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Abstract: In this article, a real-time vehicle sideslip angle state observer is proposed, which is based
on the EKF algorithm. Firstly, based on a 2-DOF dynamical model and the tire lateral force model, the
vehicle sideslip angle state observer model with a self-adapted truncation procedure is established
by combining the EKF and the least squares methods. The calculation of the Jacobi matrix in the
time domain is transformed into a calculation in the frequency domain. A self-adapted update noise
estimation method and an initial value setting strategy are proposed as well. Finally, a hardware-in-
the-loop simulation is carried out by Matlab/Simulink-CarSim-dSPACE, and the real-time reliability
of the estimation method is verified and analyzed by RMSE.

Keywords: extended Kalman filter (EKF); vehicle sideslip angle; least squares method; dynamical
model; root mean square error (RMSE)

1. Introduction

As an integral part of human daily life, safety is continuously optimized and improved
as a premier consideration. Stability control is the main issue to ensure driving handling
safety. The reduction in handling stability caused by understeering or oversteering always
results in safety hazards and traffic accidents [1]. Therefore, a limiting condition of a vehicle
with instant and effective regulation plays a central role in the guarantee of driving safety.
The general solution throughout the automotive industry is to regulate vehicles at the right
time. In order to achieve these goals, the effective parameter of vehicle state is observed, in
which the sideslip angle is a key parameter affecting the vehicle state seriously [2], and is
also one of the basic parameters within many control methods [3].

The angle between the longitudinal direction and the direction of motion is called the
sideslip angle. The sideslip angle can be measured directly by optical or GPS sensors, but
sensors cannot be applied to vehicles due to their high cost and low accuracy. At present,
most scholars usually use the method of estimation to obtain the sideslip angle. The sideslip
angle is obtained indirectly by measuring the lateral acceleration, the yaw rate, and some
other basic parameters of the vehicle during the process of moving. But the uncertainty
of modeling in the system, the nonlinear system, and external environmental disturbance
factors will result in an increase in the observation error of vehicle sideslip angle. When
the lateral acceleration of the vehicle is about to reach the limit value, the steady-state yaw
moment of the vehicle corresponding to the same increment of the front wheel angle will
decrease with the increase in vehicle sideslip angle, which makes it very difficult to control
the yaw moment through the steering wheel [4]. The sideslip angle can be used to judge
whether the vehicle is limited during movement. The correction of the target yaw rate can
be solved by the estimation result of the vehicle sideslip angle.

In recent years the estimation of the sideslip angle has been studied by scholars using
limited measurement data. Most of the methods are based on the kinematics model or the
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dynamics model [5,6]. The kinematics model analyzes the vehicle motion pattern from
geometry, including changes in spatial position or velocity over time. When the vehicle is
driven at low speed on good road conditions, dynamics issues are generally not considered.
The sideslip angle observer is highly reliable [7]. The dynamical model converts the power
output by the engine into the traction force of the vehicle through the force and reaction
between the tires and the road. The vehicle’s power system is composed of an engine,
which can provide power [8]. The kinematics model reflects vehicle position, vel ocity,
and acceleration versus time. The application of the kinematics model in the process of
vehicle trajectory planning can make the planned trajectory more realistic and meet the
kinematic geometric constraints in the driving process. The dynamical model focuses
on the relationship between forces and motion. Dynamical models are generally used
to analyze ride comfort and operational stability. The dynamical model is mainly used
to study the forces on tires and on their associated components. A relatively accurate
mechanical model can be provided by analyzing the mechanical properties of the vehicle
under most working conditions and limiting conditions. Most current methods are based
on the dynamical model, which is adapted to estimate the sideslip angle of the traditional
vehicle or distributed front-drive vehicles.

