monitor a specific target area of interest. Generally, sensor nodes are randomly deployed
in the target monitoring area, resulting in uneven distribution of sensor nodes and, thus,
bringing low coverage. Therefore, it is of great importance to improve the coverage of
wireless sensor networks in the monitoring area by deploying sensor nodes rationally and
efficiently [7,8].

1.2. Related Works

The node deployment problems in wireless sensor networks can be solved by building
an integer linear programming model and then using the methods for solving it. In gen-
eral, the branch-and-bound method is commonly used to solve the integer programming
problem [9–11]. For small-scale node deployment problems, integer linear programming
methods can be used to solve them. However, for large-scale sensor node deployment
problems, the rational and efficient deployment of wireless sensor nodes has been proven
to be an NP-hard problem, and finding the optimal solution for such problems remains a
challenge. In this background, scholars have proposed the use of metaheuristic algorithms
as a solution. Metaheuristic algorithms are approximate optimization algorithms with
solutions that escape from local optima, and are widely regarded as effective methods for
solving high-dimensional optimization problems, as well as various complex engineering
problems. Metaheuristic algorithms can find near-optimal solutions in a reasonable time
using limited computational resources, providing a very effective approach to the coverage
optimization problems for wireless sensor networks [12–14]. Metaheuristic algorithms
are classified into four categories of algorithms: evolutionary concepts, animal behavior,
physical phenomena, and human behavior [15–17]. The first category is based on evolu-
tionary concepts, including genetic algorithms (GAs) [18], genetic programming (GP) [19],
evolutionary programming (EP) [20], differential evolution (DE) [21], and biogeography-
based optimizers (BBOs) [22]. The second category is based on animal behavior, such as
the coot optimization algorithm (COOT) [17], particle swarm optimization (PSO) [23], grey
wolf optimizer, GWO) [24], salp swarm algorithm (SSA) [25], butterfly optimization algo-
rithm (BOA) [26], seagull optimization algorithm (SOA) [27], whale optimization algorithm
(WOA) [28], Harris hawks optimization (HHO) [29], and bald eagle search (BES) [30]. The
third category consists of algorithms based on physical phenomena in nature, such as simu-
lated annealing (SA) [31], black hole algorithm (BH) [32], sine–cosine algorithm (SCA) [33],
and ray optimization (RO) [34]. The fourth category is human-behavior-based algorithms,
such as teaching–learning-based optimization (TLBO) [35], harmony search (HS) [36], ex-
change market algorithm (EMA) [37], imperialist competitive algorithm (ICA) [38], and
political optimizer (PO) [39].

There are some studies on using metaheuristic algorithms for WSN coverage optimiza-
tion problems. In [40], ZainEldin et al. proposed a dynamic deployment strategy based
on IDDT-GA to maximize the area coverage rate with the minimum number of sensor
nodes. However, the proposed algorithm tends to fall into local optima, which affects the
optimization of coverage, and there are too few compared algorithms for it to be convincing
enough. In [41], Zhang et al. proposed an SA-GWO algorithm for the problem of high
aggregation and low coverage rate when sensor nodes are deployed randomly. Although a
better coverage effect was achieved, the time complexity of the algorithm was high. In [42],
Liu et al. used the ALO algorithm to address the problems of uneven node distribution
and incomplete coverage in node deployment. However, the coverage optimization of
this algorithm was not ideal, and there was still an uneven distribution of sensor nodes.
In [43], Liu et al. proposed an EFWA algorithm to solve the dynamic deployment problem
of mobile sensor networks. However, the algorithm would easily fall into a local optimum
too early, resulting in a lower coverage rate. In [44], Liao et al. used the GSO algorithm to
improve the coverage after random deployment. However, there were obvious coverage
holes and node redundancy. In [45], Ozturk et al. used the ABC algorithm to address the
dynamic deployment problem in mobile and fixed-sensor scenarios, but there were too few
compared algorithms, and the optimized experimental results still had node redundancy.

Sensors 2022, 22, 3383 3 of 33

In [46], Zhu et al. proposed an improved hybrid strategy weed algorithm to solve coverage
optimization problems of WSNs. However, the problem of coverage holes still existed. It
can be seen that it is of value and significance to use metaheuristic algorithms or improved
metaheuristic algorithms for node coverage optimization problems. At the same time,
the common problems of metaheuristic algorithm, such as slow convergence speed and
susceptibility to falling into local optima, will lead to poor coverage optimization effects,
which is also the focus of improvement in this paper.

The COOT optimization algorithm [17]—a novel metaheuristic algorithm proposed by
the Iranian scholar Iraj Naruei in 2021—has been rapidly applied in the field of engineering
optimization. In [47], Memarzadeh et al. used the COOT algorithm to optimize the
parameters of a wind power prediction model. In [48], Gouda et al. used the COOT
optimization algorithm to test the performance of solar power generator units. In [49],
Mahdy et al. combined the COOT optimization algorithm with an anti-windup approach as
a way to improve the transient stability of a wave energy conversion system (WECS). In [50],
Houssein et al. proposed an improved COOT optimization algorithm for identifying the
optimal lithium-ion (Li-ion) battery model parameters. In [51], Alqahtani et al. proposed
a COOT-CMO algorithm for selecting the appropriate optimal candidate terms in the
automatic query expansion process.

Although the COOT algorithm has been successfully applied and solved some en-
gineering optimization problems, it also has problems, such as sluggish convergence
speed and susceptibility to falling into local optima, the same as other metaheuristic algo-
rithms. Therefore, in order to improve the flaws in the original algorithm, four effective
strategies—namely, chaotic tent map, Lévy flight, Cauchy mutation, and opposition-based
learning—are introduced to the algorithm to propose an improved COOT optimization
algorithm, named COOTCLCO.

1.3. Contributions

The main contributions of this paper are as follows:

1. A new and improved algorithm named COOTCLCO, based on the COOT bird algo-
rithm, is proposed.

2. Population diversity is improved by introducing the chaotic tent map to initialize pop-
ulations. Expanding the search range of the populations by introducing the Lévy flight
strategy, the capability of the algorithm to jump out of the local optimum is enhanced
by introducing the Cauchy mutation and the opposition-based learning strategy.

3. The optimization capability of the proposed algorithm is tested on unimodal, multi-
modal, and fixed-dimension multimodal benchmark test functions.

4. The proposed algorithm is compared with seven metaheuristic algorithms in nu-
merical analysis and convergence curves for the performance of finding the best
optimal value.

5. An integer linear programming model is used to describe the coverage optimization
problem of wireless sensor networks, and the proposed algorithm is used to solve this
optimization problem. The proposed algorithm is compared with six metaheuristic
algorithms in the coverage optimization problem.

1.4. Notations

The following Table 1 illustrates all of the notations that appear in this paper:

Table 1. Notation descriptions.

Notations Descriptions

q Number of sensor nodes
n Number of target monitoring points

M × N Size of the monitoring area
Si The i-th sensor node

Sensors 2022, 22, 3383 4 of 33

Table 1. Cont.

Notations Descriptions

xi, yi The location coordinates of each sensor node
Tj The j-th target monitoring point

xj, yj The location coordinates of each target point
Rs Sensing radius
Rc Communication radius

d(Si, Tj) The Euclidean distance between Si and Tj
p Probability of monitoring points being covered by nodes
P Probability of monitoring points being jointly sensed

Cov Coverage rate
CootPos(i) The position of the i-th COOT

LeaderPos(k) The position of the selected leader
d The number of variables or problem dimensions

ub The upper bound of the search space
lb The lower bound of the search space
Q Random initialization of the location

A, B Control parameters
NL The number of leaders

R1, R2, R3, R4 The random numbers between the interval [0, 1]
R The random number between the interval [−1, 1]

α, µ, γ, λ, v Control parameters
s Search path of the Lévy flight

X’LeaderPos(i) The inverse solution of the current leader position
max_Iter Maximum number of iterations
XGbestNew The latest position after perturbed by Cauchy mutation

Ps The selection probability

1.5. Organization

The remainder of this paper is organized as follows: Section 2 introduces the node
coverage model of WSN. Section 3 describes the basic principles of the COOT optimization
algorithm in detail. Section 4 details the improvement strategies of the COOT optimization
algorithm. Section 5 introduces the coverage optimization strategy. Section 6 details the
experimental design scheme, benchmark test function search performance comparison, cov-
erage optimization performance comparison, and the practical application of COOTCLCO
in addressing WSN coverage optimization problems. Section 7 gives a summary.

2. WSN Node Coverage Model

Suppose that q sensor nodes are randomly deployed in a two-dimensional WSN
monitoring area with an area of M × N m2, where the set of nodes can be denoted as
S =

{
S1, S2, · · ·Si, · · ·Sq

}
, and the coordinates of each node Si can be denoted as (xi, yi),

where i = 1, 2, · · ·q.
For a two-dimensional WSN monitoring area, the network model is as follows:

(1) Each sensor node is a homogeneous sensor; that is, it has the same parameters,
structure, and communication capabilities.

(2) Each sensor node has sufficient energy, normal communication function, and timely
access to data information.

(3) Each sensor node can move freely, and can update the location information in time.
(4) The sensing radius of each sensor node is Rs and the communication radius is Rc,

both in units of meters, and Rc ≥ 2Rs.

The sensing range of a sensor node is a circular area, with the node itself as the center
and the sensing radius Rs as the radius. Assuming that there are n target monitoring points
in this two-dimensional WSN monitoring area, the set of target monitoring points can be
denoted as T =

{
T1, T2, · · ·Tj, · · ·Tn

}
, and the location coordinates of each target point Tj to

be monitored are
(

xj, yj
)
, where j = 1, 2, · · ·n. If the distance between the target monitoring

point Tj and any of the sensor nodes is less than or equal to the sensing radius Rs, then it

Sensors 2022, 22, 3383 5 of 33

can be concluded that Tj is covered by the sensor nodes. The Euclidean distance between
sensor node Si and target monitoring point Tj is defined as:

d
(
Si, Tj

)
=
√(

xi − xj
)2

+
(
yi − yj

)2 (1)

The node-sensing model in this paper is a Boolean sensing model; that is, when the
sensing radius Rs is greater than or equal to d

(
Si, Tj

)
, the probability that the target is

monitored is 1; otherwise, the probability that the target is monitored is 0. If the probability
that the target point Tj to be monitored is covered by the sensor node Si be p, then

p
(
Si, Tj

)
=

{
1 Rs ≥ d

(
Si, Tj

)
0 Rs < d

(
Si, Tj

) (2)

In this two-dimensional WSN monitoring area, the sensor nodes can work coopera-
tively with one another; that is, any target monitoring point can be covered by more than
one sensor at the same time, so the probability that any monitoring target point Tj is jointly
sensed is:

P
(
S, Tj

)
= 1−

q

∏
i=1

(
1− p

(
Si, Tj

))
(3)

The coverage rate is defined as the rate of the coverage area of all sensor nodes in the
monitoring area to the total area of the monitoring area; thus, the coverage rate of this 2D
WSN monitoring area is:

Cov =

n
∑

j=1
P
(
S, Tj

)
M× N

(4)

Based on the above analysis, the node coverage optimization problem for wireless
sensor networks can be described by the following integer linear programming model:

Max Cov =

n
∑

j=1
P
(
S, Tj

)
M× N

(5)

s.t.

n
∑

j=1
P
(
S, Tj

)
≥ 0 1 ≤ j ≤ n

n
∑

j=1
P
(
S, Tj

)
≤ M× N 1 ≤ j ≤ n

d
(
Si, Tj

)
≤ Rs 1 ≤ i ≤ q, 1 ≤ j ≤ n

(6)

where Cov denotes the objective function for which the maximum coverage rate is required
to be solved, Si denotes the i-th sensor node, Tj denotes the j-th target point to be monitored,
and M × N denotes the size of the monitoring area. The first constraint represents the
probability constraint that any monitoring target point Tj is jointly sensed. The second
constraint indicates that the area covered by all sensor nodes in the monitoring area should
be less than the total area of the monitoring area. The third constraint indicates that the
Euclidean distance between the sensor node Si and the target monitoring point Tj should
be less than the sensing radius Rs to effectively cover the target monitoring point.

When the size of the sensor nodes to be deployed is relatively large, it takes a lot
of time to solve for the coverage problem using integer linear programming methods to
obtain the optimal solution. To solve this puzzle effectively, a metaheuristic algorithm is
appropriate, because metaheuristic algorithms can give satisfactory results in a tolerable
time. Therefore, in this paper, an improved coot bird algorithm is proposed to solve the
coverage optimization problem of wireless sensor networks.

