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Abstract: Construction signs alert drivers to the dangers of abnormally blocked roads. In the case
of autonomous vehicles, construction signs should be detected automatically to prevent accidents.
One might think that we can accomplish the goal easily using the popular deep-learning-based
detectors, but it is not the case. To train the deep learning detectors to detect construction signs,
we need a large amount of training images which contain construction signs. However, collecting
training images including construction signs is very difficult in the real world because construction
events do not occur frequently. To make matters worse, the construction signs might have dozens
of different construction signs (i.e., contents). To address this problem, we propose a new method
named content swapping. Our content swapping divides a construction sign into two parts: the board
and the frame. Content swapping generates numerous synthetic construction signs by combining
the board images (i.e., contents) taken from the in-domain images and the frames (i.e., geometric
shapes) taken from the out-domain images. The generated synthetic construction signs are then
added to the background road images via the cut-and-paste mechanism, increasing the number of
training images. Furthermore, three fine-tuning methods regarding the region, size, and color of
the construction signs are developed to make the generated training images look more realistic. To
validate our approach, we applied our method to real-world images captured in South Korea. Finally,
we achieve an average precision (AP50) score of 84.98%, which surpasses that of the off-the-shelf
method by 9.15%. Full experimental results are available online as a supplemental video. The images
used in the experiments are also released as a new dataset CSS138 for the benefit of the autonomous
driving community.

Keywords: construction sign detection; image synthesis; cut-and-paste; perspective transformation

1. Introduction

The misdetection of a construction sign may lead to accidents by unexpectedly entering
blocked roads. Therefore, the reliable detection of construction signs is quite important
in realizing autonomous driving. With the recent progress in object detection based on
deep learning [1–6], one might think that we can accomplish the reliable detection of
construction signs easily, but it is not true. To train the deep learning detector, we need
large-scale training images including construction signs for robust and high-quality results.
Unfortunately, construction signs appear infrequently on roads. Thus, collecting large
amounts of training data for construction sign detection is required, but it is time-consuming
and expensive. To address this problem, we propose a new method for learning to detect
construction signs on roads. The main idea of the proposed method is to synthesize training
images using a small number of construction sign images. To synthesize training images,
we follow the cut-and-paste mechanism [7–9], which cuts an instance from the source
image (i.e., construction sign region in an image) and pastes it into a background image
(i.e., road image). The cut-and-paste method enables a model to avoid overfitting on a
small number of backgrounds in source images, but it cannot generalize limited instances.
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A construction sign can be divided into two parts: the board and frame. The content
of the sign is contained in a rectangular board, and the board is supported by a frame. The
frame can be shared for any sign. Using this characteristic, we effectively generate new
construction sign images by swapping the contents in the rectangular board between two
different construction sign images, as shown in Figure 1. Our content swapping synthesizes
numerous synthetic construction signs by combining the board images (i.e., contents)
taken from the in-domain images and the frames (i.e., geometric shapes) taken from the
out-domain images. This approach allows us to obtain new NI NO images from NI in-
domain construction sign images and NO out-domain construction sign images. Although
in-domain sign images need to be collected using the same camera setting as in the test
set, out-domain images can be collected from the Internet. Therefore, we can synthesize a
large-scale training dataset with only a small number of in-domain sign images and train a
detector on them.

Content
swapping

Construction sign images
(in-domain)

Construction sign images
(out-domain)

Synthesized sign images
(in-domain)

Figure 1. Content swapping. With NI in-domain and NO out-domain construction sign images, we
synthesize NI NO in-domain construction sign images via perspective transformation. The synthe-
sized sign images are used as source images for cut-and-paste.

