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Abstract: Interlaminar corrosion (ILC) poses a severe threat to stratified conductors which are broadly
employed in engineering fields including aerospace, energy, etc. Therefore, for the pressing con-
cern regarding the safety and integrity of stratified conductors, it is imperative to non-intrusively
and quantitatively interrogate ILC via non-destructive evaluation techniques. In this paper, pulse-
modulation eddy current (PMEC) for imaging and assessment of ILC is intensively investigated
through theoretical simulations and experiments. A semi-analytical model of PMEC evaluation of
ILC occurring at the interlayer of two conductor layers is established based on the extended trun-
cated region eigenfunction expansion (ETREE) along with the efficient algorithm for the numerical
computation of eigenvalues for reflection coefficients of the stratified conductor under inspection.
Based on theoretical investigation, PMEC evaluation of ILC in testing samples are further scruti-
nized by using the PMEC imaging system built up for the experimental study. The theoretical and
experimental results have revealed the feasibility of PMEC for imaging and evaluation of ILC in
stratified conductors.

Keywords: electromagnetic non-destructive evaluation; pulse-modulation eddy current technique;
semi-analytical model; interlaminar corrosion; defect imaging and evaluation

1. Introduction

The stratified conductor which consists of a train of thin metallic layers is widely
utilized in engineering fields including aerospace, energy, chemical, etc. However, the
penetration of moisture and corrosive substances and abrasion of interlaminar surfaces
may result in the interlaminar corrosion (ILC) at the interface between each two layers [1].
The fact that ILC is essentially buried within the structure body severely leaves the layered
conductor vulnerable to structural failure, since the non-destructive testing methods such
as visual testing [2], ultrasonic testing [3], etc., are inapplicable for the inspection and
assessment of ILC. Therefore, advanced non-destructive evaluation (NDE) techniques are
required to detect and evaluate ILC in order to guarantee the integrity and safety of layered
structures in service for an extended period.

In view of the conductive characteristics of stratified conductors, eddy current (EC)
testing as well as pulsed eddy current (PEC) testing, which barely requires any contact
between the test piece and probe, is one of the preferred NDE techniques for the efficient
inspection of conductive structures [4]. In recent years, EC and PEC have been successfully
applied to detect the anomalies of railways [5] and delamination in carbon-fiber-reinforced
plastic [6], and to estimate the yield strength of ferromagnetic materials [7]. To further
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improve the testing performance of EC and PEC, the related research is focused on the
probe design, signal processing and feature extraction, etc. Wang et al. proposed a non-
destructive testing technique integrating EC with PEC to localize the micro-crack in metals
and quantitatively characterize its depth separately [8]. Yu et al. designed transverse
probes to render the eddy currents perpendicular to circumferential cracks and improved
the detection sensitivity to the defects [9]. Bernieri et al. designed a double-coil-based
differential probe to detect buried thin cracks with a giant magneto resistance (GMR)
sensor [10]. Ge et al. proposed a bobbin probe with two excitation coils to induce more
uniform eddy current and pick up signals with array sensors [11]. Besides the novel design
of probes, signal features immune to lift-off variations have been investigated. Wang et al.
used the dynamic apparent time constant of the PEC-induced coil voltage decay signal to
measure wall thinning under the large lift-off variations [12]. Song et al. applied the last
peak point of differential PEC signals to measure thickness for non-ferrimagnetic metal
under large lift-offs [13]. Zhang et al. proposed Euclidean distances as a signal feature by
decoupling interferences of insulations, claddings and the lift-off [14].

As one of the extended NDE methods from EC and PEC, pulse-modulation eddy
current (PMEC) testing has been found to be superior to EC and PEC in terms of higher sen-
sitivity and accuracy in detection, imaging and assessment of subsurface defects in planar
and tubular conductors [15,16]. The technical advantage of PMEC lies in the fact that the
majority of the excitation energy can be effectively allocated to the eddy currents induced
right within a conductor body, and thus the dedicated interrogation of the conductor is re-
alized [15]. In a bid to further improve the testing sensitivity, a funnel-shaped PMEC probe
has been proposed, and found to be advantageous over the traditional pancake probe in an
evaluation of back-surface flaws [17]. Based on this, Yan et al. investigated the methods for
imaging of subsurface corrosion in the planar conductor [18], and subsequently established
an inversion scheme for the 3D profile reconstruction of detected corrosions [19]. However,
to the authors’ knowledge, little research on PMEC inspection of ILC in layered conductors
has been conducted.