Sensors 2022, 22, 3383 6 of 33

3. COOT Optimization Algorithm

The principle of the COOT optimization algorithm is based on the different movement
behaviors of coot flocks on the water surface. Coots are small waterbirds that have many
different group behaviors on the water surface, with the ultimate goal of the behavior
being to move toward food or a specific location. On the water surface, the coot group
mainly has four different movement behaviors: random movement, chain movement,
adjusting position according to the leader, and leader movement [17]. The process of
implementing the COOT algorithm is composed of these four movement behaviors. The
specific procedure of the algorithm is as follows [17]:

Initialize the population—random initialization of the population according to Equation (7):

CootPos(i) = rand(1, d)× (ub− lb) + lb (7)

where CootPos(i) is the position of the i-th coot, d is the number of variables or problem
dimensions, ub is the upper bound of the search space, and lb is the lower bound of the
search space. ub and lb are defined as follows:

ub = [ub1, ub2, · · ·ubd], lb = [lb1, lb2, · · ·lbd] (8)

After initializing the population, the position of the coot is updated according to the
following four movement behaviors.

3.1. Random Movement

In this movement, a position Q is first initialized randomly using Equation (9):

Q = rand(1, d)× (ub− lb) + lb (9)

In order to avoid getting trapped in a local optimum, the position is updated according
to Equation (10):

CootPos(i) = CootPos(i) + A× R2 × (Q− CootPos(i)) (10)

where R2 is a random number in the interval [0, 1], and A is determined from Equation (11):

A = 1− L× (
1

Iter
) (11)

where Iter is the maximum number of iterations and L is the current number of iterations.

3.2. Chain Movement

The chain movement can be implemented by using the average position of the two
coot birds, using Equation (12) to calculate the average position of the two coot birds:

CootPos(i) =
CootPos(i− 1) + CootPos(i)

2
(12)

where CootPos(i− 1) is the location of the second coot bird.

3.3. Adjusting Position According to the Leader

The coot bird updates its own position according to the position of the leader in the
group; that is, the coot bird follower in each group moves towards the leader. The leader is
selected according to Equation (13):

K = 1 + (i MOD NL) (13)

where K is the number of the leader, i is the number of the coot bird follower, and NL is the
number of leaders.

Sensors 2022, 22, 3383 7 of 33

In this movement, the coot bird updates its position according to Equation (14):

CootPos(i) = LeaderPos(k) + 2× R1 × cos(2Rπ)× (LeaderPos(k)− CootPos(i)) (14)

where CootPos(i) is the current position of the coot bird, LeaderPos(k) is the position of the
selected leader, R1 is a random number in the interval [0, 1], and R is a random number in
the interval [−1, 1].

3.4. Leader Movement

In order to find the optimal position, the leader must jump from the existing local
optimal position to the global optimal position, using Equation (15) to complete the leader
position update:

LeaderPos(i) =

B× R3 × cos(2πR)×
(gBest− LeaderPos(i)) + gBest

R4 < 0.5

B× R3 × cos(2πR)×
(gBest− LeaderPos(i))− gBest

R4 ≥ 0.5
(15)

where gBest is the best position that can be found, R3 and R4 are the random numbers
between the interval [0, 1], and R is the random number between the interval [−1, 1]. B is
determined from Equation (16):

B = 2− L× (
1

Iter
) (16)

4. Improved COOT Optimization Algorithm

The basic COOT algorithm uses random initialization in the initialization process,
which reduces the diversity of the initial population which, in turn, affects the performance
of the algorithm. Due to the limitation of the search principle of the COOT algorithm, as
the number of iterations increases, the individuals in the coot population gradually move
closer to the leader with better fitness in the population, and if the leader cannot jump out
of the local optimum in time, the whole population will easily fall into the state of local
optimum, which reduces the algorithm’s search accuracy. Therefore, this paper proposes
an improved COOT optimization algorithm: in the initial stage of the algorithm, a chaotic
tent map is added to improve the diversity of the population and lay the foundation for
improving the global search ability; subsequently, during the iterative process, the Lévy
flight strategy is used to perturb the location of coot individuals to improve the search
range of the population and reduce the phenomenon of falling into a local optimum; finally,
at the optimal solution location, the Cauchy mutation and the opposition-based learning
strategy are fused to perturb the mutation and generate a new solution to further enhance
the capability of the algorithm to jump out of the local optimum, while improving the
search accuracy of the algorithm.

4.1. Chaotic Tent Map Initializes the Population

Chaotic maps have the characteristics of ergodicity, randomness, and orderliness.
Using chaotic variables for optimization searching can improve the diversity of popula-
tions and enable the algorithm to jump out of the local optimum, while improving the
global search capability. The most common chaotic maps are tent maps, logistic maps, etc.
Shan [52] demonstrated that tent maps have a faster search speed in combination with
search algorithms compared to logistic maps. Li [53] also demonstrated the effectiveness of
tent maps on a swarm intelligence algorithm to enhance population diversity. Therefore,

Sensors 2022, 22, 3383 8 of 33

in this paper, a tent map was selected to initialize the population. The expression for the
chaotic tent map is defined as follows:

zk+1 =

{
zk
α 0 < zk ≤ α
1−zk
1−α α < zk ≤ 1

(17)

The chaotic tent map is more effective when α is taken as 0.5, and the distribution of
the sequence is more uniform at this time.

Therefore, the expression of the chaotic tent map in this paper is:

zk+1 =

{
2zk 0 < zk ≤ 0.5
2(1− zk) 0.5 < zk ≤ 1

(18)

It can also be abbreviated as [54]:

zk+1 = µmin{zk, 1− zk} (19)

where µ is the parameter that controls the chaotic tent map, and here µ is taken as 2. Ac-
cording to the value of the parameter µ, the bifurcation diagram and Lyapunov exponential
curve of the chaotic tent map were drawn, as shown in Figure 1. From Figure 1a, it can be
seen that the chaotic tent map starts to bifurcate when the control parameter µ > 1, and
produces an approximately uniformly distributed chaotic sequence when µ = 2; as can
be seen from Figure 1b, when µ > 1, that is, the Lyapunov exponent is greater than 0—it
indicates that the chaotic tent map shows chaotic phenomena.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 33

(a) (b)

Figure 1. Chaotic tent map: (a) chaotic tent map bifurcation diagram; (b) Lyapunov exponential
curve.

4.2. Lévy Flight Strategy
Lévy flight is a type of search for random walks obeying the Lévy distribution, char-

acterized by the occurrence of long-range jumps as a class of non-Gaussian stochastic pro-
cesses with Markovian properties, whose principle is derived from a probability distribu-
tion proposed by the French mathematician Paul Lévy [55]. The simulation of Lévy flight
is shown in Figure 2.

Figure 2. Lévy flight simulation diagram.

Lévy flight involves a large jump in the search process, for which this paper intro-
duces the Lévy flight mechanism to perturb the position update formula of the COOT
algorithm. This can effectively boost the diversity of the population, expand the search
range, improve the search capability of a single coot bird, and make the algorithm more
easily jump out of the local optimum. Lévy flight can be described by the following math-
ematical Equation [56]:

Figure 1. Chaotic tent map: (a) chaotic tent map bifurcation diagram; (b) Lyapunov exponential curve.

4.2. Lévy Flight Strategy

Lévy flight is a type of search for random walks obeying the Lévy distribution, char-
acterized by the occurrence of long-range jumps as a class of non-Gaussian stochastic
processes with Markovian properties, whose principle is derived from a probability dis-
tribution proposed by the French mathematician Paul Lévy [55]. The simulation of Lévy
flight is shown in Figure 2.

Sensors 2022, 22, 3383 9 of 33

Sensors 2022, 22, x FOR PEER REVIEW 9 of 33

(a) (b)

Figure 1. Chaotic tent map: (a) chaotic tent map bifurcation diagram; (b) Lyapunov exponential
curve.

4.2. Lévy Flight Strategy
Lévy flight is a type of search for random walks obeying the Lévy distribution, char-

acterized by the occurrence of long-range jumps as a class of non-Gaussian stochastic pro-
cesses with Markovian properties, whose principle is derived from a probability distribu-
tion proposed by the French mathematician Paul Lévy [55]. The simulation of Lévy flight
is shown in Figure 2.

Figure 2. Lévy flight simulation diagram.

Lévy flight involves a large jump in the search process, for which this paper intro-
duces the Lévy flight mechanism to perturb the position update formula of the COOT
algorithm. This can effectively boost the diversity of the population, expand the search
range, improve the search capability of a single coot bird, and make the algorithm more
easily jump out of the local optimum. Lévy flight can be described by the following math-
ematical Equation [56]:

Figure 2. Lévy flight simulation diagram.

Lévy flight involves a large jump in the search process, for which this paper introduces
the Lévy flight mechanism to perturb the position update formula of the COOT algorithm.
This can effectively boost the diversity of the population, expand the search range, improve
the search capability of a single coot bird, and make the algorithm more easily jump
out of the local optimum. Lévy flight can be described by the following mathematical
Equation [56]:

Levy(s, γ, µ)

√

γ
2π exp

[
− γ

2(s−u)

]
1

(s−u)
3
2

0 < µ < s < ∞, γ>0

0 s ≤ 0
(20)

where µ is the displacement parameter and γ is the scale parameter.
After Lévy flight is introduced, the position update Equation is [57]:

xi
t+1 = xi

t + α⊕ Levy(λ) (21)

where xi
t+1 denotes the position after the Lévy flight perturbation; xi

t denotes the current
position α denotes the step control factor; ⊕ denotes the dot product; and Levy(λ) denotes
the random search path, indicating that it obeys the Lévy distribution with parameter
λ [57]:

Levy(λ) ∼ u = t−λ, 1<λ ≤ 3 (22)

Computation of the Lévy flight random search path using the Mantegna algorithm is
as follows [58]:

s =
µ

|v|
1
β

, 0<β < 2 (23)

where β = λ − 1, and β usually takes a value of 1.5. µ and v both obey a normal
distribution [59]: {

µ ∼ N(0, δu
2)

v ∼ N(0, δv
2)

(24)
δu =

[
Γ(1+β)×sin(πβ

2)

Γ(1+β
2)×β×2

β−1
2

] 1
β

δv = 1

(25)

Sensors 2022, 22, 3383 10 of 33

Now, using the position update idea of Equation (21), the position update Equa-
tion of Equations (10), (12) and (14) are improved to obtain the following new position
update Equations:

CootPos(i) = CootPos(i) + A× R2 × (Q− CootPos(i))× Levy (26)

CootPos(i) =
CootPos(i− 1) + CootPos(i)

2
× Levy (27)

CootPos(i) = LeaderPos(k) + 2× R1 × cos(2Rπ)×
(LeaderPos(k)− CootPos(i))× Levy

(28)

4.3. Fusing Cauchy Mutation and Opposition-Based Learning

Opposition-based learning [60] was proposed by Tizhoosh in 2005, and its primary
idea is to take the current solution to a problem and then find its corresponding reverse
solution through the opposition-based learning mechanism, and evaluate the original
solution and the reverse solution to finally retain the optimal solution.

If x ∈ [a, b], then the distance from x to a is |x− a|, then the opposition-based learning
number x′ of x can be defined as follows [60]:

x′ = a + b− x (29)

Then, the distance from x′ to b is |b− x′| = |b− (a + b− x)| = |x− a|, and these two
distances are equal. The relationship between any real number and its opposition-based
learning number is shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 33

If [,]x a b∈ , then the distance from x to a is x a− , then the opposition-based learn-

ing number x′ of x can be defined as follows [60]:

x a b x′ = + − (29)

Then, the distance from x′ to b is ()b x b a b x x a′− = − + − = − , and these two
distances are equal. The relationship between any real number and its opposition-based
learning number is shown in Figure 3.

Figure 3. Relationship between arbitrary real numbers and their opposition-based learning num-
bers.