We also develop three fine-tuning methods to improve the quality of synthetic training
images. The three methods deal with the (1) pasted region, (2) instance size, and (3) color
difference of the synthesized images, respectively. The first method guides us to paste the
synthetic construction sign image on the drivable region. Because the construction sign
cannot be placed on the sky, car, or other objects, it should be placed only on the drivable
region for realistic purposes. The second method helps us to select the size of the instance
based on the location where the sign is to be pasted. If we assume that the construction sign
is always pasted on the road and the road is flat, then we can automatically predict the size
of the instance in the image. The prediction not only avoids making construction images
either too large or too small but also resizes the images to match nearby objects, thereby
improving global consistency. Finally, we blend the synthesized construction signs with the
training image to reduce the gap between the source and background images. The blending
also reduces the domain gap between in-domain and out-domain construction sign images
in content swapping. To our best knowledge, no other research has been conducted to
detect the construction signs. To validate the effectiveness of the proposed methods, we
collect the CSS138 (Construction Signs in Seoul with 138 images) dataset for training and
testing construction sign detection. All the images are captured in Seoul, Korea. The CSS138
dataset can be downloaded at https://github.com/Hongje/content-swapping, (accessed
on 5 April 2022). In the experiment, we synthesize a large-scale training dataset with only

https://github.com/Hongje/content-swapping
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12 in-domain sign images and achieve a robust and accurate result with an AP50 score
of 84.98% for CSS138. Our result surpasses off-the-shelf cut-and-paste by 9.15% in the
AP50 score. Full experimental results are available online: https://youtu.be/us_qso6C5pw,
(accessed on 5 April 2022).

The main contributions are summarized as follows:

• This is the first paper which deals with the construction sign detection.
• We propose a new image synthesis method, content swapping, to avoid overfitting on

limited instances in source images.
• We further present three fine-tunning methods for creating realistic construction

images on roads.
• To demonstrate the efficacy of the proposed method, we construct a new dataset,

CSS138, for construction sign detection.
• Finally, we achieve an AP50 score of 84.98%, creating a gap of 9.15% from the naive

cut-and-paste method.

The remainder of this paper is organized as follows. Previous works related to this
study are discussed in Section 2. The proposed method for synthesizing construction
images is described in Section 3. The experimental results for CSS138 and the analysis are
presented in Section 4. Finally, the conclusions are presented in Section 5.

2. Related Work
2.1. Sign Detection

Early methods designed models for detecting signs heuristically. Specifically, Prince
et al. [10] design a sign detection algorithm based on a geometrical analysis of the edges
and groups of the sign image features. Escalera et al. [11] segment images using color
thresholding and then analyze the shape to detect signs. Fang et al. [12] formulate three
types of shapes—circular, triangular, and octagonal—to extract the color features of the
signs. Shadeed et al. [13] convert the RGB color space to HSV and YUV color spaces and
then defined a heuristic algorithm. Loy et al. [14] exploit the symmetric nature and the
pattern of the edge of the triangular, square, and octagonal shapes to predict the shape of
the sign image. Bahlmann et al. [15] propose a joint color and shape information modeling
approach using a set of Haar wavelet features.

Recently, state-of-the-art approaches have used convolutional neural network (CNN)-
based supervised models. Shao et al. [16] train CNNs with simplified Gabor filters. Cao
et al. [17] use shallow CNNs to classify the traffic signs. Zhang et al. [18] propose a new
cascaded R-CNN architecture that includes multiscale attention and imbalanced samples.
Liu et al. [19] propose TSingNet, which is based on feature pyramid networks and includes
several attention-based modules. Ahmed et al. [20] propose a new DNN-based framework
that is robust in detecting traffic signs, even under challenging weather conditions. Zeng
et al. [21] propose an improved YOLOv3 architecture for real-time traffic-sign detection.
All previous methods considered only traffic or road signs.

The basic difference between general sign detection and construction sign detection is
how much training samples are provided. Differently from the large amount of training
images in general sign detection, only dozens of training images are given in construction
sign detection. Furthermore, collecting the training images for construction signs is much
more difficult. The key idea of our method is how to augment the training images and train
a detector on them effectively. The purpose to detect and recognize construction signs is to
alert the unplanned situations made by road construction. Understandably, commercial
autonomous vehicles can handle not only the planned situations but also the unplanned
situations. The typical example of the unplanned situation might be the road construction.
In this case, the autonomous vehicle may not have to obey the traffic law. For example, our
vehicle may have to cross the road following policeman’s hand signal, ignoring the traffic
sign. The goal of our paper is to handle that kind of unplanned abnormal situation.