The main methods for estimating the vehicle sideslip angle are particle filter [9,10],
sliding film algorithms [11], direct integration [12], fuzzy logic and neural networks [13],
non-linear observers, and Kalman filter algorithms [14,15]. Daniel Chindamo proposed a
vehicle kinematic-model-based sideslip angle estimation method by fusing the information
from an inertial measurement unit and global navigation satellite system (GNSS), with
aligning the heading from the GNSS [16]. Boada transformed the nonlinear dynamical
model into an adaptive fuzzy neural network system, and obtained the initial sideslip
angle using an adaptive fuzzy neural network. By using UKF to filter the noise, the
estimated mean square deviation is minimized to obtain the vehicle sideslip angle [17].
Wenbo Chu proposed a joint observation method based on unscented particle filtering of
parameters for distributed electric vehicles. The longitudinal velocity and sideslip angle
were observed by a nonlinear dynamic tire model fusing information drive torque and
inertial sensors [18]. Xiaoyu Li used a kinetic approach and kinematic geometry methods
to estimate the vehicle sideslip angle. The kinematic geometry model between the front
and rear wheel slip angle is fused in EKF observers [19]. Jing Li applied the cubature
Kalman filter by predefining multiple estimated models and statistical properties of the
noise using a model transfer matrix to fuse the multi-model outputs, and maintain the
sub-model outputs with small tracking errors. However, the method proposed in this paper
has limited applicability for cases where the noise signal is known by default [20]. Xinjiang
Jin designed an interactive multimodel vehicle state observer formed by the UKF estimator
based on linear and non-linear tire models, and compared it with the IMM-EKF algorithm.
The IMM-EKF observer would yield more accurate observations and better robustness
under limiting conditions. Since the method proposed in this paper needs to calculate the
Jacobi matrix, a large number of calculations will affect the timeliness of the system. [21].
Hong Ding proposed a UKF algorithm-based vehicle sideslip angle estimator. Compared
with the UKF algorithm under the same conditions, this estimator achieves higher accuracy
and takes less time than the primitive EKF algorithm [22]. Qiu Xia proposed a method for
estimating the sideslip angle based on redundant information fusion. The characteristics
and applicability of the dynamical model estimator and kinematic model estimator are
analyzed. The adaptive weight dynamic adjustment is proposed to fully combine the
advantages of the dynamical model observer and kinematic model observer [23]. Gong
Wang constructed a dual adaptive volumetric Kalman filter algorithm for the estimation of
tire lateral force and vehicle sideslip angle based on the NACKF algorithm for the coupling
characteristics of different subsystems of the vehicle, forming closed-loop feedback [24].
Tommaso Novi proposed an integrated artificial neural network and unscented Kalman
filter observer using only inertial unit measurements, which can work as a standalone
sensor. Direct integration with integral damping and integral reset values allow estimation
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of the longitudinal velocity using the kinematics model [25]. Table 1 summarizes the
current state of research.

Table 1. Current status of research.

Methods Involved Targeted Questions Method Features

GPS signal-based method An estimation method that addresses the
limited accuracy and high price of GPS.

Estimate higher accuracy state values by
adding simple algorithms using only

GPS signals.

Fuzzy neural network-based approach
Solving the problem of insufficient

accuracy of primitive observers in the
nonlinear region of the car.

The nonlinear vehicle system is
transformed into an adaptive fuzzy

neural network system, and the
transverse eccentricity of the center of
mass is estimated by other algorithms.

Kalman filter-based
estimation method

The linear problem of the Kalman filter is
transformed into a nonlinear problem of

UKF or EKF, and the vehicle sideslip
angle is observed.

Generally, the dynamical model is added
to the observer model, and the

observation method that the observed
value is close to the real value is

continuously iterated by algorithms such
as UKF or EKF.

Estimation method based on tire model
Simulation of real vehicle forces by tire

model and observation of vehicle sideslip
angle according to dynamical model.

Based on a variety of semi-empirical tire
models, the vehicle forces are estimated

from simple vehicle parameters to
calculate the vehicle’s sideslip angle.

Additional algorithms are usually added
after the force analysis to make the

estimation more accurate.

Estimation method
based on synovial control

Slip film control algorithm-based
observer design for vehicle sideslip angle

observation.

The saturation function is introduced as
the switching function when observing
vehicle sideslip angle based on the slip
film observer, which reduces the jitter

phenomenon caused by the sign function.

Particle filtering-based
estimation method

Vehicle dynamics model combined with
particle filtering algorithm for vehicle

state observation.

The main improvements are simplifying
the complex iterative process and

proposing a method to effectively solve
the degeneracy linearity while allowing a
more accurate selection of action points.

Based on the literature review, vehicle state observers can be divided into several
categories: The vehicle state is observed by a GPS signal combined with a simple algo-
rithm. The method proposed in this paper has simple steps to obtain the vehicle sideslip
angle. However, the method proposed in this paper requires the consumption of high-cost
hardware equipment to obtain relatively accurate data in comparison to other methods. If
low-cost equipment is used, the proposed method will result in low accuracy. Based on the
particle filter and neural network of the vehicle state observer, highly accurate data can be
obtained under a lot of working conditions. However, the attenuation problem and the
weight need to be considered. As a result of the requirement for resampling and extensive
calculation of each wheel, it cannot be applied to vehicles. In using the general Kalman
filter, the vehicle state observer has the advantages of light computational requirements
and high calculation speeds, except for poor relative accuracy. Other scholars have already
proposed various algorithms, such as EKF, UKF, and other optimization algorithms, which
can effectively improve observer accuracy. But these optimization algorithms require heavy
calculating operations. Compared with other methods, we describe the innovation of this
article in detail. In summary, currently available vehicle condition observers can provide
relatively accurate estimates under more complex working conditions, and their external
anti-interference has also been improved. However, the model structure is usually com-
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plex and cannot be effectively applied to the vehicle; thus, online control is not possible.
Compared with the above articles, the novelties of this article are the following:

• We propose a calculation method that transitions from the time domain to the fre-
quency domain. The problems of slow calculation speeds and long operation times of
the Jacobian matrix are effectively solved.

• We propose an adaptive noise updating method. Aiming at the accuracy of the
observer, good results have been achieved.

• We propose a method to update the initial state value, which reduced a lot of iterations.
The observer has better timeliness.

The framework of the article is structured as follows. We propose a simpler and faster
estimation method. Firstly, the vehicle sideslip angle state observer model with adaptive
correction process is established, which is based on the two degrees of freedom dynamical
model and tire lateral force model, combined with EKF and the least squares method. Then,
a calculation method that transitions from the time domain to the frequency domain of the
Jacobi matrix is used. The method proposed in this paper better improves the speed of the
algorithm. We use the adaptive noise updating method and the method of updating the
initial state. These two methods can greatly improve the estimation speed and accuracy of
the observer. Finally, the estimation method proposed in this article is validated based on
the Matlab/Simulink-CarSim-dSPACE hardware-in-the-loop simulation platform. In order
to verify the superiority of this observer, we calculate the root mean square of the actual
vehicle sideslip angle, the estimated value of the primitive observer, and the estimated
value of the method proposed in this article. The experimental data and results have fully
analyzed the method and algorithm adopted in this article and have achieved good results
in the experiment.

2. 2-DOF Dynamical Model

The research focus is the lateral motion of the vehicle stability control. 2-DOF describes
the basic motion forms of the vehicle, such as lateral and yaw motion. It reflects the tire
cornering characteristics of the moving vehicle, and it can also describe the vehicle motion
state in most working conditions accurately. At the same time, we consider the complexity
and timeliness of the observer, thus we choose 2-DOF as the reference model. The centroid
of the model is coincident with the coordinate origin, and the mechanical properties of each
tire are considered in the linear range. The model has the same left and right front wheel
angles, and ignores the effect of longitudinal rolling resistance. The 2-DOF dynamical
model is shown in Figure 1.

The equations of the lateral and yaw motions of the vehicle model are expressed
as follows:

m(
.
v + uγ) = k1δ− (k1 + k2)β− ak1 − bk2

u
γ (1)

Iz
.
γ = ak1δ− (ak1 − bk2)β− a2k1 + b2k2

u
γ (2)

The vehicle status parameters are listed in the following Table 2.

Table 2. Vehicle status parameters.

Parameters Values

Vehicle mass, m (kg) 1270

Rated load, FN (N) 3000

Tire free radius, R (m) 0.317

Distance from the front axle to gravity center, a (m) 1.015

Distance from the rear axle to gravity center, b (m) 1.895

Equivalent yaw moment of inertia, Iz (kg/N2) 1536.7
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tively; 1u , 2u  are speeds at the midpoint of automotive front and rear axles, respectively; ξ  is 
the angle between 1u  and the x−axis; L  is the wheelbase; u  is the forward speed; v  is the 
lateral speed; 1k , 2k  are the cornering stiffnesses of the front and rear wheels, respectively; a ,

b  are the distances from the vehicle center of gravity to the front and rear axles; δ  is the front 
steering angle; m  is the vehicle mass; zI  is the equivalent yaw moment of inertia; β  is the 
vehicle sideslip angle; γ  is the yaw rate; .C m  is the vehicle centroid. 
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1 2
1 1 2( ) ( ) ak bkm v u k k k

u
γ δ β γ−

+ = − + −  (1)

2 2
1 2

1 1 2( )z
a k b kI ak ak bk

u
γ δ β γ+

= − − −  (2)

The vehicle status parameters are listed in the following Table 2. 
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Vehicle mass, m  ( kg ) 1270 

Rated load, NF  ( N ) 3000 

Tire free radius, R  ( m ) 0.317 
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Figure 1. 2-DOF dynamical model. Where α1, α2 are front and rear wheel sideslip angles, respectively;
u1, u2 are speeds at the midpoint of automotive front and rear axles, respectively; ξ is the angle
between u1 and the x-axis; L is the wheelbase; u is the forward speed; v is the lateral speed; k1, k2

are the cornering stiffnesses of the front and rear wheels, respectively; a, b are the distances from the
vehicle center of gravity to the front and rear axles; δ is the front steering angle; m is the vehicle mass;
Iz is the equivalent yaw moment of inertia; β is the vehicle sideslip angle; γ is the yaw rate; C.m is the
vehicle centroid.