If 1 2(, , ,)nx x x x= ⋅⋅ ⋅ is a point in n-dimensional space, where [,]i i ix a b∈ , the corre-
sponding reverse point is [60]:

1 2(, , ,)nx x x x′ ′ ′ ′= ⋅ ⋅ ⋅ (30)

Its corresponding reverse solution is [60]:

i i i ix a b x′ = + − (31)

The basic COOT algorithm needs to select the optimal position by calculating the
fitness after each iteration, and if its position update formula is not perturbed, the algo-
rithm is prone to falling into a local optimum. In the previous section, this paper intro-
duced Lévy flight to perturb its position update formula, but to further enhance the algo-
rithm’s ability to jump out of local optima, this subsection combines Cauchy mutation and
the opposition-based learning strategy to perform position update for the movement of
adjusting position according to the leader. This step of the movement is where the coot
bird updates its own position according to the position of the leader in the group, and it
is important to choose the best leader for this phase. Therefore, we find its corresponding
reverse solution according to the chosen leader position, which can provide more oppor-
tunities to find potential optimal solutions, further boost the diversity of the population
based on the Lévy flight perturbation, enhance the global search capability of the algo-
rithm, and prevent the algorithm from falling into a local optimum. Now, the idea of op-
position-based learning and the COOT algorithm are combined, and Equation (31) is used
to improve Equation (14), which leads to the reverse solution of the leader position and
the position update equation based on opposition-based learning:

() (())LeaderPos LeaderPosX i ub r lb X i′ = + ⊕ − (32)

1 1(1) () 2 cos(2)
 (() ())

GbestNew LeaderPos

LeaderPos CootPos

X i X i b R R
X i X i

π′+ = + ⊕ × ⊕ ⊕
′ −

(33)

where ()LeaderPosX i′ in Equation (32) is the inverse solution of the current leader position at
the i-th iteration, ub and lb denote upper and lower bounds, r denotes the random
number matrix, and ⊕ denotes the dot product. (1)GbestNewX i + in Equation (33) denotes
the latest position of the i + 1-th iteration, 1R is a random number between the interval
[0, 1], R is a random number between the interval [−1, 1], ()CootPosX i denotes the position
of the coot bird follower of the i-th iteration, and 1b denotes the information exchange
control parameter, which is calculated as follows [61]:

a x x ′ b

Figure 3. Relationship between arbitrary real numbers and their opposition-based learning numbers.

If x = (x1, x2, · · ·, xn) is a point in n-dimensional space, where xi ∈ [ai, bi], the corre-
sponding reverse point is [60]:

x′ = (x′1, x′2, · · ·, x′n) (30)

Its corresponding reverse solution is [60]:

x′ i = ai + bi − xi (31)

The basic COOT algorithm needs to select the optimal position by calculating the
fitness after each iteration, and if its position update formula is not perturbed, the algorithm
is prone to falling into a local optimum. In the previous section, this paper introduced Lévy
flight to perturb its position update formula, but to further enhance the algorithm’s ability
to jump out of local optima, this subsection combines Cauchy mutation and the opposition-
based learning strategy to perform position update for the movement of adjusting position
according to the leader. This step of the movement is where the coot bird updates its
own position according to the position of the leader in the group, and it is important to
choose the best leader for this phase. Therefore, we find its corresponding reverse solution
according to the chosen leader position, which can provide more opportunities to find
potential optimal solutions, further boost the diversity of the population based on the Lévy
flight perturbation, enhance the global search capability of the algorithm, and prevent the
algorithm from falling into a local optimum. Now, the idea of opposition-based learning
and the COOT algorithm are combined, and Equation (31) is used to improve Equation (14),
which leads to the reverse solution of the leader position and the position update equation
based on opposition-based learning:

X′LeaderPos(i) = ub + r⊕ (lb− XLeaderPos(i)) (32)

Sensors 2022, 22, 3383 11 of 33

XGbestNew(i + 1) = X′LeaderPos(i) + b1 ⊕ 2× R1 ⊕ cos(2πR)⊕
(X′LeaderPos(i)− XCootPos(i))

(33)

where X′LeaderPos(i) in Equation (32) is the inverse solution of the current leader position at
the i-th iteration, ub and lb denote upper and lower bounds, r denotes the random number
matrix, and ⊕ denotes the dot product. XGbestNew(i + 1) in Equation (33) denotes the latest
position of the i + 1-th iteration, R1 is a random number between the interval [0, 1], R
is a random number between the interval [−1, 1], XCootPos(i) denotes the position of the
coot bird follower of the i-th iteration, and b1 denotes the information exchange control
parameter, which is calculated as follows [61]:

b1 =

(
1− i

max_Iter

)i
(34)

The Cauchy distribution is one of the common continuous-type distributions in prob-
ability theory, and its one-dimensional probability density function expression can be
defined as follows [62]:

f (x) =
1
π

T
(x2 + T2)

, −∞ < x < ∞, T > 0 (35)

where T denotes the control parameter. The corresponding distribution function is [62]:

F(x) =
1
2
+

1
π

arctan(
x
T
) (36)

For Equation (35), when T=1, the standard Cauchy distribution probability density
function [62] is obtained as shown in Equation (37):

f (x) =
1
π

1
(x2 + 1)

, −∞ < x < ∞ (37)

A comparison of the probability density function curves of the standard Cauchy
distribution and the Gaussian distribution [63] is shown in Figure 4. From the figure, it
can be seen that the standard Cauchy distribution is similar to the standard Gaussian
distribution, in that both of them are continuous probability distributions. However, the
Cauchy distribution has a long and flat shape at both ends, approaches zero at a slower rate,
and has a smaller peak near the origin compared to the Gaussian distribution. Therefore,
the Cauchy distribution has a wider distribution range, and allows for greater mutation
than the Gaussian distribution.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 33

1 1
_

i
ib

max Iter
 = −

 (34)

The Cauchy distribution is one of the common continuous-type distributions in prob-
ability theory, and its one-dimensional probability density function expression can be de-
fined as follows [62]:

2 2

1() , - , 0
()

Tf x x T
x Tπ

= ∞ < < ∞ >
+

 (35)

where T denotes the control parameter. The corresponding distribution function is [62]:

1 1() arctan()
2

xF x
Tπ

= + (36)

For Equation (35), when T=1, the standard Cauchy distribution probability density
function [62] is obtained as shown in Equation (37):

2

1 1() , -
(1)

f x x
xπ

= ∞ < < ∞
+

 (37)

A comparison of the probability density function curves of the standard Cauchy dis-
tribution and the Gaussian distribution [63] is shown in Figure 4. From the figure, it can
be seen that the standard Cauchy distribution is similar to the standard Gaussian distri-
bution, in that both of them are continuous probability distributions. However, the Cau-
chy distribution has a long and flat shape at both ends, approaches zero at a slower rate,
and has a smaller peak near the origin compared to the Gaussian distribution. Therefore,
the Cauchy distribution has a wider distribution range, and allows for greater mutation
than the Gaussian distribution.

Figure 4. Probability density function curves for the standard Cauchy and Gaussian distributions.

Introducing the Cauchy mutation into the position update formula of the COOT al-
gorithm and exploiting the perturbation ability of the Cauchy mutation operator will fur-
ther improve the diversity of the population, enhance the global search ability of the al-
gorithm, and prevent the algorithm from falling into a local optimum. The new position
update equation is generated using the Cauchy mutation as follows:

Figure 4. Probability density function curves for the standard Cauchy and Gaussian distributions.

Sensors 2022, 22, 3383 12 of 33

Introducing the Cauchy mutation into the position update formula of the COOT
algorithm and exploiting the perturbation ability of the Cauchy mutation operator will
further improve the diversity of the population, enhance the global search ability of the
algorithm, and prevent the algorithm from falling into a local optimum. The new position
update equation is generated using the Cauchy mutation as follows:

XGbestNew(i + 1) = XCootPos(i) + Cauchy(0, 1) ∗ XCootPos(i) (38)

where XGbestNew(i + 1) denotes the latest position of the i + 1-th iteration after perturbation
by the Cauchy mutation, XCootPos(i) denotes the position of the coot bird of the i-th iteration,
and Cauchy(0, 1) denotes the standard Cauchy distribution.

In order to enhance the performance of the algorithm for finding the best solution,
the Cauchy mutation and the opposition-based learning strategy can be fused, and the
selection probability Ps for deciding which strategy to choose for the position update can be
defined using a dynamic selection mechanism, so that both of them are executed alternately
with a certain probability as follows [61]:

Ps = − exp
(

1− i
max_Iter

)20
+ η (39)

where η is the control parameter, and generally takes the value of 0.05 [61].
In this dynamic selection mechanism, if the random number rand < Ps, the position is

updated using the opposition-based learning strategy; otherwise, the position is updated
using the Cauchy mutation strategy.

4.4. Implementation Steps of COOTCLCO Algorithm

Step 1: Set the parameters of population size N, maximum number of iterations
max_Iter, number of leaders NLeader, number of followers Ncoot, etc., and randomly initialize
the positions of coot bird followers and leaders according to Equation (9).

Step 2: Enhance the diversity of the population by using the chaotic tent map in
Equation (18).

Step 3: Update the position of the coot bird follower according to the Lévy flight
perturbation strategy introduced by Equations (26)–(28).

Step 4: Update the position of the coot bird leader according to Equation (15).
Step 5: Calculate the fitness of the coot bird followers and leaders, and compare them

to select the best fitness value.
Step 6: Select the Cauchy mutation or the opposition-based learning strategy according

to Equation (39) to perturb the current optimal solution and generate a new solution.
Step 7: Determine whether the end condition is reached; if yes, proceed to the next

step; otherwise, return to Step 3.
Step 8: The program ends and outputs the optimal fitness value and the best position.

4.5. COOTCLCO Algorithm Time Complexity Analysis

Suppose that the number of populations of the algorithm is N, the dimension of
the search space is D, and the maximum number of iterations is T. Then, for the basic
COOT algorithm, its time complexity is O(NDT). For the COOTCLCO algorithm, its time
complexity is analyzed as follows:

(1) The time complexity of initializing the population using the chaotic tent map is
O(ND). Thus, the required time complexity is O(NDT) + O(ND) = O(NDT) in the case
of introducing only the chaotic tent map.

(2) The time complexity of perturbing the individual positions using the Lévy flight strat-
egy is O(ND), and the time complexity of the algorithm is O(NDT) after T iterations.
Thus, the required time complexity is O(NDT) + O(NDT) = O(NDT) when only the
Lévy flight strategy is introduced.

Sensors 2022, 22, 3383 13 of 33

(3) The time complexity of the algorithm is O(NDT) + O(NDT) after T iterations by fusing
the Cauchy mutation and the opposition-based learning strategy and perturbing the
optimal solution’s position. Thus, the required time complexity is O(NDT) + O(NDT)
+ O(NDT) = O(NDT) with the introduction of only the fused Cauchy mutation and
the opposition-based learning strategy.

Therefore, after introducing the above three improvement strategies, the time com-
plexity of the COOTCLCO algorithm is O(COOTCLCO) = O(NDT) + O(NDT) + O(NDT)
= O(NDT). In summary, the time complexity of the COOTCLCO algorithm is the same
as that of the COOT algorithm, thus showing that the improvement strategy proposed
in this paper based on the COOT algorithm does not increase the time complexity of the
algorithm.

5. Coverage Optimization Strategy

In this paper, the location-seeking process of nodes in the coverage optimization
problem is abstracted as the process of making different movement behaviors of the coot
bird group toward food or a specific location, and the optimal solution is the target location
of each node deployed. The goal of WSN coverage optimization based on the COOTCLCO
algorithm is to maximize the coverage of the target monitoring area by using a certain
number of sensor nodes and optimizing the locations where they will be deployed. The
flowchart of the coverage optimization algorithm is shown in Figure 5. Each coot bird
individual in the algorithm represents a coverage distribution, and the specific algorithm
steps are as follows:

Step 1: Input parameters such as the number of nodes q, perception radius Rs, area
of region M × N, etc., and randomly initialize the positions of the coot bird followers and
leaders according to Equation (9).

Step 2: Boost the diversity of the population using the chaotic tent map in Equation (18),
and calculate the initial coverage according to Equation (4).

Step 3: Update the position of the coot bird followers according to the Lévy flight
perturbation strategy introduced by Equations (26)–(28).

Step 4: Update the position of the coot bird leaders according to Equation (15).
Step 5: Calculate the fitness of the coot bird followers and leaders, and update the

coverage rate according to Equation (4), with the coverage rate Cov as the objective function,
to find the current best node location.

Step 6: Select the Cauchy mutation or the opposition-based learning strategy according
to Equation (39) to perturb the current optimal solution and generate a new solution.

Step 7: Determine whether the end condition is reached; if yes, proceed to the next
step; otherwise, return to Step 3.

Step 8: The program ends and the node optimal coverage rate is output.

Sensors 2022, 22, 3383 14 of 33
Sensors 2022, 22, x FOR PEER REVIEW 15 of 33

Start

Input parameters such as
number of nodes q, sensing

radius Rs, region edge length,
number of populations N,

maximum number of
iterations max_Iter

Randomly initialize the position of coot
bird followers and leaders

Boosting population diversity
using chaotic tent map and

calculating initial coverage rate

l = 1

Using the Lévy flight
perturbation strategy to
update the position of

coot bird followers

Update the position of coot bird leaders
according to Equation(15)

Calculate the fitness of coot bird
followers and leaders, and update the
coverage with the coverage cov as the
objective function to find the current

best node position

Select the Cauchy mutation or the opposition-based
learning strategy according to Equation (39) to

perturb the current optimal solution and generate a
new solution.

l > max_Iter

Output node optimal
coverage rate

End

l = l + 1

Y

N

Figure 5. Flowchart of the COOTCLCO coverage optimization algorithm. Figure 5. Flowchart of the COOTCLCO coverage optimization algorithm.