Our construction sign detection can also be considered as a special kind of class
imbalance problem. We are dealing with only a single class (i.e., construction sign) and

https://youtu.be/us_qso6C5pw
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the instances of the class are highly imbalanced with the background instances such as
buildings, roads, or pedestrians. The key idea of the paper is to tackle the serious imbalance
problem by augmenting the training samples.

2.2. Image Synthesis for Network Training

Several studies [9,22] have synthesized training images with a focus on realism. Fur-
thermore, task-specific image synthesis has also been extensively studied. Dwibedi et al. [7]
propose a simple yet effective training image synthesis method that uses cut-and-paste for
object detection. Lee et al. [8] propose content transfer, which transfers tail-class content
from source to target to address the class imbalance problem in unsupervised domain-
adaptive semantic segmentation. Leon et al. [9] synthesize training images by rendering
that does not require real-world images. In this paper, we propose methods for synthesizing
construction sign images for sign detection. The key idea of our image synthesis is that the
contents of the board are taken from in-domain images, whereas the frame is taken from the
out-domain (and in-domain) images. Since the frames includes only the geometrical shape
of the sign board, they can be collected from any images (out-domain images) without
affecting the detection performance. However, since the board images have their own style,
the construction sign images taken only from the in-domain images are used to facilitate
the synthesis onto the background road images.

3. Method
3.1. Overview

An overview of the proposed method for synthesizing training data is shown in
Figure 2. The entire process of synthesizing the training images comprised four main
steps. In the first step, we prepared images by collecting construction sign images and
road images. As acquiring construction sign images is difficult, we could only prepare a
limited number of sign images. Therefore, we collected additional out-domain construction
sign images from the Internet. In the second step, the four corners of the content and
segmentation mask were labeled in the construction sign images. In the third step, content
swapping was performed using these labels. Finally, the training images were generated
via the cut-and-paste mechanism using the proposed realistic transformations.

In-domain construction sign images (𝑁𝑁𝐼𝐼 images) Out-domain construction sign images (𝑁𝑁𝑂𝑂 images)

Synthesized in-domain construction sign images (𝑁𝑁𝐼𝐼𝑁𝑁𝑂𝑂 images)

Content
swapping

1. Collecting images 

2. Labeling four corners of the content, and segment 

3. Augmenting sign images via content swapping

Road images
(Background)

Synthesized images
4. Cut-and-paste with realistic transformations

Sampling

Sampling

Figure 2. An overview of training data synthesis. The entire process was divided into four steps. First,
we collected three types of images: in-domain construction sign images, out-domain construction
sign images, and road images. Then, we labeled four corners of the contents and segmented the
construction sign images. The labels were then used for content swapping. Finally, a pair of a
construction image and a road image was randomly sampled and synthesized via the cut-and-
paste mechanism with proposed realistic transformations. The synthesized images are used for
training networks.
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For a clearer explanation, we provide a pseudo-code of the proposed method in
Algorithm 1. Each step in Algorithm 1 matches Figure 2. In the following subsections, we
describe the details of each step.

Algorithm 1 Pseudo-code of the proposed method.

Step1: Collecting construction sign and road images

1: In-domain construction sign image: IIn
2: Out-domain construction sign image: IOut
3: Road image: IRoad

Step2: Labeling bounding box, segment, and four corners of the board

4: Bounding box labels: BboxIn, BboxOut
5: Segment labels: MIn, MOut
6: Four corners of the board: (

[
x1

I y1
I
][

x2
I y2

I
][

x3
I y3

I
][

x4
I y4

I
]
),

(
[

x1
O y1

O
][

x2
O y2

O
][

x3
O y3

O
][

x4
O y4

O
]
)

Step3: Content swapping

7: Randomly select content image (source): S ∈ In
8: Randomly select frame image (target): T ∈

[
In Out

]
9: Set content region mask of target image using four corners label: CT

10: Compute transformation matrix T :

T =



x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T



−1

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T



. Section 3.4

11: Swap content: ICS
T = T (IS)� CT + IT � (1− CT)