It is also noticeable that in the aforementioned research, despite the analytical models
established based on the extended truncated region eigenfunction expansion (ETREE)
modeling [20] for theoretical investigation of PMEC, the corrosion involved in the related
model is deemed to be the wall-thinning defect under the assumption that the defect
size is appreciably larger than the probe dimension. The scenario regarding the localized
corrosion is barely taken into account, leaving a research blank in regard to the theory of
PMEC inspection of localized defects and particularly ILC in layered structures. This issue
could be tackled in reference to the relevant analytical modeling of EC. Theodoulidis et al.
constructed the analytical modeling for calculating eddy currents in a plate with a long
slot flaw by the average of an odd and even parity solution [21]. Jiang et al. established
an analytical model for eddy current testing of an angled slot with different upper and
bottom length in 2D system [22]. Yu et al. proposed an analytical expression for the
magnetic field for a cylindrical defect in metal in eddy current testing system by solving the
partial differential equations [23]. Tytko et al. presented an axially symmetric mathematical
model of an I-cored coil placed over a two-layered conductive material with a cylindrical
surface hole [24]. However, more and more complex geometries in analytical models
with defect flaws make the numerical implementation more difficult [25]. To solve this
problem, some researchers tried to develop more efficient calculation approach to solve
the analytical modeling. The main obstacle for implementation of the analytical model is
solving discrete complex eigenvalues of the partial differential equations in a defect domain.
To find eigenvalues in a defect domain, Theodoulidis et al. used the Newton–Raphson
algorithm [21] and a derived Cauchy principle [26] developed by Delves and Lyness [27]
for the computation of eigenvalues. Darko et al. further improved Delves and Lyness’
work and designed an iteration algorithm for dividing regions in complex planes for
guaranteeing the efficient solution of eigenvalues [28]. Strakova adapted Cauchy’s residue
theorem and presented a contour integral method for the localization of eigenvalues of a
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matrix pencil in a bounded domain in the complex plane [29]. Tytko proposed a method for
the multilevel computation of complex eigenvalues by combining both the Newton method
and Cauchy principle and applying them in different regions of the complex plane [25].
The related analytical modeling of EC with localized defects could be supportive of the
establishment of theoretical models for PMEC evaluation of ILC in stratified conductors.

In a bid to scrutinize the feasibility of PMEC for the evaluation of ILC in stratified
conductors, a series of theoretical simulations of PMEC testing of localized ILC with
different radii and depths are carried out with a semi-analytical model established based
on the ETREE modeling. In parallel, a PMEC system has been built up for experimental
investigation in a bid to further confirm the applicability of PMEC for the detection,
imaging and assessment of ILC. The rest of the paper is organized as follows: Section 2
elaborates the semi-analytical modeling of PMEC for ILC evaluation. The theoretical and
experimental investigations involving characteristics and features of PMEC responses to
ILC, etc., are intensively presented in Sections 3 and 4, respectively. The investigation
results are summarized and concluded in Section 5.

2. Semi-Analytical Modeling Regarding PMEC Evaluation of ILC
2.1. Field Formulation

In an effort to investigate PMEC evaluation of ILC in stratified conductors, a semi-
analytical model based on ETREE modeling is established. A 2D axisymmetric model of
PMEC evaluation of a two-layer conductor subject to an ILC is portrayed in Figure 1. The
model comprises a funnel-shaped PMEC probe and a two-layer conductor. The funnel-
shaped probe consists of: (1) an excitation coil with the parallelogram cross-section for
generation of the incident magnetic field; and (2) a solid-state magnetic-field sensor which
is deployed at the bottom center of the excitation coil and used for acquiring the testing
signal of the net magnetic field (superposition of the incident and eddy-current-induced
fields). It is noted that the ILC residing at the interface between the upper and bottom layers
is in the shape of a cylinder with the radius of c and depth/thickness of D, D = d2 − d1. The
region of interest (ROI) truncated with the radial distance of h in Figure 1 is divided into a
series of sub-regions numbered from Region II to Region VI in reference to the continuity
of electromagnetic field over the boundaries of the coil, conductor and ILC with the z
coordinates of z1, 0, −d1, −d2 and −d3.

Figure 1. A 2D axisymmetric model of a funnel-shaped PMEC probe placed over a two-layer stratified
conductor with an ILC at the interface between the upper and bottom layers.