6. Simulation Experiments and Analysis
6.1. Experimental Design

In order to verify the optimization performance of COOTCLCO and its effective-
ness in WSN node coverage optimization, two sets of comparative experiments were

Sensors 2022, 22, 3383 15 of 33

designed in this paper: (1) COOTCLCO was compared with the optimization performance
of seven optimization algorithms, namely, COOT [17], PSO [23], GWO [24], SSA [25],
BOA [26], SOA [27], and SCA [33]; (2) COOTCLCO was compared with six optimization
algorithms—PSO, BOA, SOA, WOA [28], HHO [29], and BES [30]—on the WSN node
coverage optimization problem.

In this paper, 23 benchmark functions were used to test the algorithm’s performance in
finding the optimum, and these 23 benchmark functions can be divided into three categories.
Table 2 lists 7 unimodal benchmark functions; Table 3 lists 6 multimodal benchmark
functions with multiple local optimal solutions, and the number of local optimal solutions
increases exponentially with the number of dimensions; and Table 4 lists 10 fixed-dimension
multimodal benchmark functions.

Table 2. Unimodal benchmark functions.

F Function Dim Range f min

F1 f1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2 f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

F3 f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4 f4(x) = max{|xi|, 1 6 i 6 n} 30 [−100, 100] 0

F5 f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F6 f6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

F7 f7(x) = max{|xi|, 1 6 i 6 n} 30 [−1.28, 1.28] 0

Table 3. Multimodal benchmark functions.

F Function Dim Range f min

F8 f8(x) =
n
∑

i=1
−xi sin

(√
|xi|
)

30 [−500, 500] −418.9829×n

F9 f9(x) =
n
∑

i=1
x2

i − 10 cos(2πxi) + 10 30 [−5.12, 5.12] 0

F10 f10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑
i

cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

F11 f11(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos
(

xi√
i

)
− 1 30 [−600, 600] 0

F12
f12(x) = π

n

 10 sin2(πy1) +
n−1
∑

i=1
(yi − 1)2[

1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 ,

u(xi, a, k, m) =

k(xi − a)m xi > a
0 − a < xi < a

k(−xi − a)mxi < −a

30 [−50, 50] 0

F13 f13(x) = 0.1

sin2(3πxi) +

n
∑

i=1
(xi − 1)2[

1 + sin2(3πxi + 1)
]

+(xn − 1)2[1 + sin2(2πxn)
]

+
n
∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 0

Sensors 2022, 22, 3383 16 of 33

Table 4. Fixed-dimension multimodal benchmark functions.

F Function Dim Range f min

F14
f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

−1
2 [−65, 65] 1

F15 f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003

F16 f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17 f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2

+10
(

1− 1
8π

)
cos x1 + 10

2 [−5, 5] 0.398

F18 f18(x) =

1 + (x1 + x2 + 1)2

 19− 14x1+
3x2

1 − 14x2+
6x1x2 + 3x2

2

×

30 + (2x1 − 3x2)
2 ×

 18− 32x1+
12x2

1 + 48x2−
36x1x2 + 27x2

2

2 [−2, 2] 3

F19 f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij

(
xj − pij

)2
)

3 [1, 3] −3.86

F20 f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij

(
xj − pij

)2
)

6 [0, 1] −3.32

F21 f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

F22 f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F23 f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

Experimental simulation environment for this paper was as follows: Windows 10 OS,
Intel Core i7-10750H CPU @2.60 GHz, NVIDIA GeForce GTX 1650Ti graphics card, SK
Hynix 16 GB RAM, MATLAB 2019b simulation platform.

6.2. Performance Comparison on Benchmark Functions

In this section, the optimization ability of COOTCLCO is compared with that of COOT,
PSO, GWO, SSA, BOA, SOA, and SCA. For all algorithms, the population size N = 30 and
the maximum number of iterations max_Iter = 1500. In order to attenuate the chance of
the experiment, each algorithm was run 30 times independently for the same test function,
taking the average value and standard deviation of the experimental results for comparison,
and the parameter settings of the comparison algorithms are detailed in Table 5. In order to
test the difference between the COOTCLCO algorithm and the comparison algorithm, the
Wilcoxon signed-rank test was used. At the significance level of 0.05, “+”, “≈”, and “−”
indicate that the performance of COOTCLCO is superior to, similar to, or inferior to that of
the comparison algorithm, respectively. Meanwhile, the average values derived from each
algorithm under each test function were ranked. The experimental average value (avg),
standard deviation (std), Wilcoxon signed-rank test results (W), and average value ranking
(R) are presented in Tables 6 and 7, and the best average value and standard deviation
derived in each test function are shown in bold. Finally, the overall Wilcoxon signed-rank
test results, the total average value ranking, and the overall algorithm ranking results are
given in Table 8.

Sensors 2022, 22, 3383 17 of 33

Table 5. Parameter settings of the algorithm.

Algorithms Parameters Values

COOTCLCO Population 30
Iteration 1500

R [−1, 1]
R1 [0, 1]
R2 [0, 1]
µ 2
r tan((rand()−0.5) × 0.5)

COOT Population 30
Iteration 1500

R [−1, 1]
R1 [0, 1]
R2 [0, 1]

PSO Population 30
Iteration 1500

c1, c2 2
wmin 0.2
wmax 0.9

GWO Population 30
Iteration 1500

a [2, 0]

SSA Population 30
Iteration 1500
c1, c2, c3 [0, 1]

BOA Population 30
Iteration 1500

a 0.1
c 0.01
p 0.6

SOA Population 30
Iteration 1500

A [2, 0]
f c 2

SCA Population 30
Iteration 1500

a 2
r1, r2, r3, r4 [0, 1]

Sensors 2022, 22, 3383 18 of 33

Table 6. Results of unimodal and multimodal benchmark functions.

Function Criteria COOTCLCO COOT PSO GWO SSA BOA SOA SCA

F1 avg 2.659 × 10−83 1.0898 × 10−31 4.6753 × 10−13 2.3081 × 10−90 8.514 × 10−09 2.4291 × 10−15 6.4176 × 10−43 0.00021788
std 1.4561 × 10−82 5.9691 × 10−31 1.5343 × 10−12 9.858 × 10−90 1.546 × 10−09 1.6651 × 10−16 1.831 × 10−42 0.0010654
W / + + ≈ + + + +
R 2 4 6 1 7 5 3 8

F2 avg 6.2512 × 10−36 6.4608 × 10−21 1.2222 × 10−05 1.4253 × 10−52 0.81098 1.6096 × 10−12 3.8153 × 10−27 2.9312 × 10−08

std 3.3024 × 10−35 3.5387 × 10−20 3.694 × 10−05 2.1289 × 10−52 1.0753 1.3002 × 10−13 9.4533 × 10−27 6.6456 × 10−08

W / + + − + + ≈ +
R 2 4 7 1 8 5 3 6

F3 avg 3.5233 × 10−77 6.9729 × 10−38 0.19834 3.1175 × 10−23 30.5211 2.09 × 10−15 6.7979 × 10−23 2114.2643
std 1.9298 × 10−76 3.8192 × 10−37 0.10306 1.573 × 10−22 25.2264 1.5103 × 10−16 1.5973 × 10−22 2264.7997
W / + + + + + + +
R 1 2 6 4 7 5 3 8

F4 avg 1.7579 × 10−29 5.3006 × 10−22 0.065309 3.1451 × 10−22 5.0517 1.8376 × 10−12 1.4693 × 10−13 10.2213
std 9.6209 × 10−29 2.8788 × 10−21 0.026898 4.7313 × 10−22 2.7223 1.1907 × 10−13 3.593 × 10−13 8.0463
W / ≈ + ≈ + + + +
R 1 2 6 3 7 5 4 8

F5 avg 27.8032 49.0883 30.6025 26.5966 160.312 28.9041 27.9173 40.7895
std 0.22848 64.9583 17.6035 0.91726 312.6524 0.025756 0.73362 50.9841
W / + + − + + ≈ +
R 2 7 5 1 8 4 3 6

F6 avg 0.0027052 0.0011474 8.5311 × 10−13 0.64475 9.294 × 10−09 5.0655 3.2155 4.3367
std 0.001689 0.0006967 3.7915 × 10−12 0.34548 2.227 × 10−09 0.63497 0.44021 0.41554
W / − − + − + + +
R 4 3 1 5 2 8 6 7

F7 avg 0.0012201 0.0016025 0.029791 0.00052173 0.06215 0.00063614 0.00071636 0.018585
std 0.0010915 0.0012723 0.0095664 0.00031804 0.026099 0.00021572 0.00056061 0.016281
W / ≈ + − + − − +
R 4 5 7 1 8 2 3 6

F8 avg −9259.1292 −7727.7499 −2947.3405 −6119.6079 −7766.648 −4520.5507 −5435.957 −3978.2828
std 746.799 843.0888 528.7386 453.4792 689.3375 324.7176 662.0541 259.1258
W / + + + + + + +
R 1 3 8 4 2 6 5 7

Sensors 2022, 22, 3383 19 of 33

Table 6. Cont.

Function Criteria COOTCLCO COOT PSO GWO SSA BOA SOA SCA

F9 avg 5.6843 × 10−15 4.3428 × 10−12 47.8575 0.38537 57.9397 29.8787 2.0138 11.9765
std 1.7345 × 10−14 2.3765 × 10−11 14.9651 1.4669 16.6952 68.3273 7.7314 21.3326
W / ≈ + + + + + +
R 1 2 7 3 8 6 4 5

F10 avg 4.1034 × 10−14 1.2819 × 10−13 9.0532 × 10−08 1.1191 × 10−14 1.8622 5.2254 × 10−13 19.9593 16.2366
std 1.5409 × 10−13 3.9915 × 10−13 1.7522 × 10−07 3.2788 × 10−15 0.87668 3.8682 × 10−13 0.0012739 7.4322
W / ≈ + ≈ + ≈ + +
R 1 4 5 2 6 3 8 7

F11 avg 3.7007 × 10−17 4.9516 × 10−15 9.4859 0.0018945 0.010581 3.7007 × 10−18 0.002286 0.26667
std 8.9073 × 10−17 2.6891 × 10−14 3.9401 0.0051435 0.010628 2.027 × 10−17 0.0092326 0.27876
W / + + + + − + +
R 2 3 8 4 6 1 5 7

F12 avg 2.5932 × 10−05 0.070101 0.34582 0.038975 5.4261 0.40324 0.2896 1.1145
std 1.7952 × 10−05 0.21764 0.50576 0.020464 4.5121 0.14044 0.1326 1.0823
W / + + + + + + +
R 1 3 5 2 8 6 4 7

F13 avg 0.0085188 0.015734 0.00036625 0.45024 0.5924 2.4769 1.9698 24.3547
std 0.011135 0.023316 0.002006 0.2401 3.2058 0.38948 0.15777 104.6906
W / + − + + + + +
R 2 3 1 4 5 7 6 8

+/≈/− / 8/4/1 11/2/0 7/3/3 12/0/1 10/1/2 10/2/1 13/0/0

Table 7. Results of fixed-dimension multimodal benchmark functions.

Function Criteria COOTCLCO COOT PSO GWO SSA BOA SOA SCA

F14 avg 0.998 0.998 1.6906 4.1922 0.998 1.0643 1.3948 1.3287
std 3.0018×10−16 2.2395 × 10−16 1.4911 4.4183 1.725 × 10−16 0.36262 0.80721 0.75206
W / ≈ + + ≈ + + +
R 1 2 7 8 3 4 6 5

F15 avg 0.00046961 0.00064839 0.0004961 0.005088 0.00082478 0.00032609 0.0011046 0.00081571
std 0.00020712 0.00031895 0.00039601 0.0085754 0.00024494 1.7582×10−05 0.00031781 0.00030811
W / + ≈ + + − + +
R 2 4 3 8 6 1 7 5

Sensors 2022, 22, 3383 20 of 33

Table 7. Cont.