Step4: Cut-and-paste with realistic transformations

12: Randomly select road image (background): B ∈ Road
13: Compute pasteable region: PB . Section 3.5.1
14: Randomly select bottom point of the sign: p1 =

[
px

1 py
1

]
∈ PB

15: Compute top point of the sign:

p2 =
[

px
2 py

2

]
=

[
px

1

(
tan−1

(
tan(α·py

1+β)
1−h

)
− β

)/
α

] . Section 3.5.2

16: Cut sign image ICS
T and paste to road image IB:

ICP
T = Cut− and− Paste

(
ICS
T , MT , IB, p1, p2

)
17: Transform segment label to p1 and p2: MCP

T = Transform_mask(MT , p1, p2)

18: Transform bounding box label to p1 and p2: BboxCP
T = Transform_box(BboxT , p1, p2)

19: Reduce color difference: IGP
T = GP−GAN

(
ICS
T , MCS

T
)

. Section 3.5.3
Output: Synthesized training image: IGP

T ;
Synthesized training label: BboxCP

T

3.2. Collecting Images

To collect construction sign and road images, we used the FHD390C-USB(D)
(Autonomous A2Z, Gyeongsan, South Korea) camera model. This model captures full
HD images (1080p) in 30 frames per second. It has a field of view of 60 degrees. We built
a data-collecting platform using this camera model, as shown in Figure 3. The camera
was installed at a height of 1500mm from the ground and was positioned in front of a
platform so that we could collect front-view images of the roads. In total, we collected 138
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construction sign images, of which 12 were used for training and the remaining 126 were
used for testing. The collected construction sign images were used as in-domain images. In
addition, we collected 992 road images that did not contain any construction signs. All the
images were captured in Seoul, Korea. Twelve images were used to collect the contents of
the construction signs. We also collected an additional 24 construction sign images from the
Internet. They were out-domain construction sign images, and they were used to capture
the frame of the construction sign boards.

Camera

(a) Camera setting in real image (b) Camera setting details

1500mm

60º

90º

Figure 3. The camera setting in the data-collecting platform.

We collected 12 construction signs using our platform. Thus, we had 12 kinds of con-
struction signs (12 in-domain images) for the board region. We also gathered 24 construction
sign images from the Internet, making 36 kinds of construction signs (12 in-domain + 24
out-domain images) for the frame region. The collected 12 in-domain construction signs
are shown in Figure 4.

Figure 4. Collected in-domain construction signs.

3.3. Labeling

We annotate three types of labels in the construction sign images. First, we annotate
the bounding box for all the collected construction sign images. Bounding box annotations
are needed to compute the loss during training and evaluate the detection quality during
testing. Second, we annotate the four corners of the board in the training set of construction
sign images. Corner annotation is required to calculate the transformation matrix between
two construction sign images. Third, we annotate the per-pixel label of the construction
sign. Pixel-level annotations are used for both content swapping (detailed in Section 3.4)
and cut-and-paste (detailed in Section 3.5).
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3.4. Content Swapping

To overcome the lack of the training image, we synthesize training images using
a cut-and-paste [7–9] mechanism, as shown in Figure 1. The cut-and-paste effectively
helps to prevent the networks from overfitting on the limited backgrounds of the training
images. However, the cut-and-paste method cannot augment the content of the training
images. This means that only background images can be diversified, and the contents of
the construction signs are still limited. We address this problem using content swapping.

The construction sign can be divided into two parts: a rectangular board and frame, as
shown in Figure 5. Therefore, we can reuse the frame for other constructions by replacing
only the board. To replace the board in the target sign image with the source sign image,
we need to formulate the transformation function between the source image and the target
image. Thankfully, because the shape of the board is rectangular, replacing the content is
possible with four pairs of corner points on the board using perspective transformation,
as follows:  wxT

wyT
w

 = T

 xS
yS
1

 =

 p11 p12 p13
p21 p22 p23
p31 p32 1

 xS
yS
1

 (1)

where
[

xS yS
]T and

[
xT yT

]T are the source and target points of the construction

sign images, respectively, and T =

 p11 p12 p13
p21 p22 p23
p31 p32 1

 is the perspective transformation

matrix with 8 parameters. Here, the eight parameters in the perspective transformation
matrix T are unknown. Then, we can unfold the equations as:

xT = (p11xS + p12yS + p13)/w, (2)

yT = (p21xS + p22yS + p23)/w, (3)

w = p31xS + p32yS + 1. (4)