Based on ETREE modeling for transient eddy current testing [15], the closed-form
expression of z-component of the transient net magnetic field which is sensed by the sensor
at an arbitrary coordinate of (r, z) in Region II can be written as:

Bz(r, z, t) = I(t)⊗F−1[Bz(r, z, ω)], (1)
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where I(t) denotes the excitation signal of the electric current driving the coil. ⊗ stands
for the circular convolution. F−1 denotes the inverse Fourier transform. Bz (r, z, ω) is
the spectral response with respect to every harmonic at an angular frequency of ω within
the excitation signal. For each harmonic, Bz (r, z, ω) can be written in a form of a double
integral of the z-component of the total magnetic field resulted from a filament excitation
coil (with the radius of r0 and liftoff of z0), i.e., B f

z (r, z, ω) as:

Bz(r, z, ω) =
Ncoil

δ(z2 − z1)

∫ z2

z1

∫ ro(z)

ri(z)
B f

z (r, z, ω)drdz, (2)

where Ncoil is the number of turns of the excitation coil. δ denotes the coil radial thickness.
z1 and z2 are the z-integral limits corresponding to the lower and upper boundaries of the
coil. ri (z) and ro (z), which stand for the inner and outer boundaries of the coil, respectively,
are taken as the lower and upper limits for the r-integral. They are written as:{

ri(z) = r1 +
δz

z2−z1

ro(z) = r1 + δ + δz
z2−z1

. (3)

It is noteworthy that since the localized ILC is taken into account in the model, in
Equation (2) B f

z (r, z, ω) can hardly be expressed in the form of series expansion, but is
formulated in the matrix notation. Since the magnetic field can be derived from the identity,
i.e., the curl of the magnetic vector potential, in the cylindrical coordinate system it is thus
written as:

→
B

f
(r, z, ω) = −∂A f (r, z, ω)

∂z
→
r +

1
r

∂[rA f (r, z, ω)]

∂r
→
z , (4)

where
→
r and

→
z are the unit vectors. Af denotes the magnetic vector potential resulting

from the filament excitation coil. Referring to [23], it is expressed as:
A f (r, z, ω) = J1(κ

Tr)(eκzC + e−κzD)

C = µ0r0
2 e−κz0κ−1E−1 J1(κr0)

D = ΓC

, (5)

where J1 (κTr) and J1 (κr0) represent the 1× Ns and Ns × 1 matrices with the corresponding
elements of J1 (κir) and J1 (κir0), respectively. Jn is the first-kind Bessel function of the order
of n. eκz and e−κz denote the Ns × Ns diagonal matrices with the individual elements of
eκiz and e−κiz, respectively. µ0 is the permeability of vacuum. C and D are Ns × 1 matrices.
Based on Equations (4) and (5), the magnetic field at the sensor position is formulated as:

→
B

f
(r, z, ω) = −J1(κ

Tr)κ
(
eκzC− e−κzD

)→
r + J0(κ

Tr)κ
(
eκzC + e−κzD

)→
z . (6)

In Equations (5) and (6), κ is a diagonal matrix with the diagonal elements of κi,
i = 1, 2, 3 . . . Ns. κi are eigenvalues for the air domains, which are the positive roots of
the equation:

J1(κih) = 0. (7)

E is a diagonal matrix with the elements expressed as:

Eii =
h2 J2

0 (κih)
2

. (8)

Γ is a Ns × Ns full matrix representing the conductor reflection coefficient. It can be derived
from the boundary conditions implying the continuity of electromagnetic field over each
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interface in the domain under the excitation coil (i.e., Regions II, III, . . . and VI), and thus
written as:

Γ = K−1
2 K1, (9)

where K1 and K2 are formulated as:{
K1 = (L1M1 − L2M2)Ee−λd1N1 − (L2M1 − L1M2)Eeλd1N2

K2 = (L2M1 − L1M2)Eeλd1N1 − (L1M1 − L2M2)Ee−λd1N2
. (10)

It is noted that L1, L2, M1, M2, M3, M4, N1 and N2 in Equation (10) are the coefficient
matrices which are expressed as: L1 =

[
N−1

1 eλ(d2−d3)E−1M3 −N−1
2 eλ(d3−d2)E−1M4

]
ep(d1−d2)

L2 =
[
N−1

2 eλ(d3−d2)E−1M3 −N−1
1 eλ(d2−d3)E−1M4

]
ep(d2−d1)