Function Criteria COOTCLCO COOT PSO GWO SSA BOA SOA SCA

F16 avg −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
std 6.8377×10−16 1.8251 × 10−12 6.7752 × 10−16 2.3368 × 10−09 3.931 × 10−15 1.0339 × 10−05 1.4916 × 10−07 1.4874 × 10−05

W / ≈ ≈ ≈ ≈ + + +
R 1 4 2 5 3 8 6 7

F17 avg 0.39789 0.39789 0.39789 0.39789 0.39789 0.39823 0.3979 0.39841
std 0 1.2974 × 10−15 0 7.2275 × 10−08 2.070 × 10−15 0.00079194 1.0205 × 10−05 0.00052896
W / + ≈ + ≈ + + +
R 1 4 1 5 3 7 6 8

F18 avg 3 3 3 3 3 3.0112 3 3
std 3.2769×10−15 1.5417 × 10−14 1.7916 × 10−15 7.3174 × 10−06 3.959 × 10−14 0.032131 1.9517 × 10−05 4.1425 × 10−05

W / + ≈ + ≈ + + +
R 1 4 2 5 3 8 7 6

F19 avg −0.30048 −0.30048 −3.8628 −0.30048 −0.30048 −0.30048 −0.30048 −0.30048
std 2.2584 × 10−16 2.2584 × 10−16 2.7101×10−15 2.2584 × 10−16 2.259 × 10−16 2.2584 × 10−16 2.2584 × 10−16 2.2584 × 10−16

W / ≈ − + ≈ + + +
R 2 3 1 7 4 6 5 8

F20 avg −3.2982 −3.2943 −3.2625 −3.277 −3.2263 −3.1381 −2.7975 −2.8919
std 0.04837 0.051146 0.060463 0.073544 0.048682 0.14729 0.54644 0.39914
W / ≈ + + + + + +
R 1 2 4 3 5 6 8 7

F21 avg −9.6924 −9.2305 −6.3881 −9.1395 −7.5573 −9.0466 −3.1981 −3.0402
std 1.3421 2.1365 3.4666 2.0617 3.122 0.94949 3.9074 2.2051
W / + + + + + + +
R 1 2 6 3 5 4 7 8

F22 avg −9.5169 −10.2271 −6.578 −10.4027 −9.2863 −9.4478 −6.1925 −3.9181
std 2.0147 0.96292 3.5147 0.00013733 2.584 1.1399 4.6827 1.9622
W / − + − + ≈ + +
R 3 2 6 1 5 4 7 8

F23 avg −9.7655 −10.3577 −8.1972 −10.5362 −9.4872 −10.0631 −8.1032 −4.9455
std 1.8698 0.97874 3.6466 0.00010617 2.4332 0.3434 3.9097 1.9771
W / − + − ≈ − + +
R 4 2 6 1 5 3 7 8

+/≈/− / 4/4/2 5/4/1 7/1/2 4/6/0 7/1/2 10/0/0 10/0/0

Sensors 2022, 22, 3383 21 of 33

Table 8. Overall Wilcoxon signed-rank test results, average value rank results, and algorithm rank
results.

Result COOTCLCO COOT PSO GWO SSA BOA SOA SCA

+/≈/− / 12/8/3 16/6/1 14/4/5 16/6/1 17/2/4 20/2/1 23/0/0
Average rank 1.783 3.087 4.696 3.522 5.391 4.957 5.348 6.957
Overall rank 1 2 4 3 7 5 6 8

6.2.1. Analysis of Numerical Results

The average value, standard deviation, Wilcoxon signed-rank test results, and average
value ranking of the simulation experiments for the 8 optimization algorithms on the
23 benchmark test functions are given in Tables 5–7. The unimodal test function is suitable
for evaluating the exploitation of the algorithms. In terms of average value and standard
deviation, for the test functions F1, F2, and F5, GWO has the best performance, while
COOTCLCO ranks as the second-best-performing algorithm. For F3 and F4, COOTCLCO
is the best-performing optimizer, followed by COOT’s search ability, while SCA is the
worst-performing optimization algorithm in these two test functions. For the test functions
F6 and F7, COOTCLCO has an average performance in terms of the optimization ability,
ranking fourth in the comparison of these eight algorithms tested. It is worth mentioning
that in the test function F6, PSO exhibits the strongest optimization ability. Overall, among
the unimodal test functions, COOTCLCO is the best overall performing algorithm in
terms of optimization ability and stability, and is very effective and competitive with
the other seven metaheuristics, while the test results show that COOTCLCO has a good
exploitation capability.

Multimodal test functions and fixed-dimension test functions are suitable for assessing
the exploration ability of the algorithms. Among the multimodal functions, for the test
function F8, the optimization effect of the COOTCLCO algorithm is the best, while SSA and
COOT are the second- and third-best-performing algorithms. For F9 and F10, COOTCLCO
obtained the best results compared to the other algorithms; in F9, the second- and third-
ranked test results were COOT and GWO, respectively; in F10, GWO and BOA were second
only to COOTCLCO in terms of finding the best results. For F11, BOA had the best test
results, while COOTCLCO followed closely. For F12, COOTCLCO outperformed the other
algorithms in terms of average value and standard deviation. For F13, COOTCLCO’s test
results ranked second, and it is worth mentioning that PSO performed the best in terms of
average value and standard deviation results. Among the fixed-dimension functions, for
F14, F20, and F21, COOTCLCO performed better than the other algorithms for both the
average value and the standard deviation. For F15, the BOA test results were the best, and
its standard deviation results prove that BOA has a strong stability in the test function F15,
where the COOTCLCO test results rank second. For F16, F17, and F18, the eight algorithms
can generally find the optimal value of the test function in terms of the average value of
the optimal value; in terms of the standard deviation, COOTCLCO has the best stability;
finally, COOTCLCO wins in the test results of F16, F17, and F18 in terms of stability. For
F19, the PSO test results proved it to be the best performing algorithm, while COOTCLCO
ranked as the second-best-performing algorithm. For F22 and F23, while COOTCLCO’s
test results ranked only third and fourth, respectively, the best-performing GWO’s test
results were only marginally stronger than COOTCLCO’s, as the two were very close in
their optimization results.

All in all, for the multimodal and fixed-dimension test functions, COOTCLCO ranked
first 10 times and second 4 times out of 16 test results, which is evidence that the COOT-
CLCO algorithm has an extremely strong exploration capability.

6.2.2. Analysis of Convergence Curves

Figures 6–12 show the convergence curves of the eight algorithms of COOTCLCO,
COOT, PSO, GWO, SSA, BOA, SOA, and SCA in the seven selected benchmark functions

Sensors 2022, 22, 3383 22 of 33

F3, F4, F8, F11, F12, F20, and F21, as well as the three-dimensional space diagram of the
seven test functions. For all algorithms, the population size N = 30 and the maximum
number of iterations max_Iter = 1500 are set. In order to reduce the contingency of the
experiment, the curves given in these figures are the average convergence curves obtained
from 30 independent experiments.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 33

6.2.2. Analysis of Convergence Curves
Figures 6–12 show the convergence curves of the eight algorithms of COOTCLCO,

COOT, PSO, GWO, SSA, BOA, SOA, and SCA in the seven selected benchmark functions
F3, F4, F8, F11, F12, F20, and F21, as well as the three-dimensional space diagram of the
seven test functions. For all algorithms, the population size 30N = and the maximum
number of iterations _ 1500max Iter = are set. In order to reduce the contingency of the
experiment, the curves given in these figures are the average convergence curves obtained
from 30 independent experiments.

Figure 6. Test function F3 and comparison of convergence curves on F3.

Figure 7. Test function F4 and comparison of convergence curves on F4.

Figure 6. Test function F3 and comparison of convergence curves on F3.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 33

6.2.2. Analysis of Convergence Curves
Figures 6–12 show the convergence curves of the eight algorithms of COOTCLCO,

COOT, PSO, GWO, SSA, BOA, SOA, and SCA in the seven selected benchmark functions
F3, F4, F8, F11, F12, F20, and F21, as well as the three-dimensional space diagram of the
seven test functions. For all algorithms, the population size 30N = and the maximum
number of iterations _ 1500max Iter = are set. In order to reduce the contingency of the
experiment, the curves given in these figures are the average convergence curves obtained
from 30 independent experiments.

Figure 6. Test function F3 and comparison of convergence curves on F3.

Figure 7. Test function F4 and comparison of convergence curves on F4.
Figure 7. Test function F4 and comparison of convergence curves on F4.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 33

Figure 8. Test function F8 and comparison of convergence curves on F8.

Figure 9. Test function F11 and comparison of convergence curves on F11.

Figure 10. Test function F12 and comparison of convergence curves on F12.

Figure 8. Test function F8 and comparison of convergence curves on F8.

Sensors 2022, 22, 3383 23 of 33

Sensors 2022, 22, x FOR PEER REVIEW 23 of 33

Figure 8. Test function F8 and comparison of convergence curves on F8.

Figure 9. Test function F11 and comparison of convergence curves on F11.

Figure 10. Test function F12 and comparison of convergence curves on F12.

Figure 9. Test function F11 and comparison of convergence curves on F11.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 33

Figure 8. Test function F8 and comparison of convergence curves on F8.

Figure 9. Test function F11 and comparison of convergence curves on F11.

Figure 10. Test function F12 and comparison of convergence curves on F12. Figure 10. Test function F12 and comparison of convergence curves on F12.

Sensors 2022, 22, x FOR PEER REVIEW 24 of 33

Figure 11. Test function F20 and comparison of convergence curves on F20.

Figure 12. Test function F21 and comparison of convergence curves on F21.

Figure 6 illustrates that COOTCLCO has a strong global search capability, and it finds
a better global optimal value compared to other algorithms. It can quickly jump out of the
local optimum in the middle stage of the algorithm’s iteration so as to continue to find
and approach the theoretical optimal value of the function, which benefits from the effect
of the Lévy flight mechanism and the algorithm’s improvement by combining the Cauchy
mutation and the opposition-based learning. Although the search principle of COOT itself
also has the ability to jump out of the local optimum, as can be seen from the figure, this
ability is still not powerful enough compared to COOTCLCO. Figure 7 shows that the
convergence rates of COOTCLCO, COOT, and GWO are very close in the early stages of
the iteration, but both COOT and GWO fall into the local optimum too early, while
COOTCLCO continues its search with a faster convergence rate until it obtains an optimal
solution close to the theoretical optimal value. Figure 8 shows that PSO, SCA, and BOA
fall into a stagnant state prematurely at the early stage of the algorithm’s iteration and,
thus, produce bad search results. In contrast, COOTCLCO and COOT keep searching for-
ward in a very stable state, and it can be seen from the figure that the whole process almost
never falls into a local optimum, but COOTCLCO eventually has better search accuracy
than COOT. Figure 9 shows that COOTCLCO was looking for the optimal value of the
target with a very fast convergence speed, and eventually both COOTCLCO and BOA
found results close to the theoretical optimal value. However, COOT was stuck in the local

Figure 11. Test function F20 and comparison of convergence curves on F20.

Sensors 2022, 22, 3383 24 of 33

Sensors 2022, 22, x FOR PEER REVIEW 24 of 33

Figure 11. Test function F20 and comparison of convergence curves on F20.

Figure 12. Test function F21 and comparison of convergence curves on F21.

Figure 6 illustrates that COOTCLCO has a strong global search capability, and it finds
a better global optimal value compared to other algorithms. It can quickly jump out of the
local optimum in the middle stage of the algorithm’s iteration so as to continue to find
and approach the theoretical optimal value of the function, which benefits from the effect
of the Lévy flight mechanism and the algorithm’s improvement by combining the Cauchy
mutation and the opposition-based learning. Although the search principle of COOT itself
also has the ability to jump out of the local optimum, as can be seen from the figure, this
ability is still not powerful enough compared to COOTCLCO. Figure 7 shows that the
convergence rates of COOTCLCO, COOT, and GWO are very close in the early stages of
the iteration, but both COOT and GWO fall into the local optimum too early, while
COOTCLCO continues its search with a faster convergence rate until it obtains an optimal
solution close to the theoretical optimal value. Figure 8 shows that PSO, SCA, and BOA
fall into a stagnant state prematurely at the early stage of the algorithm’s iteration and,
thus, produce bad search results. In contrast, COOTCLCO and COOT keep searching for-
ward in a very stable state, and it can be seen from the figure that the whole process almost
never falls into a local optimum, but COOTCLCO eventually has better search accuracy
than COOT. Figure 9 shows that COOTCLCO was looking for the optimal value of the
target with a very fast convergence speed, and eventually both COOTCLCO and BOA
found results close to the theoretical optimal value. However, COOT was stuck in the local

Figure 12. Test function F21 and comparison of convergence curves on F21.