By substituting Equation (4) into Equations (2) and (3), we can join a parameter w into
xT and yT as:

xT =
p11xS + p12yS + p13

p31xS + p32yS + 1
, (5)

yT =
p21xS + p22yS + p23

p31xS + p32yS + 1
. (6)

To easily formulate each unknown parameter in T into a matrix form, we can rearrange
Equations (5) and (6) into:

xT = p11xS + p12yS + p13 − p31xSxT − p32ySxT , (7)

yT = p21xS + p22yS + p23 − p31xSyT − p32ySyT , (8)

respectively. Here, there are eight unknown parameters (i.e.,
[

p11 p12 · · · p32
]
). There-

fore, to estimate the eight parameters’ values, we need eight different formulas. With
Equations (7) and (8), we can make eight different formulas using four known pairs of corre-
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sponding points (
[

x1
S y1

S
]
· · ·
[

x4
S y4

S
]

for source points and
[

x1
T y1

T
]
· · ·
[

x4
T y4

T
]

for target points), and then we can write them into a matrix as follows:

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T


=



x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T





p11
p12
p13
p21
p22
p23
p31
p32


. (9)

The objective is to estimate eight unknown parameters in T . Therefore, we can
finally obtain the transformation matrix T by computing the inverse of the 8 × 8 matrix in
Equation (9) and performing matrix multiplication as follows:

x1
S y1

S 1 0 0 0 −x1
Sx1

T −y1
Sx1

T
0 0 0 x1

S y1
S 1 −x1

Sy1
T −y1

Sy1
T

x2
S y2

S 1 0 0 0 −x2
Sx2

T −y2
Sx2

T
0 0 0 x2

S y2
S 1 −x2

Sy2
T −y2

Sy2
T

x3
S y3

S 1 0 0 0 −x3
Sx3

T −y3
Sx3

T
0 0 0 x3

S y3
S 1 −x3

Sy3
T −y3

Sy3
T

x4
S y4

S 1 0 0 0 −x4
Sx4

T −y4
Sx4

T
0 0 0 x4

S y4
S 1 −x4

Sy4
T −y4

Sy4
T



−1

x1
T

y1
T

x2
T

y2
T

x3
T

y3
T

x4
T

y4
T


=



p11
p12
p13
p21
p22
p23
p31
p32


. (10)

Using the estimated transformation matrix T , we warped the board from the source
image to the target image, which is called content swapping.

With content swapping, we can effectively augment in-domain construction sign
images using out-domain construction sign images. Given the NI in-domain and NO
out-domain construction sign images, we can synthesize in-domain images by content
swapping from in-domain sign images to out-domain images, resulting in NI NO pairs.
Therefore, although we obtained only 12 in-domain construction sign images for training,
288 in-domain images can be obtained using 24 out-domain sign images. Furthermore, we
use the frame region in the in-domain sign images for content swapping, which resulted in
432 construction sign images.

: Board (include content)
: Frame

Construction sign image Visualization of two parts of the sign

Figure 5. Visualization of the two parts of the construction sign. In the first column, we show a
construction sign image. In the second column, we denote the board and frame regions with green
and red, respectively.

3.5. Cut-and-Paste with Realistic Transformations

We synthesize training images by cutting a construction sign image and then pasting
it onto the background road images. Here, naively cutting and pasting would result in
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unrealistic synthetic images, which may lead to performance degradation. We address
this problem by proposing three fine-tunning methods. They are developed from three
perspectives: pasteable region, instance size, and color difference. Detailed explanations of
each fine-tuning methods are provided below.