, (11)

{
M1 = U−1 + (Up)−1λ, M3 = U + λ−1Up

M2 = U−1 − (Up)−1λ, M4 = U− λ−1Up
, (12)

{
N1 = I + λ−1κ

N2 = I− λ−1κ
. (13)

In these expressions, I denotes the Ns × Ns identity matrix. λ is the Ns × Ns diagonal
matrix with the diagonal elements of λi which are eigenvalues for the layered conductor
free of ILC, and can be expressed as:

λi =
√

κ2
i + jωµ0µrσ, (14)

where σ and µr denote the apparent conductivity and relative permeability of the conduc-
tive layers, respectively. The elements Uij in the Ns × Ns full matrix U can be computed out
by using the equation written as:

Uij =
−ck2

(p2
j − κ2

i )(q
2
j − κ2

i )

[
κi J0(κic)J1(pjc)− pj J1(κic)J0(pjc)

]
R1(qjc), (15)

where k2 = jωµ0µrσ. Rn (qic) is formulated as:

Rn(qic) = Y1(qih)Jn(qic)− J1(qih)Yn(qic), (16)

where Yn denotes the second-kind Bessel function of the order of n. The diagonal elements
pi in the Ns × Ns diagonal matrix p are eigenvalues for the ILC region. They can be sought
by finding the roots of the equation:

pi J0(pic)R1(qic)− qi J1(pic)R0(qic) = 0. (17)

In Equations (15)–(17), qi is also the eigenvalues for the ILC domain, and can be derived by
using the equation:

qi =
√

p2
i − jωµ0µrσ. (18)

By using Equations (1) and (2), the temporal responses of PMEC to localized ILC at
the interface of the layered conductor can be readily predicted.

2.2. Numerical Calculation of Eigenvalues

The calculation of eigenvalues particularly pi is a fundamental step in predicting the
PMEC signals via the semi-analytical model. In this paper, eigenvalues in the ILC domain
are acquired based on the Delves and Lyness algorithm calculating the eigenvalues and
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further improving the precision by Newton–Raphson iteration. When applying the Delves
and Lyness algorithm to seek eigenvalues, the roots of Equation (17) are equivalent to zeros
of the function written as:

f (x) = xJ0(xc)R1(qc)− qJ1(xc)R0(qc). (19)

According to the Cauchy argument principle developed by Delves and Lyness, the
summation of nth power of zeros of an analytic function enclosed by the contour C in the
complex plane can be expressed as:

sn =
1

2π j

∮
C

xn f ′(x)
f (x)

dx =
N

∑
i=1

ξn
i n = 1, 2, . . . N, (20)

s0 =
1

2π j

∮
C

x0 f ′(x)
f (x)

dx =
N

∑
i=1

ξ0
i = N, (21)

where f’(x) is the derivative function of f (x). ξi are zeros of the f (x) enclosed by the
contour C, giving the solutions to pi in Equation (17). By dividing the complex plane into a
series of discretized subareas, information of eigenvalues in each subarea is derived from
Equations (20) and (21). In each subarea, the number of zeros N is equal to s0. To obtain to
solutions to pi in defect domain, it is required to solve the Nth degree system of equations
which is written as: 

s1 = p1 + p2 + . . . + pN

s2 = p2
1 + p2

2 + . . . + p2
N

...
sN = p1

N + pN
2 + . . . + pN

N

. (22)

In a bid to mitigate the potential overflow and rounding error in computation of Bessel
functions, Equation (19) is further modified and formulated in an exponentially scaled
form as: {

f (x) = e|=(xc)|+|=(qh)|+|=(qc)| f̂ (x)

f̂ (x) = xĴ0(xc)R̂1(qc)− qĴ1(xc)R̂0(qc)
, (23)

where = denotes the imaginary part of a complex value. This scaling method is im-
plemented based on the embedded functions “besselj (n, x, 1)” and “bessely (n, x, 1)” in
MATLAB, and gives solutions to e−|=(x)|Jn(x) and e−|=(x)|Yn(x) which are efficient in
mitigation regarding overflow and reduction in computational accuracy of Bessel functions.
The scaled forms of Jn(x) and Yn(x) are Ĵn(x) and Ŷn(x) whilst R̂n(qc) is the scaled form of
Rn(qc). R̂n(qc) can thus be expressed as:

R̂n(qc) =
[
Ŷ1(qh) Ĵn(qc)− Ĵ1(qh)Ŷn(qc)