Figure 6 illustrates that COOTCLCO has a strong global search capability, and it finds
a better global optimal value compared to other algorithms. It can quickly jump out of the
local optimum in the middle stage of the algorithm’s iteration so as to continue to find and
approach the theoretical optimal value of the function, which benefits from the effect of
the Lévy flight mechanism and the algorithm’s improvement by combining the Cauchy
mutation and the opposition-based learning. Although the search principle of COOT itself
also has the ability to jump out of the local optimum, as can be seen from the figure, this
ability is still not powerful enough compared to COOTCLCO. Figure 7 shows that the
convergence rates of COOTCLCO, COOT, and GWO are very close in the early stages of the
iteration, but both COOT and GWO fall into the local optimum too early, while COOTCLCO
continues its search with a faster convergence rate until it obtains an optimal solution close
to the theoretical optimal value. Figure 8 shows that PSO, SCA, and BOA fall into a stagnant
state prematurely at the early stage of the algorithm’s iteration and, thus, produce bad
search results. In contrast, COOTCLCO and COOT keep searching forward in a very stable
state, and it can be seen from the figure that the whole process almost never falls into a local
optimum, but COOTCLCO eventually has better search accuracy than COOT. Figure 9
shows that COOTCLCO was looking for the optimal value of the target with a very fast
convergence speed, and eventually both COOTCLCO and BOA found results close to the
theoretical optimal value. However, COOT was stuck in the local optimal state for most of
the algorithm’s iteration, and performed poorly overall. Figure 10 shows that SOA, SCA,
and SSA were at a standstill at the beginning of the algorithms’ iteration, and although
the search started at a very fast convergence rate at the middle stage of the iteration, the
algorithms fell into local optima at a later stage. Figure 11 shows that there is almost
no difference in the convergence speed and convergence accuracy of the COOTCLCO,
COOT, PSO, and GWO algorithms but, relatively speaking, the result of COOTCLCO is
closest to the theoretical optimal value. Figure 12 shows that both COOTCLCO and GWO
exhibit good search accuracy, but the convergence speed of COOTCLCO is significantly
better than that of GWO. In summary, as the test results in Tables 5–7 and Figures 6–12
show, COOTCLCO achieves very competitive results for most of the benchmark functions,
indicating that it has reliable convergence speed as well as better exploration capability.

6.3. Coverage Performance Simulation Experiment and Analysis

To verify the effect of COOTCLCO on WSN node coverage optimization, six optimiza-
tion algorithms—PSO, BOA, SOA, WOA, HHO, and BES—were selected for comparison on
the WSN node coverage optimization problem. The sensor nodes were deployed in a square
monitoring area of 100 m × 100 m, the sensing radius of the sensor nodes was Rs = 10 m,

Sensors 2022, 22, 3383 25 of 33

the communication radius was Rc = 20 m, the number of sensor nodes was denoted by q,
and the number of iterations was denoted by Iteration. The experimental parameters of the
node deployment area were set as shown in Table 9. Three sets of comparison experiments
were designed in this section: (1) 30 independent experiments with different algorithms for
25, 35, and 45 sensor nodes, to plot their average coverage rate curves; (2) initial coverage
diagram and coverage optimization diagram of COOTCLCO for node coverage optimiza-
tion plotted for 25, 35, and 45 sensor nodes; (3) initial coverage diagram and coverage
optimization diagram of COOTCLCO for node coverage optimization plotted for 45 sensor
nodes and 500, 1000, and 1500 iterations.

Table 9. Experimental parameter settings for the node deployment area.

Parameters Values

Area of deployment 100 m × 100 m
Sensing radius (Rs) 10 m

Communication radius (Rc) 20 m
Number of sensor nodes (q) 25, 35, 45

Number of iterations (Iteration) 500, 1000, 1500

6.3.1. Comparative Experiment 1 and Result Analysis

In the first type of comparative experiments, in order to reduce the contingency of
the experiment, 30 independent experiments were conducted with different algorithms
for 25, 35, and 45 sensor nodes; the average value of their coverage rate was taken, and
their average coverage rate curves were plotted as shown in Figure 13. Table 10 gives
the comparison of the average coverage rate results of the seven algorithms, and the
comparison of the average coverage rates in the cases of different node numbers is shown
in Figure 14. As can be seen from Figure 13, COOTCLCO achieved the best coverage rate
in all three cases, and its average final coverage rate was 75.329%, 90.332% and 96.990%,
respectively; of course, HHO and BES also obtained a good coverage effect, while BOA
had the worst performance in node coverage optimization. In the case of changing only the
number of sensor nodes, the coverage rate increased as the number of nodes continued to
increase. Overall, COOTCLCO outperformed the other six algorithms in terms of WSN
coverage optimization.

Sensors 2022, 22, x FOR PEER REVIEW 26 of 33

Table 10. Comparison of average coverage rate

Algorithm
q = 25 q = 35 q = 45

Average Coverage
Rate/%

Average Coverage
Rate/%

Average Coverage
Rate/%

COOTCLCO 75.329 90.332 96.990
PSO 72.999 80.383 87.336
BOA 62.718 74.634 83.102
SOA 69.066 82.752 90.802
WOA 69.913 83.947 91.600
HHO 73.831 89.115 95.680
BES 73.459 88.643 94.978

(a) (b)

(c)

Figure 13. Comparison of the average coverage rate curves of the seven algorithms in the three cases:
(a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m, Iteration
= 1500.

Figure 13. Cont.

Sensors 2022, 22, 3383 26 of 33

Sensors 2022, 22, x FOR PEER REVIEW 26 of 33

Table 10. Comparison of average coverage rate

Algorithm
q = 25 q = 35 q = 45

Average Coverage
Rate/%

Average Coverage
Rate/%

Average Coverage
Rate/%

COOTCLCO 75.329 90.332 96.990
PSO 72.999 80.383 87.336
BOA 62.718 74.634 83.102
SOA 69.066 82.752 90.802
WOA 69.913 83.947 91.600
HHO 73.831 89.115 95.680
BES 73.459 88.643 94.978

(a) (b)

(c)

Figure 13. Comparison of the average coverage rate curves of the seven algorithms in the three cases:
(a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m, Iteration
= 1500.

Figure 13. Comparison of the average coverage rate curves of the seven algorithms in the three cases:
(a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Table 10. Comparison of average coverage rate.

Algorithm
q = 25 q = 35 q = 45

Average Coverage
Rate/%

Average Coverage
Rate/%

Average Coverage
Rate/%

COOTCLCO 75.329 90.332 96.990
PSO 72.999 80.383 87.336
BOA 62.718 74.634 83.102
SOA 69.066 82.752 90.802
WOA 69.913 83.947 91.600
HHO 73.831 89.115 95.680
BES 73.459 88.643 94.978

Sensors 2022, 22, x FOR PEER REVIEW 27 of 33

Figure 14. Comparison of average coverage rates under different numbers of nodes.

6.3.2. Comparative Experiment 2 and Result Analysis
In the second type of comparison experiments, different numbers of sensor nodes

were randomly deployed in a 100 m × 100 m area with a sensing radius of 10 m and a
communication radius of 20 m for each sensor node, and the maximum number of itera-
tions was 1500. The initial coverage diagram and coverage optimization diagram of
COOTCLCO for node coverage optimization are shown in Figure 15 for the cases of 25,
35, and 45 sensor nodes. Figure 16 gives a comparison of the coverage rates before and
after optimization by COOTCLCO under different numbers of nodes. In Figure 15a, the
number of sensor nodes is 25, and the initial coverage ratio of the coverage diagram ini-
tialized randomly is 58.81%, while after optimization by COOTCLCO the final coverage
rate is obtained as 77.28%, which is an 18.47% increase in coverage. In Figure 15b, the
number of sensor nodes is 35, and the initial coverage rate of the coverage diagram ini-
tialized randomly is 69.76%, while after optimization by COOTCLCO the final coverage
rate is obtained as 94.23%, which is a 24.47% increase in coverage. In Figure 15c, the num-
ber of sensor nodes is 45, and the initial coverage rate of the coverage diagram initialized
randomly is 79.61%, while after optimization by COOTCLCO the final coverage rate is
obtained as 98.07%, which is an 18.46% increase in coverage. It can be seen that in these
three cases, after COOTCLCO optimization, the locations of the randomly initialized sen-
sor nodes become neat and orderly rather than haphazard, which effectively improves the
coverage rate of the deployment area.

(a)

Figure 14. Comparison of average coverage rates under different numbers of nodes.

6.3.2. Comparative Experiment 2 and Result Analysis

In the second type of comparison experiments, different numbers of sensor nodes
were randomly deployed in a 100 m × 100 m area with a sensing radius of 10 m and a
communication radius of 20 m for each sensor node, and the maximum number of iterations

Sensors 2022, 22, 3383 27 of 33

was 1500. The initial coverage diagram and coverage optimization diagram of COOTCLCO
for node coverage optimization are shown in Figure 15 for the cases of 25, 35, and 45 sensor
nodes. Figure 16 gives a comparison of the coverage rates before and after optimization
by COOTCLCO under different numbers of nodes. In Figure 15a, the number of sensor
nodes is 25, and the initial coverage ratio of the coverage diagram initialized randomly
is 58.81%, while after optimization by COOTCLCO the final coverage rate is obtained
as 77.28%, which is an 18.47% increase in coverage. In Figure 15b, the number of sensor
nodes is 35, and the initial coverage rate of the coverage diagram initialized randomly
is 69.76%, while after optimization by COOTCLCO the final coverage rate is obtained
as 94.23%, which is a 24.47% increase in coverage. In Figure 15c, the number of sensor
nodes is 45, and the initial coverage rate of the coverage diagram initialized randomly
is 79.61%, while after optimization by COOTCLCO the final coverage rate is obtained as
98.07%, which is an 18.46% increase in coverage. It can be seen that in these three cases,
after COOTCLCO optimization, the locations of the randomly initialized sensor nodes
become neat and orderly rather than haphazard, which effectively improves the coverage
rate of the deployment area.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 33

Figure 14. Comparison of average coverage rates under different numbers of nodes.

6.3.2. Comparative Experiment 2 and Result Analysis
In the second type of comparison experiments, different numbers of sensor nodes

were randomly deployed in a 100 m × 100 m area with a sensing radius of 10 m and a
communication radius of 20 m for each sensor node, and the maximum number of itera-
tions was 1500. The initial coverage diagram and coverage optimization diagram of
COOTCLCO for node coverage optimization are shown in Figure 15 for the cases of 25,
35, and 45 sensor nodes. Figure 16 gives a comparison of the coverage rates before and
after optimization by COOTCLCO under different numbers of nodes. In Figure 15a, the
number of sensor nodes is 25, and the initial coverage ratio of the coverage diagram ini-
tialized randomly is 58.81%, while after optimization by COOTCLCO the final coverage
rate is obtained as 77.28%, which is an 18.47% increase in coverage. In Figure 15b, the
number of sensor nodes is 35, and the initial coverage rate of the coverage diagram ini-
tialized randomly is 69.76%, while after optimization by COOTCLCO the final coverage
rate is obtained as 94.23%, which is a 24.47% increase in coverage. In Figure 15c, the num-
ber of sensor nodes is 45, and the initial coverage rate of the coverage diagram initialized
randomly is 79.61%, while after optimization by COOTCLCO the final coverage rate is
obtained as 98.07%, which is an 18.46% increase in coverage. It can be seen that in these
three cases, after COOTCLCO optimization, the locations of the randomly initialized sen-
sor nodes become neat and orderly rather than haphazard, which effectively improves the
coverage rate of the deployment area.

(a)

Sensors 2022, 22, x FOR PEER REVIEW 28 of 33

(b)

(c)

Figure 15. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Figure 16. Comparison of coverage rates before and after optimization by COOTCLCO under dif-
ferent numbers of nodes.

6.3.3. Comparative Experiment 3 and Result Analysis
In the third type of comparison experiments, similarly, the area was set to 100 m ×

100 m, the sensing radius of each sensor node was 10 m, and the communication radius
was 20 m. We only changed the number of iterations, where the number of sensor nodes
was 45 and the number of iterations was 500, 1000, or 1500; the initial coverage diagram
of the nodes and the coverage diagram optimized by COOTCLCO are given in Figure 17.

Figure 15. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Sensors 2022, 22, 3383 28 of 33

Sensors 2022, 22, x FOR PEER REVIEW 28 of 33

(b)

(c)

Figure 15. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 25, Rs = 10 m, Iteration = 1500; (b) q = 35, Rs = 10 m, Iteration = 1500; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Figure 16. Comparison of coverage rates before and after optimization by COOTCLCO under dif-
ferent numbers of nodes.

6.3.3. Comparative Experiment 3 and Result Analysis
In the third type of comparison experiments, similarly, the area was set to 100 m ×

100 m, the sensing radius of each sensor node was 10 m, and the communication radius
was 20 m. We only changed the number of iterations, where the number of sensor nodes
was 45 and the number of iterations was 500, 1000, or 1500; the initial coverage diagram
of the nodes and the coverage diagram optimized by COOTCLCO are given in Figure 17.