Kalman filtering algorithm estimates the optimal data for a linear system from the
collected observations. The optimal estimate process can be considered as data processing
disturbed by noise. The vehicle state is a nonlinear change process when the 2-DOF model
is combined with the Kalman filter algorithm. Therefore, this article adopts the algorithm
based on EKF for the vehicle sideslip angle.

Extended Kalman Filtering Algorithm

The extended Kalman filter (EKF) is an extended form of the Kalman filter in the
nonlinear case. It is an efficient recursive filter that applies to nonlinear systems.

The equation of a nonlinear discrete system state can be expressed as follows.

xk+1 = f (xk, uk) + Qk (3)

The system measurement equation can be expressed as follows.

yk = g(xk, uk) + Rk (4)

where, f (x, u) and g(x, u) are nonlinear functions; Qk, Rk are the system noise and mea-
surement noise, respectively.

The observer is a model that expands the nonlinear functions f (x, u) and g(x, u)
around xk, using Taylor series to obtain an approximately linear system. The EKF is
divided into the prediction phase and the correction phase. The current moment’s system
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state value is used as input to estimate the forecast estimate for the next moment in the
forecast phase. The observations and prediction estimates are fused to obtain the optimal
estimate in the correction phase. The steps of general EKF are shown as follows:

The prediction phase can be expressed as follows:

x′k = f (xk−1) (5)

y′k = Fk−1yk−1Fk−1
T + Q (6)

The correction phase can be expressed as follows:

S′k = (Hky′k Hk
T + R)

−1
(7)

K′k = y′k Hk
TS′k (8)

xk = x′k + K′k(yk − g(x′k)) (9)

yk = (I − K′k Hk)y′k (10)

where F and H are the partial derivatives of the functions f , h, respectively, at x = xk.

Fk =
∂ f
∂x

∣∣∣∣
x=x′k

, Hk =
∂g
∂x

∣∣∣∣
x=x′k

(11)

Solving the Jacobi matrix requires a lot of calculation. In this article, we propose a
transformation from calculating the Jacobian matrix in the time domain to calculating the
Jacobian matrix in the frequency domain. The Fourier transform was used to transform the
function in the time domain into the frequency domain for calculation.

The function f (x) will perform the Fourier transform as follows:

F(ω) =
∫ +∞

−∞
f (t)e−iωtdt (12)

Inversing the Fourier transform Equation (12) yields the following:

f (t) =
1

2π

∫ +∞

−∞
F(ω)eiωtdω (13)

where, i, j and ω are constants; t is the variable. The function to the frequency domain was
Fourier transformed, and the Jacobian matrix was calculated in the frequency domain. The
obtained Jacobian matrix is transformed into the time domain via inverse Fourier transform.
When F[x(t)] = X(jω), the integral and differential equations in the frequency domain are
shown as follows:

F−1
[

dX(jω)

dω

]
= (−jt)x(t) (14)

F−1
[∫ ∞

−∞
X(jω)dω

]
=

x(t)
−jt

+ x(0)πδ(t) (15)

In the EKF algorithm, computation of the Jacobi matrix in each iteration takes a lot
of time, hence the general EKF observer cannot have good real-time performance. In this
article, we propose a real-time estimation method of vehicle sideslip angle based on EKF,
which transforms from calculating the Jacobian matrix in the time domain to calculating
the Jacobian matrix in the frequency domain. It has a simpler algorithm that significantly
reduces operations, and has better real-time performance.

3. Vehicle Sideslip Angle Estimator

In this article, in order to achieve real-time observation, the sideslip angle estimator
can be expressed as shown in Figure 2. The signals of front-wheel angle, speed, and
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wheel angle are collected in data acquisition. Data processing will deal with the collected
signals. The tire lateral force and tire cornering stiffness are obtained according to the tire
model. The observer estimates the sideslip angle, combining the tire cornering stiffness,
front-wheel angle, and longitudinal speed. The initial parameters of the observer will be
set to the last observed value for faster iterations. Finally, the sideslip angle of the observer
is fed to the vehicle controller for the relevant state regulation.
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3.1. Model State Space Description

The equations of state and measurement for a nonlinear system can be expressed
as follows.