]
. (24)

In addition, f̂ ′(x), which is the scaled form of f’(x) can also be derived:

f ′(x) = e|=(xc)|+|=(qh)|+|=(qc)| f̂ ′(x). (25)

In the virtue of the uniform coefficient in Equations (23) and (25), the ratio term, i.e.,
f’(x)/f (x) in Equations (20) and (21) can be replaced by f̂ ′(x)/ f̂ (x). It is noteworthy that:
(1) the function ratio in Equations (20) and (21) is essentially the integrand of the loop-
integration for finding the eigenvalue in each discretized subarea when applying the Delves
and Lyness algorithm in Reference [27]; and (2) by substituting f̂ ′(x)/ f̂ (x) for f’(x)/f (x)
and taking it as the integrand, the overflow and rounding error in computation can be
suppressed. In a bid to predict PMEC responses to the ILC, the efficient computation of



Sensors 2022, 22, 3458 7 of 17

the complex roots of f (x) is realized via the modified Delves and Lyness formula which is
written in the scaled form as:

sn =
1

2π j

∮
C

xn f̂ ′(x)
f̂ (x)

dx =
N

∑
i=1

pn
i n = 1, 2, . . . N, (26)

s0 =
1

2π j

∮
C

f̂ ′(x)
f̂ (x)

dx =
N

∑
i=1

p0
i = N. (27)

The loop-integration can readily be computed with the MALTAB routine “integral”. It is
further revealed that in Newton–Raphson algorithm for improving the computation accu-
racy regarding the complex eigenvalues, the ratio term, i.e., f (x)/f’(x) can also be replaced
with the exponentially scaled form to avoid computational overflow or rounding errors.

It is noted that the accuracy regarding the computation of complex eigenvalues de-
pends also on the discretized subareas in the complex plane. In the event that the number
of eigenvalues in each subarea is increased, it becomes more difficult to solve the system of
equations shown in Equation (22). Previous investigation has revealed that the computa-
tional accuracy for pi is undermined when the discretized subarea in the complex plane
encloses too many eigenvalues [25]. The relatively large number of N also brings about
the tedious computation of sn with n varying from 1 to N. Therefore, it is vital to properly
divide the complex plane into the discretized subareas and limit the maximum number of
eigenvalues in each subarea. Different from the proposed iteration algorithms to make the
subareas denser in the complex plane to reach the limited number of eigenvalues in Refer-
ence [28], in this paper characteristics of eigenvalues’ distribution are firstly investigated
and utilized to optimize the shape and size of the subarea in the complex plane.

When the ILC radius varies from 0 (the defect-free case) to h (the wall-thinning case
where the ILC radius is considerably larger than the probe size), in the complex plane,
the corresponding eigenvalues change from λi to κi. Due to the continuity in numerical
values, the distribution of pi is thus bounded by λi and κi. An example regarding the
distribution characteristics of eigenvalues pi in the complex plane for the harmonic case
of ω = 2000π rad/s and the subareas are portrayed in Figure 2. It can be observed from
Figure 2a that pi (red dots) sought in the plane is essentially enclosed by a region with
its lower and upper boundaries defined by κi and λi, respectively. Interestingly, after
discretizing the region into a train of rectangular subareas (when κi < <(λ1), where <
denotes the real part of a complex value) and trapezoidal subareas (when κi > <(λ1)) with
their vertices set as κi and λi, it can be found that within each resultant subarea the total
number of pi is up to 2. Further investigation indicates that such a finding still holds
for the other harmonic cases. The distribution characteristics of eigenvalues provide an
advantageous reference to the division of discretized subareas. In light of this, a new
approach for discretizing the complex plane is thus proposed. Prior to the computation
of the loop integrals in Equations (26) and (27), the complex plane is discretized into a
train of subareas in the shapes of rectangles and trapezoids. The coordinates of the vertices
defining the contour of each subarea are set as κi and λi. For the rectangular-shaped and
trapezoidal-shaped subareas, the coordinates regarding the vertices of the subarea contour
are exhibited in Figure 2b.