Figure 16. Comparison of coverage rates before and after optimization by COOTCLCO under
different numbers of nodes.

6.3.3. Comparative Experiment 3 and Result Analysis

In the third type of comparison experiments, similarly, the area was set to 100 m × 100 m,
the sensing radius of each sensor node was 10 m, and the communication radius was 20 m.
We only changed the number of iterations, where the number of sensor nodes was 45 and
the number of iterations was 500, 1000, or 1500; the initial coverage diagram of the nodes
and the coverage diagram optimized by COOTCLCO are given in Figure 17. Figure 18
gives a comparison of the coverage rates before and after optimization by COOTCLCO
when the number of nodes is 45. In Figure 17a, the number of iterations is set to 500, and
the initial coverage rate of the coverage diagram initialized randomly is 79.95%, while
after optimization by COOTCLCO the final coverage is obtained as 91.28%, which is an
11.33% increase in coverage. In Figure 17b, the number of iterations is set to 1000, and
the initial coverage rate of the coverage diagram initialized randomly is 81.08%, while
after optimization by COOTCLCO the final coverage is obtained as 95.86%, which is a
14.78% increase in coverage. In Figure 17c, the number of iterations is set to 1500, and the
initial coverage rate of the coverage diagram initialized randomly is 79.61%, while after
optimization by COOTCLCO the final coverage is obtained as 98.07%, which is an 18.46%
increase in coverage. It can be seen that the final coverage rate increased by only 6.79%
when the number of iterations was increased from 500 to 1500, while in the second group
of comparison experiments, the final coverage rate improved by 20.79% when the number
of sensor nodes was increased from 25 to 45. Therefore, in the case of changing only the
number of sensor nodes or only the number of iterations, reasonably and finitely increasing
the number of sensor nodes is more likely to greatly improve the coverage rate of the target
monitoring area compared to increasing the number of iterations.

Sensors 2022, 22, x FOR PEER REVIEW 29 of 33

Figure 18 gives a comparison of the coverage rates before and after optimization by
COOTCLCO when the number of nodes is 45. In Figure 17a, the number of iterations is
set to 500, and the initial coverage rate of the coverage diagram initialized randomly is
79.95%, while after optimization by COOTCLCO the final coverage is obtained as 91.28%,
which is an 11.33% increase in coverage. In Figure 17b, the number of iterations is set to
1000, and the initial coverage rate of the coverage diagram initialized randomly is 81.08%,
while after optimization by COOTCLCO the final coverage is obtained as 95.86%, which
is a 14.78% increase in coverage. In Figure 17c, the number of iterations is set to 1500, and
the initial coverage rate of the coverage diagram initialized randomly is 79.61%, while
after optimization by COOTCLCO the final coverage is obtained as 98.07%, which is an
18.46% increase in coverage. It can be seen that the final coverage rate increased by only
6.79% when the number of iterations was increased from 500 to 1500, while in the second
group of comparison experiments, the final coverage rate improved by 20.79% when the
number of sensor nodes was increased from 25 to 45. Therefore, in the case of changing
only the number of sensor nodes or only the number of iterations, reasonably and finitely
increasing the number of sensor nodes is more likely to greatly improve the coverage rate
of the target monitoring area compared to increasing the number of iterations.

(a)

(b)

Figure 17. Cont.

Sensors 2022, 22, 3383 29 of 33

Sensors 2022, 22, x FOR PEER REVIEW 29 of 33

Figure 18 gives a comparison of the coverage rates before and after optimization by
COOTCLCO when the number of nodes is 45. In Figure 17a, the number of iterations is
set to 500, and the initial coverage rate of the coverage diagram initialized randomly is
79.95%, while after optimization by COOTCLCO the final coverage is obtained as 91.28%,
which is an 11.33% increase in coverage. In Figure 17b, the number of iterations is set to
1000, and the initial coverage rate of the coverage diagram initialized randomly is 81.08%,
while after optimization by COOTCLCO the final coverage is obtained as 95.86%, which
is a 14.78% increase in coverage. In Figure 17c, the number of iterations is set to 1500, and
the initial coverage rate of the coverage diagram initialized randomly is 79.61%, while
after optimization by COOTCLCO the final coverage is obtained as 98.07%, which is an
18.46% increase in coverage. It can be seen that the final coverage rate increased by only
6.79% when the number of iterations was increased from 500 to 1500, while in the second
group of comparison experiments, the final coverage rate improved by 20.79% when the
number of sensor nodes was increased from 25 to 45. Therefore, in the case of changing
only the number of sensor nodes or only the number of iterations, reasonably and finitely
increasing the number of sensor nodes is more likely to greatly improve the coverage rate
of the target monitoring area compared to increasing the number of iterations.

(a)

(b)

Sensors 2022, 22, x FOR PEER REVIEW 30 of 33

(c)

Figure 17. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 45, Rs = 10 m, Iteration = 500; (b) q = 45, Rs = 10 m, Iteration = 1000; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Figure 18. Comparison of coverage rates before and after optimization by COOTCLCO when the
number of nodes is 45.

7. Conclusions
Aiming at the problems of uneven node distribution and low coverage of the target

monitoring area when randomly deploying sensor nodes in WSNs, a COOTCLCO algo-
rithm for node coverage optimization in WSNs is proposed in the paper. COOTCLCO
uses a chaotic tent map to initialize the population based on the original COOT algorithm,
which increases the diversity of the population and enhances the traversal of the search
space by the COOT population. The Lévy flight strategy is introduced to perturb individ-
ual positions, which can expand the search range of the population and reduce the possi-
bility of the algorithm falling into a local optimum. The algorithm then combines the Cau-
chy mutation and the opposition-based learning strategy to perturb the optimal solution
positions and generate new solutions, which further enhances the ability of the algorithm
to jump out of the local optimum. In order to verify the optimization performance of
COOTCLCO, 23 benchmark functions were used to test the optimization performance of
the algorithm, which was compared with seven other optimization algorithms: COOT,
PSO, GWO, SSA, BOA, SOA and SCA. By analyzing the numerical results and conver-
gence curves of the simulation experiments, we found that COOTCLCO has reliable con-
vergence speed as well as better global exploration capability. To verify the capability of
COOTCLCO on the WSN node coverage optimization problem, we compared it with six
optimization algorithms, namely, PSO, BOA, SOA, WOA, HHO, and BES. The

Figure 17. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 45, Rs = 10 m, Iteration = 500; (b) q = 45, Rs = 10 m, Iteration = 1000; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Sensors 2022, 22, x FOR PEER REVIEW 30 of 33

(c)

Figure 17. Initial coverage diagram and coverage optimization diagram of COOTCLCO in three
cases: (a) q = 45, Rs = 10 m, Iteration = 500; (b) q = 45, Rs = 10 m, Iteration = 1000; (c) q = 45, Rs = 10 m,
Iteration = 1500.

Figure 18. Comparison of coverage rates before and after optimization by COOTCLCO when the
number of nodes is 45.

7. Conclusions
Aiming at the problems of uneven node distribution and low coverage of the target

monitoring area when randomly deploying sensor nodes in WSNs, a COOTCLCO algo-
rithm for node coverage optimization in WSNs is proposed in the paper. COOTCLCO
uses a chaotic tent map to initialize the population based on the original COOT algorithm,
which increases the diversity of the population and enhances the traversal of the search
space by the COOT population. The Lévy flight strategy is introduced to perturb individ-
ual positions, which can expand the search range of the population and reduce the possi-
bility of the algorithm falling into a local optimum. The algorithm then combines the Cau-
chy mutation and the opposition-based learning strategy to perturb the optimal solution
positions and generate new solutions, which further enhances the ability of the algorithm
to jump out of the local optimum. In order to verify the optimization performance of
COOTCLCO, 23 benchmark functions were used to test the optimization performance of
the algorithm, which was compared with seven other optimization algorithms: COOT,
PSO, GWO, SSA, BOA, SOA and SCA. By analyzing the numerical results and conver-
gence curves of the simulation experiments, we found that COOTCLCO has reliable con-
vergence speed as well as better global exploration capability. To verify the capability of
COOTCLCO on the WSN node coverage optimization problem, we compared it with six
optimization algorithms, namely, PSO, BOA, SOA, WOA, HHO, and BES. The

Figure 18. Comparison of coverage rates before and after optimization by COOTCLCO when the
number of nodes is 45.

7. Conclusions

Aiming at the problems of uneven node distribution and low coverage of the target
monitoring area when randomly deploying sensor nodes in WSNs, a COOTCLCO algo-
rithm for node coverage optimization in WSNs is proposed in the paper. COOTCLCO

Sensors 2022, 22, 3383 30 of 33

uses a chaotic tent map to initialize the population based on the original COOT algorithm,
which increases the diversity of the population and enhances the traversal of the search
space by the COOT population. The Lévy flight strategy is introduced to perturb individual
positions, which can expand the search range of the population and reduce the possibility
of the algorithm falling into a local optimum. The algorithm then combines the Cauchy mu-
tation and the opposition-based learning strategy to perturb the optimal solution positions
and generate new solutions, which further enhances the ability of the algorithm to jump
out of the local optimum. In order to verify the optimization performance of COOTCLCO,
23 benchmark functions were used to test the optimization performance of the algorithm,
which was compared with seven other optimization algorithms: COOT, PSO, GWO, SSA,
BOA, SOA and SCA. By analyzing the numerical results and convergence curves of the
simulation experiments, we found that COOTCLCO has reliable convergence speed as well
as better global exploration capability. To verify the capability of COOTCLCO on the WSN
node coverage optimization problem, we compared it with six optimization algorithms,
namely, PSO, BOA, SOA, WOA, HHO, and BES. The experimental results show that COOT-
CLCO obtained the highest average coverage rate under the same test conditions, and the
coverage rate convergence curves indicate that COOTCLCO can improve the coverage rate
of WSN nodes quickly and effectively. This means that COOTCLCO only requires the least
number of sensor nodes to achieve the same coverage rate in the same target monitoring
area, which reduces the deployment cost of sensor nodes.

However, the work of this paper has some limitations. Although our proposed
algorithm has a significant effect on the improvement of the coverage rate, there are
still shortcomings in the experimental design. Firstly, our experiments were designed to
optimize the coverage rate in an ideal environment, while in a real complex environment
the influence of obstacles should be taken into account. Secondly, this paper only considers
the coverage optimization of a two-dimensional plane, and the coverage optimization of
wireless sensor networks can be extended to three-dimensional space. Thirdly, the coverage
optimization objective of this paper is relatively singular, and only the coverage rate
optimization is considered, while the other coverage optimization indices of wireless sensor
networks such as network energy consumption, network life cycle, network security, and
sensor power optimization should also be taken into consideration in the real environment.
Therefore, for the next step, we will continue to improve and refine the algorithm and
conduct further research on the above-mentioned limitations.

Author Contributions: Conceptualization, Y.H. and J.Y.; methodology, Y.H. and J.Y.; software, Y.H.;
validation, all authors; formal analysis, all authors; investigation, Y.H. and J.Y.; data curation, Y.H.;
writing—original draft preparation, Y.H.; writing—review and editing, all authors; visualization, Y.H.
and J.Y.; supervision, J.Y., X.L., J.Z. and T.Q.; project administration, all authors; funding acquisition,
J.Y., X.L., J.Z., T.Q., W.W. and Y.F. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded in part by the NNSF of China (No.61640014, No.61963009), the
Industrial Project of Guizhou Province (No. Qiankehe Zhicheng [2022]Yiban017, [2019]2152), the
Innovation group of Guizhou Education Department (No. Qianjiaohe KY [2021]012), the Science
and Technology Fund of Guizhou Province (No. Qiankehejichu [2020]1Y266), the CASE Library of
IoT (KCALK201708), and the platform about IoT of Guiyang National High Technology Industry
Development Zone (No. 2015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 3383 31 of 33

References
1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Netw. 2002, 38, 393–422.

[CrossRef]
2. Zhu, C.; Zheng, C.; Shu, L.; Han, G. A Survey on Coverage and Connectivity Issues in Wireless Sensor Networks. J. Netw. Comput.