.
x(t) = f (x(t), u(t)) + Q(t) (16)

y(t) = g(x(t), u(t)) + R(t) (17)

where, x(t) = [β; γ]; y(t) = [ay; γ], β, and γ are the same as described previously; ay is
the lateral acceleration; u(t) = δ(t), where δ(t) is the input of the front steering angle
with time.

The 2-DOF equations are incorporated into Equations (16) and (17) to obtain the fol-
lowing: [ .

β
.
γ

]
=

[ k1+k2
mv ( ak1−bk2

mv2 − 1)
ak1−bk2

Iz
( a2k1+b2k2

Izv )

][
β
γ

]
+

[
− k1

mv
− ak1

Iz

]
δ (18)

[
ay
γ

]
=

[
− k1+k2

m
ak1−bk2

mv
0 1

][
β
γ

]
+

[ k1
m
0

]
δ (19)

The initial state parameter of the system is x0 = [0; 0].
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This article uses the semi-empirical magic tire equation to calculate the lateral force
and the front and rear tire cornering stiffnesses. The tire lateral force is calculated by the
equation as follows:

y = D sin{Carctan{Bx− E[Bx− arctan(Bx)]}} (20)

where, x is the tire slip angle α or slip rate κ; B is the stiffness factor; C is the form factor; D
is the peak factor, and E is the curvature factor. The tire slip angle α and slip rate κ can be
expressed as follows:

α = arctan(
vy

vx
) (21)

κ =
vx − vr

vx
(22)

The front and rear wheels slip angles are expressed in the coordinate system as follows:

α1 = β +
aγ

u
− δ f (23)

α2 = β− bγ

u
(24)

where vx is the longitudinal velocity of the wheel center; vy is the lateral velocity of the
wheel; vr = ωR, where ω is the angular velocity of wheel rotation, and R is the wheel
rolling radius.

3.2. Noise Update

Noise will impact the whole observation system. Gaussian white noise is usually
selected by observers as the noise of the whole system. Gaussian white noise’s power
spectral density obeys a uniform distribution; Gaussian white noise is not correlated and is
independent. However, in the process of estimation, the white noise may possess greater
errors as a result of constant iterations. Gaussian white noise is represented below as WGN.

In this article, an adaptive noise cycle system is used to analyze and update the noise
for each iteration. The noise update equations are represented as follows:

qk = (1− 1
k
)qk−1 +

1
k
[xk − f (xk−1)] (25)

rk = (1− 1
k
)rk−1 +

1
k
[yk − g(x′k)] (26)

λk = yk − g(x′k)− rk (27)

Qk = (1− 1
k
)Qk−1 +

1
k
[KkλλTKk

T + yk − Fk−1yk−1Fk−1
T ] (28)

Rk = (1− 1
k
)Rk−1 +

1
k
[λλT − Hky′k Hk

T ] (29)

where q, r, λ are defined parameters, which are used to solve for Q and R.
In this article, the effect of adaptive noise on the system is verified by adding Gaussian

white noise and adaptive noise to certain sets of data in the iterations of the observation
process, which can be shown in Figure 3.

The iterative noise change during the observer processing is compared with Gaussian
white noise. In Figure 3, the mean value of Gaussian white noise is 0 and the variance is
0.01 in the process of targeting a certain iteration, which does not have a correlation in the
iteration and is randomly distributed. For the adaptive noise, the initial value is 0.01. The
noise changes with the updated iteration of the system, and the noise stabilizes at around
0.001 in 10 iterations. Primitive Gaussian white noise is uncorrelated and independent,
which cannot follow the correlation of the system during the iterative process. This reduces
the resistance of the system to external disturbances. In this article, we propose an adaptive
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noise updating strategy to better fit the external environment. With continuous iterations,
it is obvious that the noise gradually fits the system to reach the final relatively stable value,
thus the accuracy of the observer can be further improved.
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3.3. Adaptive Truncation Strategy

The EKF algorithm requires several iterative processes. A truncation strategy based
on the least squares method is proposed in this article. When the residual sum of squares
of all observations in the function ε is minimized to obtain the optimal parameter solution
θ, the initial least squares equation can be expressed as follows:

min ε =
n

∑
i=1

( f (xi)− yi)
2 (30)

Its higher-order function can be expressed as follows:

min ε =

∣∣∣∣θ→X −→Y ∣∣∣∣2 (31)

The optimal parameter θ can be expressed as the following:

θ = (XTX)
−1

XTY (32)

where X is the observed value and Y is the theoretical measurement. When θ is within the
error band of 5% for three consecutive iterations, the observed value can be considered to
be close to the true value, and the iteration is finished.
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3.4. Design of Initial Values of Parameters

Considering that the Kalman filter is gradually approximating the true value in itera-
tions, more iterations are needed to be used to approximate the true value when the initial
state is too different from the true value. In this article, the initial state of each iteration
is set to be the estimation result of the previous moment in order to solve the observed
timeliness problem. The initial state equation is expressed as follows:

x0(t) = x′k(t− 1) (33)

In order to verify the timeliness of the observer, this article uses offline co-simulation
of Simulink-CarSim. The working condition is the double shift line working condition,
and the simulation time is 15 s. The number of iterations of the program after different
modifications is compared with the actual running time, and four points are randomly
selected from the real motion trajectory as reference points, which are shown in Figure 4.
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Figure 5 shows a comparison of the adaptation curves for three cases of reference
points: an observer with no program changes, adding a truncated program, and changing
the initial state. The equation can be expressed as the following:

s(x) = x′k − yk (34)

where s(x) denotes the point’s value in fitness, xk denotes the predicted value of the point at
each iteration, and yk denotes the theoretical actual value of the point. The curves obtained
by the three methods are compared and analyzed. No modifications mean that the observed
values are filtered, but the results are not processed. Add truncated program means that
the observer can selectively truncate the program according to the final estimated value.
Changing the initial state means that the initial value of the system is changed to be the
observation result of the previous time.

As shown in Figure 5a, the curves are compared and analyzed. In the case of no
additions, the initial value default is 0, which differs greatly from the true value and
requires several iterations to approach the true value. Program termination is entirely
unrelated to the approach of the true value, with a default iteration of up to 50 generations
excluding the truncation strategy. Iterating is up to about 23 generations. The observed
value is close to the true value and tends to be stable by the red dotted line. The truncation
strategy is designed to be shown as the black dashed line, in which the predetermined error
range is reached at 23 iterations, and the procedure is truncated. It effectively reduces the
number of operations and saves time. When the initial state is close to the true value, as
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shown by the green solid line, fewer iterations are experienced to reach the specified error
range, further reducing the number of iterations.
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The number of iterations and time for the four points in the three cases are also
compared and analyzed. The process of Kalman filtering is usually set to 50 iterations to
ensure that the operation is completed. The number of iterations and time for the three
methods is shown in the Table 3.

Table 3. The number of iterations and time for the three methods.

Time and Number of Iterations
Program Modification

No Modifications
Add Truncated

Program Changing the Initial State

First point 3.233/50 1.428/23 1.033/18

Second point 3.567/50 1.768/25 1.267/21

Third point 3.297/50 1.467/24 1.134/20

Fourth point 3.557/50 1.596/25 1.099/20

When the initial state does not change, the initial state of the observer defaults to 0.
Using Figure 5a as an example, it can be analyzed that the observer takes 50 iterations to
finish when no additions are made. The observations are close to the true value when it
reaches 25 iterations. With the addition of the truncation procedure, it is clear that the speed
of iteration increases. However, when it reaches 23 iterations, the procedure is truncated to
avoid redundant operations. After changing the initial state, it is evident that the iteration
speed increases again, and iterations are truncated at 18. Thus, the speed of operations has
been greatly improved.
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The comparative analysis of the four sets of adaptation curves in Figure 5 shows that
when the initial state is changed, the number of iterations after changing the initial state is
less than that with no change, which can quickly approach the true value. This means that
the number of iterations can be effectively reduced by changing the initial state, and the
computing time is significantly shortened, which can provide better real-time performance.

Firstly, compared with the procedure without any modifications, the number of itera-
tions is nearly doubled with the addition of the truncation procedure, and the computation
time is reduced to 45% of the original time. When the initial state is modified to the previ-
ously estimated value, the number of iterations is reduced to 36% of the original number,
and the time is reduced to 32% of the original time. Compared with the results of the
truncation program, the number of iterations is reduced by 22%, and the time is reduced
by 28%.

Secondly, compared with the procedure without any modifications, the number of
iterations is nearly doubled with the addition of the truncation procedure, and the com-
putation time is reduced to 49% of the original time. When the initial state is modified to
the previously estimated value, the number of iterations is reduced to 42% of the original
number, and the time is reduced to 34% of the original time. Compared with the results
of the truncation program, the number of iterations is reduced by 16%, and the time is
reduced by 29%.