It should be pointed out that the proposed approach ensures that there are up to
2 eigenvalues of pi in each subarea whilst the number of discretized subareas is highly
relied on the number of κi and λi. This makes the subarea discretization free of multiple
iteration to obtain denser subareas in the localized complex region where eigenvalues are
concentrated and are beneficial to the efficient seeking of all pi with high computation
speed and accuracy. Further investigation also reveals that by taking the pi sought with
the proposed approach as the initial estimates, the number of iterations for refinement
of eigenvalues via the Newton–Raphson algorithm for further precision improvement
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is significantly decreased, which benefits the fast solution to predicted PMEC responses
to ILC.

Figure 2. Characteristics regarding the distribution of eigenvalues in the complex plane and de-
fined subareas: (a) distribution of eigenvalues pi, κi and λi along with the discretized subareas;
(b) coordinates of the subareas.

2.3. Verification with the Finite Element Modeling

In conjunction with the proposed efficient algorithm for computation of eigenvalues,
the established semi-analytical model and formulated closed-form expression of the PMEC
signal could be adopted for efficient prediction of testing signals. Prior to theoretical
simulations, the semi-analytical model is corroborated by the finite element modeling
(FEM). The specimen under PMEC inspection is chosen as a double-layered conductor with
cylindrical ILC. The material of each conductor layer is the aluminum alloy. The parameters
of the PMEC probe and specimen are listed in Tables 1 and 2, respectively.

Table 1. Parameters of the PMEC probe.

Symbol Quantity Value

r1 Inner radius of the coil bottom 8.0 mm
r2 Inner radius of the coil top 14.8 mm
δ Coil radial thickness 0.8 mm
z1 Lift off 2.0 mm
z2 Position of the coil top 12.1 mm

Ncoil The number of coil turns 205
(r, z) Sensor location (0, 1) mm

Table 2. Parameters of the specimen.

Symbol Quantity Value

h Specimen length 100 mm
d3 = 2dLayer Specimen thickness 8.0 mm

σ Specimen conductivity 34.0 MS/m

µr
Specimen relative

permeability 1

d1 Upper boundary of ILC 2.0 mm
D ILC thickness 4.0 mm
c ILC radius 15.0 mm

The excitation current driving the funnel-shaped PMEC probe and testing signals are
exhibited in Figure 3. The maximum amplitude of the excitation current is 1A. It is noted
that regarding the excitation-current signal in the pulse-modulation waveform, as per the
frequency-selection strategy in Reference [15] the frequencies of modulation wave and
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carrier wave are set at 24 Hz and 204 Hz, respectively. Different from the excitation signal
presented in Reference [15], the carrier wave is truncated by the modulation wave when
its amplitude reaches maximum. The comparison of the PMEC signals predicted by the
semi-analytical model and FEM is presented in Figure 3b.

Figure 3. Excitation current and PMEC signals: (a) excitation current driving the probe; (b) signals
predicted by the semi-analytical model and FEM.

It can be observed from Figure 3b that the predicted PMEC signal from the semi-
analytical model agrees well with that from FEM. Further analysis implies that compared
with the FEM results, the relative error of the computed signal from the semi-analytical
model is less than 1%, whilst the simulation time of the semi-analytical model is 10~15 times
faster than FEM, indicating the superiority in terms of efficiency regarding the established
semi-analytical model to FEM.

3. Theoretical Simulations and Discussion

Following verification, the PMEC responses to ILCs with different radii and depths are
scrutinized through theoretical simulations based on the established semi-analytical model.
For the ILC scenarios of various radii (c = 1~15 mm with D fixed at 4 mm) and depths
(D = 1~5 mm, while c = 15 mm), the predicted PMEC signals are exhibited in Figure 4.

Figure 4. Testing signals predicted by the semi-analytical model: (a) ILCs with various radii; (b) ILCs
with various depths.

It can be seen from Figure 4 that the signal amplitude increases as the ILC size in terms
of the radius (shown in Figure 4a) and depth (shown in Figure 4b) rises. The reasoning
lies in the fact that the increase in the ILC volume enhances the perturbation of eddy
currents induced within the specimen, causing the drop in the eddy-current-induced field
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and thus the increase in the net magnetic field. Further signal processing is conducted by
subtracting the reference signal for the defect-free case from the defect signals for different
ILC scenarios, giving the so-called difference signals. The peak value (Pv) is subsequently
extracted from the difference signal. The correlations of Pv with the radius and depth of
ILC are presented in Figure 5.

Figure 5. Difference signal and correlations of Pv: (a) difference signals with various radii and depths
of ILC; (b) correlations of Pv with the radius and depth of ILC.