Appl. 2012, 35, 619–632. [CrossRef]
3. Miao, Z.; Yuan, X.; Zhou, F.; Qiu, X.; Song, Y.; Chen, K. Grey Wolf Optimizer with an Enhanced Hierarchy and Its Application to

the Wireless Sensor Network Coverage Optimization Problem. Appl. Soft Comput. 2020, 96, 106602. [CrossRef]
4. Rebai, M.; Le Berre, M.; Snoussi, H.; Hnaien, F.; Khoukhi, L. Sensor Deployment Optimization Methods to Achieve Both Coverage

and Connectivity in Wireless Sensor Networks. Comput. Oper. Res. 2015, 59, 11–21. [CrossRef]
5. Tariq, N.; Asim, M.; Maamar, Z.; Farooqi, M.Z.; Faci, N.; Baker, T. A Mobile Code-Driven Trust Mechanism for Detecting Internal

Attacks in Sensor Node-Powered IoT. J. Parallel Distrib. Comput. 2019, 134, 198–206. [CrossRef]
6. Tariq, N.; Asim, M.; Khan, F.A.; Baker, T.; Khalid, U.; Derhab, A. A Blockchain-Based Multi-Mobile Code-Driven Trust Mechanism

for Detecting Internal Attacks in Internet of Things. Sensors 2021, 21, 23. [CrossRef]
7. Deepa, R.; Venkataraman, R. Enhancing Whale Optimization Algorithm with Levy Flight for Coverage Optimization in Wireless

Sensor Networks. Comput. Electr. Eng. 2021, 94, 107359. [CrossRef]
8. Wang, S.; Yang, X.; Wang, X.; Qian, Z. A Virtual Force Algorithm-Lévy-Embedded Grey Wolf Optimization Algorithm for Wireless

Sensor Network Coverage Optimization. Sensors 2019, 19, 2735. [CrossRef]
9. Zhang, T.; Tao, X.; Cui, Q. Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink. In

Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5.
10. Liang, D.; Shen, H.; Chen, L. Maximum Target Coverage Problem in Mobile Wireless Sensor Networks. Sensors 2020, 21, 184.

[CrossRef]
11. Zou, Y.; Chakrabarty, K. A Distributed Coverage- and Connectivity-Centric Technique for Selecting Active Nodes in Wireless

Sensor Networks. IEEE Trans. Comput. 2005, 54, 978–991. [CrossRef]
12. Tsai, C.-W.; Tsai, P.-W.; Pan, J.-S.; Chao, H.-C. Metaheuristics for the Deployment Problem of WSN: A Review. Microprocess.

Microsyst. 2015, 39, 1305–1317. [CrossRef]
13. Alia, O.M.; Al-Ajouri, A. Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm.

IEEE Sens. J. 2017, 17, 882–896. [CrossRef]
14. Senouci, M.R.; Abdellaoui, A. Efficient Sensor Placement Heuristics. In Proceedings of the 2017 IEEE International Conference on

Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.
15. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in Large-Scale Global Continues Optimization: A Survey. Inf. Sci. 2015,

295, 407–428. [CrossRef]
16. Dragoi, E.N.; Dafinescu, V. Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics 2021, 9, 2335. [CrossRef]
17. Naruei, I.; Keynia, F. A New Optimization Method Based on COOT Bird Natural Life Model. Expert Syst. Appl. 2021, 183, 115352.

[CrossRef]
18. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
19. Koza, J.R. Genetic Programming as a Means for Programming Computers by Natural Selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
20. Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
21. Storn, R. On the Usage of Differential Evolution for Function Optimization. In Proceedings of the North American Fuzzy

Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.
22. Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
23. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995.
24. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
25. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A Bio-Inspired Optimizer

for Engineering Design Problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
26. Arora, S.; Singh, S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Comput. 2019, 23, 715–734.

[CrossRef]
27. Dhiman, G.; Kumar, V. Seagull Optimization Algorithm: Theory and Its Applications for Large-Scale Industrial Engineering

Problems. Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]
28. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
29. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
30. Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel Meta-Heuristic Bald Eagle Search Optimisation Algorithm. Artif. Intell. Rev.

2020, 53, 2237–2264. [CrossRef]
31. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
32. Hatamlou, A. Black Hole: A New Heuristic Optimization Approach for Data Clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
33. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
34. Kaveh, A.; Khayatazad, M. A New Meta-Heuristic Method: Ray Optimization. Comput. Struct. 2012, 112–113, 283–294. [CrossRef]

http://doi.org/10.1016/S1389-1286(01)00302-4
http://doi.org/10.1016/j.jnca.2011.11.016
http://doi.org/10.1016/j.asoc.2020.106602
http://doi.org/10.1016/j.cor.2014.11.002
http://doi.org/10.1016/j.jpdc.2019.08.013
http://doi.org/10.3390/s21010023
http://doi.org/10.1016/j.compeleceng.2021.107359
http://doi.org/10.3390/s19122735
http://doi.org/10.3390/s21010184
http://doi.org/10.1109/TC.2005.123
http://doi.org/10.1016/j.micpro.2015.07.003
http://doi.org/10.1109/JSEN.2016.2633409
http://doi.org/10.1016/j.ins.2014.10.042
http://doi.org/10.3390/math9182335
http://doi.org/10.1016/j.eswa.2021.115352
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1007/BF00175355
http://doi.org/10.1109/TEVC.2008.919004
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1007/s00500-018-3102-4
http://doi.org/10.1016/j.knosys.2018.11.024
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1007/s10462-019-09732-5
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1016/j.ins.2012.08.023
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.compstruc.2012.09.003

Sensors 2022, 22, 3383 32 of 33

35. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical
Design Optimization Problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]

36. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68.
[CrossRef]

37. Ghorbani, N.; Babaei, E. Exchange Market Algorithm. Appl. Soft Comput. 2014, 19, 177–187. [CrossRef]
38. Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic

Competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007;
pp. 4661–4667.

39. Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A Novel Socio-Inspired Meta-Heuristic for Global Optimization. Knowl.-Based
Syst. 2020, 195, 105709. [CrossRef]

40. ZainEldin, H.; Badawy, M.; Elhosseini, M.; Arafat, H.; Abraham, A. An Improved Dynamic Deployment Technique Based-on
Genetic Algorithm (IDDT-GA) for Maximizing Coverage in Wireless Sensor Networks. J. Ambient Intell. Humaniz. Comput. 2020,
11, 4177–4194. [CrossRef]

41. Zhang, Y.; Cao, L.; Yue, Y.; Cai, Y.; Hang, B. A Novel Coverage Optimization Strategy Based on Grey Wolf Algorithm Optimized
by Simulated Annealing for Wireless Sensor Networks. Comput. Intell. Neurosci. 2021, 2021, 1–14. [CrossRef]

42. Liu, W.; Yang, S.; Sun, S.; Wei, S. A Node Deployment Optimization Method of WSN Based on Ant-Lion Optimization Algorithm.
In Proceedings of the 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Lviv, Ukraine, 20–21 September 2018; pp. 88–92.

43. Liu, X.; Zhang, X.; Zhu, Q. Enhanced Fireworks Algorithm for Dynamic Deployment of Wireless Sensor Networks. In Proceedings
of the 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017;
pp. 161–165.

44. Liao, W.-H.; Kao, Y.; Li, Y.-S. A Sensor Deployment Approach Using Glowworm Swarm Optimization Algorithm in Wireless
Sensor Networks. Expert Syst. Appl. 2011, 38, 12180–12188. [CrossRef]

45. Ozturk, C.; Karaboga, D.; Gorkemli, B. Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony
Algorithm. Sensors 2011, 11, 6056–6065. [CrossRef]

46. Zhu, F.; Wang, W. A Coverage Optimization Method for WSNs Based on the Improved Weed Algorithm. Sensors 2021, 21, 5869.
[CrossRef]

47. Memarzadeh, G.; Keynia, F. A New Optimal Energy Storage System Model for Wind Power Producers Based on Long Short Term
Memory and Coot Bird Search Algorithm. J. Energy Storage 2021, 44, 103401. [CrossRef]

48. Gouda, E.A.; Kotb, M.F.; Ghoneim, S.S.M.; Al-Harthi, M.M.; El-Fergany, A.A. Performance Assessment of Solar Generating Units
Based on Coot Bird Metaheuristic Optimizer. IEEE Access 2021, 9, 111616–111632. [CrossRef]

49. Mahdy, A.; Hasanien, H.-M.; Helmy, W.; Turky, R.-A.; Aleem, S.-H.-A. Transient Stability Improvement of Wave Energy
Conversion Systems Connected to Power Grid Using Anti-Windup-Coot Optimization Strategy. Energy 2022, 245, 123321.
[CrossRef]

50. Houssein, E.-H.; Hashim, F.-A.; Ferahtia, S.; Rezk, H. Battery Parameter Identification Strategy Based on Modified Coot
Optimization Algorithm. J. Energy Storage 2022, 46, 103848. [CrossRef]

51. Alqahtani, A.-S.; Saravanan, P.; Maheswari, M.; Alshmrany, S. An Automatic Query Expansion Based on Hybrid CMO-COOT
Algorithm for Optimized Information Retrieval. J. Supercomput. 2022, 78, 8625–8643. [CrossRef]

52. Shan, L.; Qiang, H.; Li, J.; Wang, Z.-Q. Chaotic Optimization Algorithm Based on Tent Map. Control Decis. 2005, 20, 179–182.
53. Li, Y.; Han, M.; Guo, Q. Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural

Optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [CrossRef]
54. Zhu, H.; Pu, B.; Zhu, Z.; Zhao, Y.; Song, Y. Two-dimensional Sine-tent-based Hyper Chaotic Map and Its Application in Image

Encryption. J. Chin. Comput. Syst. 2019, 40, 1510–1518.
55. Chechkin, A.V.; Metzler, R.; Klafter, J.; Gonchar, V.Y. Introduction to the Theory of Lévy Flights. In Anomalous Transport; Klages,

R., Radons, G., Sokolov, I.M., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 129–162.
56. Wang, X.-W.; Yan, Y.-X.; Gu, X.-S. Welding Robot Path Planning Based on Levy-PSO. Control Decis. 2017, 32, 373–377.
57. Yang, X.-S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
58. Mantegna, R.N. Fast, Accurate Algorithm for Numerical Simulation of Lévy Stable Stochastic Processes. Phys. Rev. E 1994,

49, 4677–4683. [CrossRef]
59. Haklı, H.; Uğuz, H. A Novel Particle Swarm Optimization Algorithm with Levy Flight. Appl. Soft Comput. 2014, 23, 333–345.

[CrossRef]
60. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International

Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1,
pp. 695–701.

http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1016/j.asoc.2014.02.006
http://doi.org/10.1016/j.knosys.2020.105709
http://doi.org/10.1007/s12652-020-01698-5
http://doi.org/10.1155/2021/6688408
http://doi.org/10.1016/j.eswa.2011.03.053
http://doi.org/10.3390/s110606056
http://doi.org/10.3390/s21175869
http://doi.org/10.1016/j.est.2021.103401
http://doi.org/10.1109/ACCESS.2021.3103146
http://doi.org/10.1016/j.energy.2022.123321
http://doi.org/10.1016/j.est.2021.103848
http://doi.org/10.1007/s11227-021-04171-y
http://doi.org/10.1007/s12205-020-0504-5
http://doi.org/10.1103/PhysRevE.49.4677
http://doi.org/10.1016/j.asoc.2014.06.034

Sensors 2022, 22, 3383 33 of 33

61. He, Q.; Lin, J.; Xu, H. Hybrid Cauchy Mutation and Uniform Distribution of Grasshopper Optimization Algorithm. Control Decis.
2021, 36, 1558–1568.

62. Wang, H.; Li, H.; Liu, Y.; Li, C.; Zeng, S. Opposition-Based Particle Swarm Algorithm with Cauchy Mutation. In Proceedings of
the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4750–4756.

63. Higashi, N.; Iba, H. Particle Swarm Optimization with Gaussian Mutation. In Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, Indianapolis, IN, USA, 26 April 2003; pp. 72–79.

	Introduction
	Background of Problem
	Related Works
	Contributions
	Notations
	Organization

	WSN Node Coverage Model
	COOT Optimization Algorithm
	Random Movement
	Chain Movement
	Adjusting Position According to the Leader
	Leader Movement

	Improved COOT Optimization Algorithm
	Chaotic Tent Map Initializes the Population
	Lévy Flight Strategy
	Fusing Cauchy Mutation and Opposition-Based Learning
	Implementation Steps of COOTCLCO Algorithm
	COOTCLCO Algorithm Time Complexity Analysis

	Coverage Optimization Strategy
	Simulation Experiments and Analysis
	Experimental Design
	Performance Comparison on Benchmark Functions
	Analysis of Numerical Results
	Analysis of Convergence Curves

	Coverage Performance Simulation Experiment and Analysis
	Comparative Experiment 1 and Result Analysis
	Comparative Experiment 2 and Result Analysis
	Comparative Experiment 3 and Result Analysis

	Conclusions
	References