The third point is that compared with the procedure without any modifications, the
number of iterations is nearly doubled with the addition of the truncation procedure, and
the computation time is reduced to 44% of the original time. When the initial state is
modified to the previously estimated value, the number of iterations is reduced to 40% of
the original number, and the time is reduced to 32% of the original time. Compared with
the results of the truncation program, the number of iterations is reduced by 17%, and the
calculation time is reduced by 23%.

The fourth point is that compared with the procedure without any modifications,
the number of iterations is nearly doubled with the addition of the truncation procedure,
and the computation time is reduced to 44% of the original time. When the initial state is
modified to the previously estimated value, the number of iterations is reduced to 36% of
the original number, and the time is reduced to 30% of the original time. Compared with
the results after adding the truncation process, the number of iterations is reduced by 22%,
and the calculation time is reduced by 31%.

To sum up, compared with the original scheme, the number of iterations can be
reduced by nearly half, and the time can be reduced by nearly 45% by adding a truncation
procedure. On the basis of adding the truncation program, we changed the initial conditions
of the program. The number of iterations can be reduced to about 40% of the original
program, and the time can be shortened by nearly 33%. The results show that adding a
truncation program and changing the initial state can effectively reduce the amount of
calculation, and shorten the operation time on the premise of ensuring accuracy.

4. Estimation and Simulation of the Sideslip Angle

We adopted MATLAB/Simulink-CarSim-dSPACE for hardware in the loop simulation.
A co-simulation program with CarSim was created in Simulink. The steering wheel angle,
accelerator pedal opening, and brake pedal opening were entered by the real driver. HIL
simulation was carried out at the same time. HIL simulation is the simulation system that
directly puts part of system hardware that needs to be simulated into the simulation loop,
which can not only make up for many of the shortcomings in purely digital simulation
and increase the confidence level of the overall model, but this also can greatly reduce
the programming effort. The simulation device model used in this article is the dSPACE
SCALEXIO LabBox, as shown in Figure 6.
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Figure 6. Simulation equipment. (a) dSPACE SCALEXIO; (b) driving simulator.

Connect the dSPACE simulation device with the driving simulator and add the data
measured by the real driver to the mathematical model, to conduct a simulation.

We choose a road model. The model is controlled by the driver and simulated at
different speeds. By using CarSim to output the parameter required by sideslip angle
observation and conducting real-time simulation analysis, we can obtain three different
kinds of real trajectories, which are shown in Figure 7.
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Figure 7. Vehicle real travel trajectories. (a) The track at moderate and low speed; (b) track at
moderate and high speed; (c) track at high speed.

The road model selected in this paper includes many simple working conditions, and
can be used to verify and analyze the method proposed in this paper comprehensively. The
real-time speed and vehicle sideslip angle at three speeds are observed. The observation
results are shown in Figures 8–10, respectively, corresponding to Figure 7a–c. The blue line
shows the actual vehicle sideslip angle curve, which is denoted as β0; the black dashed line
shows the vehicle sideslip angle curve observed by the primitive Kalman filter observer,
which is denoted as βkm; the red solid line shows the sideslip angle curve observed by
the EKF-based vehicle sideslip angle estimation strategy proposed in this article, which is
denoted as βert.
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Figure 8. Medium and low speed (a) real-time speed; (b) estimation of sideslip angle.

In order to show the influence of vehicle speed change on centroid sideslip angle
better, the ordinates of the three vehicle speed change curves are not the same. The ordinate
of Figure 7a is 48.5–52.5. The ordinate of Figure 7b is 30–100. The ordinate of Figure 7c
is 30–110. However, the true value of vehicle centroid sideslip angle cannot be obtained
directly. In order to verify the feasibility of the method, we believe that the sideslip angle
of the CarSim output is the real value. The driver controls the vehicle to drive on the
same road at different speeds. In Figure 8, when the vehicle is driven at medium and low
speed, the vehicle has low requirements for speed when turning, hence the fluctuation
of sideslip angle is small. In Figures 9 and 10, when the vehicle is driven at medium and
high speed, proper deceleration is required to ensure stability of the vehicle when turning.
When the speed is high, the vehicle sideslip angle centroid is large, but the estimated
value is relatively accurate. This is because the Kalman filter is a motion-based estimation
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method. At high speed, the vehicle sideslip angle changes greatly, and the estimated value
is relatively more accurate.
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Figure 9. Medium and high speed (a) real-time speed; (b) estimation of sideslip angle.