As can be observed from Figure 5b, amplitude of difference signals will rise with the
increase of radius and depth of ILC. In Figure 5b, Pv which is the extreme value extracted
from the PMEC difference signal is closely associated with the sizing parameters of the
ILC with a positive correlation. It is directly proportional to either radius or depth of the
ILC, indicating that more eddy currents are perturbed in the presence of the ILC with the
increasing size. Therefore, Pv is utilized as the signal feature for detection, imaging and
evaluation of ILC in layered conductors.

4. Experiments

In parallel to the theoretical investigation, a PMEC inspection system has been built
up for detection, imaging and assessment of ILC in stratified conductors. The schematic
illustration of the PMEC system along with the picture of the fabricated funnel-shaped
probe and testing specimen is portrayed in Figure 6.

Figure 6. Schematic illustration of the PMEC inspection system (inset: the funnel-shaped probe and
testing specimen).

The parameters of the probe and specimen are same as those tabulated in Tables 1 and 2.
The in-house PMEC probe generates the incident field with the funnel-shaped coil whilst a
Tunnel Magneto-Resistance (TMR) sensor (MultiDimension TMR 2505) deployed at the
bottom center of the coil is used to pick up the z-component of the net magnetic field. The
excitation signal driving the probe is in pulse-modulation waveform with the frequencies
of modulation wave and carrier wave set at 24 Hz and 204 Hz, respectively, whilst its
maximum amplitude is 0.3 A.
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The layered specimens adopted in experiments consist of two aluminum-alloy layers
whose conductivity and relative permeability are 34 MS/m and 1, respectively. Flat bottom
holes imitating ILCs with different radii (from 12.5 mm to 17.5 mm) and depths (from 1 mm
to 4 mm) are fabricated at the interface of the layers and reside at: (1) the back surface
of the upper layer for ILC Scenario #1; and (2) the surface of the bottom layer for ILC
Scenario #2. During experiments, the probe is scanned over the specimen by a scanning
table with the spatial resolution of 1 mm whilst the lift-off of the probe is fixed at 2 mm.
The reference signal is obtained when the probe is right over the defect-free area of the
specimen. Difference signals are acquired by subtracting the testing signal at each scanning
position from the reference signal. The experimental signals and derived difference signals
when the PMEC probe is placed right over the center of each ILC are portrayed in Figure 7.

Figure 7. Experimental signals for different ILC parameters: (a) testing signals; (b) difference signals.

It can be observed from Figure 7a that the amplitude of the testing signal increases as
the size of ILC is increased due to more perturbation of eddy currents by ILC whilst the
magnitude of the difference signal presented in Figure 7b rises when the radius and depth
of ILC are increased. This is consistent with findings from the theoretical investigation.
It is also noticeable that the amplitudes of the testing signals are lower than those for the
back-surface corrosion in a conductive plate (analogous to a single-layer conductor). This is
due to the fact that more eddy currents are induced within the multilayered conductor, and
thus the eddy-current-induced field opposing the incident field becomes stronger, resulting
in the decrease in strength of the net magnetic field.

It is also noticed from Figure 7b that Pv of the difference signal is directly proportional
to the ILC size. Therefore, Pv extracted from the difference signal is subsequently used for
ILC imaging. With all Pvs obtained at scanning positions, the Pv-based images of ILCs
with different radii and depths are produced. The imaging results for various ILC scenarios
are exhibited in Figures 8 and 9 against different sizes of ILCs in either circle or square
shape for ILC Scenarios #1 and ILC Scenarios #2. It is observed from Figures 8 and 9 that
the position of each ILC can be readily localized by using the imaging results along with
the indication regarding the ILC size.

Based on the acquired ILC images, further investigation is carried out to analyze the
feasibility of PMEC for evaluation of ILCs in terms of the ILC opening size and depth. A
Canny-algorithm-based edge recognition method [16] is applied for identification of the ILC
edge with Pv-based images. The processed image results are shown in Figures 10 and 11.
It can be seen from Figures 10 and 11 that the identified ILC edge agrees well with the
real ILC opening profile. Following this, the ILC opening size is estimated based on the
identification results. The estimation results of the ILC opening size for ILC Scenarios #1
and ILC Scenarios #2 are listed in Tables 3 and 4. It is noticeable from Tables 3 and 4 that the
approximated area of ILC opening has good agreement with the actual size. The maximum
of relative errors is less than 10%.
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Figure 8. Imaging results for ILC Scenario #1 (where l denotes the length of the square-shaped ILC).