3.5.1. Pasteable Region

The construction sign cannot fly and is never placed on a car. Therefore, we set the
pasteable region as the road. To find road regions in the background image, we used
two independent pre-trained networks: semantic segmentation and depth estimation.
For the semantic segmentation network, we used DeepLab v3+, trained on Cityscapes
https://www.cityscapes-dataset.com, (accessed on 5 April 2022). Because the road class is
included in the Cityscapes dataset, the predicted score of the road is used directly. For the
depth estimation network, we use the off-the-shelf depth prediction network, MiDaS [23].
The estimated depth is used to filter the noise by thresholding. Thus, the regions that are
predicted as roads and with estimated depths lower than the predefined threshold are
defined as pasteable regions.

3.5.2. Instance Size

Close objects look large and far objects look small. This property is also preserved
in the images. Using this property, we adjust the instance size of the construction sign
according to the pasted position. In the image, we first randomly select a pixel within
the pasteable region (p1 =

[
px

1 py
1

]
). The selected pixel is the bottom point of the

construction sign. In real-world coordinates, we compute the distance between the camera
and the sign (d), under the assumption that the road is flat, as follows:

d = Hcam tan θ1 (11)

where Hcam denotes the height of the camera from the road, and θ1 is the angle between
the line from the camera to the road and the line from the camera to the bottom of the
construction sign line. The angle θ1 is proportional to py

1:

θ1 = α · py
1 + β (12)

where α and β are constants. Given the computed distance d, we can calculate the angle
θ2, which is the angle between the line from the camera to the road and the line from the
camera to the top of the construction sign, as follows:

θ2 = tan−1

(
d

Hcam − Hsign

)
(13)

where Hsign denotes the height of the construction sign, and Hsign < Hcam. For sim-
plification, we assume that all construction signs have the same height Hsign and stand
perpendicular to the road. Then, in the image coordinates, we compute the top point
of the construction sign (p2 =

[
px

2 py
2

]
) using the proportionality between θ2 and py

2
as follows:

px
2 = px

1 , (14)

https://www.cityscapes-dataset.com
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py
2 = (θ2 − β)/α

=

(
tan−1

(
d

Hcam − Hsign

)
− β

)/
α

=

(
tan−1

(
Hcam tan θ1

Hcam − Hsign

)
− β

)/
α

=

tan−1

Hcam tan
(

α · py
1 + β

)
Hcam − Hsign

− β

/α.

(15)

In Equation (15), we divide the denominator and numerator by Hcam as:

py
2 =

tan−1

 tan
(

α · py
1 + β

)
1−

(
Hsign/Hcam

)
− β

/α.

=

tan−1

 tan
(

α · py
1 + β

)
1− h

− β

/α.

(16)

where h denotes the ratio of the height of the sign to the camera. Using Equations (14) and
(16), the top point of the construction sign can be directly computed from the bottom point.
We empirically set the parameters α, β, and h to π/3888, π/3, and 0.75, respectively. The
overall process for computing the size of the construction signs is summarized in Figure 6.

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐: height of the camera
𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: height of the construction sign

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐

2. Compute distance in the real domain.
(𝑑𝑑 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐tan𝜃𝜃1,𝜃𝜃1 ∝ 𝑝𝑝1

𝑦𝑦)

3. Calculate the angle 𝜃𝜃2

𝜃𝜃2 = tan−1
𝑑𝑑

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑

𝜃𝜃1 𝜃𝜃2

1. Randomly select the bottom point of the sign (𝐩𝐩1)

4. Compute the top point of the construction sign (𝐩𝐩2) 
using the angle 𝜃𝜃2 (𝑝𝑝2

𝑦𝑦 ∝ 𝜃𝜃2)

𝐩𝐩2

𝐩𝐩1

𝐩𝐩1

Figure 6. Step-by-step processes for computing the size of the construction sign. (1) We randomly
select the bottom position of the construction sign in the image. The position is selected only within
the pasteable region. (2) From the randomly selected point in the image, we estimate the angle θ1 and
compute the distance between the camera and the sign in the real domain. (3) We estimate the angle
θ2 by assuming that all construction signs have the same height Hsign and stand perpendicular to the
road. (4) Using the estimated angle θ2, we compute the point of the top of the construction sign in
the image.