The actual vehicle sideslip angle β0, the observations of a common Kalman filter
observer βkm, and the observations of an EKF-based real-time observer βert, are compared
and analyzed in this article. The vehicle speed will decrease when turning, and the vehicle
sideslip angle will change. The common Kalman filter observer yields good observation
results only for a linear system, but the actual vehicle state parameter is a nonlinear system.
Using a common Kalman filter observer to estimate the sideslip angle when the vehicle
turns will produce a large error. At the same time, due to the essence of the Kalman
filter, when the vehicle speed changes greatly and the sideslip angle changes greatly, the
estimated data are closer to real values. The EKF-based real-time observer is an observer
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for nonlinear systems, thus it has higher observational accuracy. The results show that the
observation results based on EKF-based real-time observers are closer to real values.
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In order to better illustrate the advantages of the method proposed in this article, we
compare the root mean square error (RMSE) of three groups of data. RMSE is sensitive to
the maximum/minimum errors in a series of measurements, hence RMSE can be used to
well reflect the measuring accuracy [26,27]. RMSE reflects the offset degree between the
measured data and true values. Smaller RMSE promotes data accuracy. The calculation
equation of RSME can be expressed as shown below:

M =

√√√√√ n
∑

i=1
(βi − β0)

2

n
(35)
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where M is root-mean-square error; n is several data, β0 is the true value of the vehicle
sideslip angle, and βi is the observed value. The calculation results are shown in Table 4.

Table 4. The root mean square error of three speeds.

Working Condition βert βkm

Medium and low speed 0.0055 0.0142

Medium and high speed 0.0057 0.0314

High speed 0.0073 0.0386

By comparing the estimated results of the primitive Kalman filter observer with the
results of the EKF-based adaptive observer, we can see that there is a large deviation
between the estimated results of the primitive Kalman filter observer and the actual vehicle
sideslip angle. The estimation results of the method presented in this article are closer to the
true values, and only show small errors when cornering. In Figures 8–10, βert is closer to the
real curve. As shown in Table 4, at medium and low speed, the RMSE value of the method
proposed by us is 0.0055, and the RMSE of primitive Kalman filter observer is 0.0142.
Compared with the primitive Kalman filter observer, the accuracy of the method proposed
by us is improved by 60%. At medium and high speed, the RMSE value of the method
proposed by us is 0.0057, and the RMSE of primitive Kalman filter observer is 0.0314.
Compared with the primitive Kalman filter observer, the accuracy of the method proposed
by us is improved by 81%. At high speed, the RMSE value of the method proposed by us is
0.0073, and the RMSE of primitive Kalman filter observer is 0.0386. Compared with the
primitive Kalman filter observer, the accuracy of the method proposed by us is improved
by 81%. In conclusion, the proposed method in this article is better than the traditional
observation method.

5. Conclusions

1. Through the theoretical analysis of a 2-DOF dynamical model combined with the EKF
algorithm, this article explained the importance of vehicle sideslip angle observer in
vehicle control.

2. The vehicle sideslip angle state observer was built based on EKF. Aimed at the
complicated process of calculating the Jacobian matrix in the EKF algorithm, the
calculation in the time domain was transformed into the frequency domain. In this
article, the partial derivative calculated in the time domain was converted to the
frequency domain, which made its calculation simpler.

3. An adaptive noise updating method was proposed in this article. The adaptive noise
in an iteration process was compared with Gaussian white noise. The comparative
analysis showed that the adaptive noise updating method effectively reduced the
interference of noise to the system and made the estimation results more accurate.

4. By further analyzing the EKF-based observer, an adaptive truncation system based on
the least squares method and initial state update system was proposed in this article.
Through the co-simulation by Simulink-CarSim, four random points under double
line change were selected as the reference points to compare the operation speed of
the method proposed in this paper and other methods. Simulation analysis showed
that the number of iterations used by the method proposed in this article was 36% of
original methods, and the number of times was 32% of original methods. Experiments
showed that the method proposed in this article has better timeliness.

5. Finally, real-time simulations were carried out by Matlab/Simulink-CarSim-dSPACE.
The change curves of vehicle sideslip angle under different driving conditions were
output through real-time control by the driver. The root mean square under the three
working conditions was calculated. The curve and root mean square values effectively
showed the superiority of the method proposed in this paper.
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In this article, the algorithm, noise, and initial state were optimized to improve the
observer accuracy, reduce the number of operations, and shorten the operation time. In
this article, vehicle sideslip angle was observed, but there was no effective control over the
vehicle. Aiming at the problem of vehicle stability control, we will continue to study the
control algorithm when the observation results reach the stability limit.
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