Figure 9. Cont.
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Figure 9. Imaging results for ILC Scenario #2.

Figure 10. Edge-identification results for ILC Scenario #1.

Figure 11. Cont.
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Figure 11. Edge-identification results for ILC Scenario #2.

Table 3. Assessment results regarding ILC opening areas for ILC Scenario #1.

ILC Radius/Length ILC Depth Estimated Area Actual Area Relative Error

c = 12.5 mm
2 mm 471 mm2 490.87 mm2 4.05%
3 mm 449 mm2 490.87 mm2 8.53%
4 mm 456 mm2 490.87 mm2 7.10%

c = 17.5 mm
2 mm 957 mm2 962.11 mm2 0.53%
3 mm 910 mm2 962.11 mm2 5.42%
4 mm 903 mm2 962.11 mm2 6.14%

l = 35 mm
2 mm 1196 mm2 1225 mm2 2.37%
3 mm 1181 mm2 1225 mm2 3.59%
4 mm 1157 mm2 1225 mm2 5.55%

Table 4. Assessment results regarding ILC opening areas for ILC Scenario #2.

ILC Radius/Length ILC Depth Estimated Area Actual Area Relative Error

c = 12.5 mm
2 mm 526 mm2 490.87 mm2 7.16%
3 mm 519 mm2 490.87 mm2 5.73%
4 mm 539 mm2 490.87 mm2 9.81%

c = 17.5 mm
2 mm 964 mm2 962.11 mm2 0.20%
3 mm 954 mm2 962.11 mm2 0.84%
4 mm 950 mm2 962.11 mm2 1.26%

l = 35 mm
2 mm 1224 mm2 1225 mm2 0.08%
3 mm 1244 mm2 1225 mm2 1.55%
4 mm 1260 mm2 1225 mm2 2.86%

Based on the identification results regarding the opening of each ILC, the center of
every ILC is determined, and the Pv corresponding to the ILC center is extracted from the
Pv-based image in order to establish the correlation between the Pv and ILC depth. The
obtained correlation curves are shown in Figure 12. As can be observed from Figure 12 that
for every ILC scenario, the Pv has a monotonic correlation with the ILC depth whilst Pv
rises with the ILC depth increased. This agrees with the finding from the simulations. Both
theoretical simulation and experiment indicate that the ILC depth can readily be evaluated
by using the correlation curve. The ILC radius can be assessed by using the processed ILC
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image with the Canny-algorithm-based edge recognition method. The feasibility of PMEC
for the detection, imaging and evaluation of ILC in stratified conductors is confirmed.

Figure 12. Pv against the ILC depth for: (a) ILC Scenario #1; (b) ILC Scenario #2.

5. Conclusions

In an effort to intensively investigate the feasibility of PMEC for the detection, imaging
and evaluation of ILCs in layered conductors, in this paper a semi-analytical model for
the efficient prediction of PMEC responses to ILC has been established along with the
resulting formulation of the closed-form expression of the PMEC testing signal. More
efforts have been given to the reliable computation of eigenvalues for the ILC region. The
exponentially scaled form of the integrand in the loop integral is deduced in a bid to
mitigate the overflow and rounding errors in computation. An approach for discretizing
the complex plane for an efficient solution to eigenvalues has been proposed. Following
the establishment of the semi-analytical model, the characteristics of PMEC responses to
ILC and correlation of the PMEC signal feature with the sizing parameter are investigated
through theoretical simulations. It has been found that the Pv extracted from the difference
signal has a monotonic relation with the ILC size. Therefore, it is used for ILC imaging.

In conjunction with the finding from simulations, the feasibility and applicability of
PMEC for imaging and evaluation of ILC in a stratified conductor are further investigated
via experiments. It can be noticed that the Pv-based ILC image implies the position and
size of the ILC. The processed image with the Canny-algorithm-based edge recognition
method can be adopted for approximation regarding the opening area of the detected
ILC. Complying with the finding from simulations, the correlation of Pv with the ILC
depth is monotonic, and the resultant correlation curve is applicable for the estimation of
ILC depths.

Following the affirmation regarding the feasibility of PMEC for the imaging and
evaluation of ILCs, further work involves: (1) investigation regarding the advantages of
PMEC over other NDE methods such as PEC in particular; (2) imaging of ILCs in irregular
shapes/profiles; and (3) 3D reconstruction of ILCs in layered conductors.
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