3.5.3. Color Difference

One of the main reasons for the artifacts in the synthesized images, which is made
using cut-and-paste, is the color difference between the two images. As shown in Figure 7c,
the color difference is caused by differences in illumination, weather, and environment. To
match the color difference between the construction sign image and road image, we blend
the synthesized image using an off-the-shelf model, GP-GAN [24]. By blending, we can
reduce the artifacts of the synthesized image, as shown in Figure 7d.
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(c) Cut-and-Paste (without blending) (d) Cut-and-Paste (with blending)

(a) Image for cut (b) Image for paste

Figure 7. Effect of blending. Using the construction sign image in (a) and the road image in (b),
we synthesize the training image via cut-and-paste. As shown in (c), however, the artifact seems
prominent because of the color difference between the construction sign and the road. This problem
is mitigated by blending, as shown in (d).

4. Experiments
4.1. Implementation Details

We conduct some experiments using our collected construction sign detection dataset,
CSS138. We use YOLOv3 [1] as a construction sign detector. Basically, we follow the
training and inference details in the original YOLOv3 paper [1]. We use Darknet-53 [1]
as a backbone network. Darknet-53 consists of 53 convolutional layers and 23 residual
connections. Darknet-53 outputs three different sizes of features, which have 1/8, 1/16,
and 1/32 resolutions with respect to the input image. To detect construction signs from
encoder’s feature, a decoder is used. The decoder takes three outputs of Darknet-53, and
outputs detection results at three different resolutions, i.e., 1/8, 1/16, and 1/32 resolutions
with respect to the input image. Each output predicts five values: four for coordinates of
the bounding box and one for objectness. Unlike vanilla YOLOv3, which predicts the class
of the object, we do not predict the object class because we have only a single object class,
construction sign, in this paper.

Additionally, we apply our method to YOLOv3-tiny to see the effectiveness of our
method in other networks. YOLOv3-tiny uses Darknet-19 [25] as a backbone network.
Darknet-19 has 19 convolutional layers without residual connections. YOLOv3 has 61.5M
parameters, while YOLOv3-tiny has 8.7M parameters. These parameter numbers are
comparable with state-of-the-art object detectors: Faster R-CNN [26] has 52.7M parameters,
FPN [27] has 60.6M parameters, and RetinaNet [28] has 56.9M parameters. To train YOLOv3,
we use an RGB image as an input.

A total of 9920 RGB images are synthesized for training using the CSS138 training
set. The training set includes 992 road images and 36 construction sign images. Among
36 sign images, 12 images are in-domain and 24 are out-domain. We randomly crop
640 × 640 patches for the training. The learning rate is initially set to 1 × 10−2, and we
decrease the learning rate to 1 × 10−3 using the cosine decay schedule. The network is
trained in 375,000 iterations with a mini-batch size of 16. The entire training process takes
approximately 60 h using a single NVIDIA Titan V GPU. During inference, we obtain
multiple detection results at three different resolutions. To select accurate results and
dismiss overlapped noisy results, we use non-maximal suppression with an IoU threshold
of 0.45.

4.2. Quantitative Results

We validate our approach on the CSS138 validation set. The CSS138 validation set
includes 126 images containing at least one construction sign. For quantitative evaluation,
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we measure the average precision with Intersection over Union (IoU) thresholds of 0.5, and
we denote it as AP50. Following the recent object detection benchmark https://cocodataset.
org/#detection-eval, (accessed on 5 April 2022), we additionally measure AP, which is
calculated by computing 10 average precision values with IoU thresholds of {0.5, 0.55,
. . . 0.9, 0.95} and then averaging them. To demonstrate the superiority of our approach,
we set a baseline that synthesizes 9920 training images by using a naive cut-and-paste
method. From the baseline, we add the proposed methods in a step-by-step manner. The
experimental results for the CSS138 validation set are listed in Table 1. As shown in Table 1,
our method achieves AP and AP50 scores of 70.36% and 84.98%, respectively, whereas the
baseline achieves scores of 60.53% and 75.84%, respectively. We surpass the baseline by
>+9% for both the AP and AP50 scores. Table 1 shows the contributions of each step of the
proposed method. Each step improves the performance by >+2% for both AP and AP50.
This demonstrates that all our approaches are effective in synthesizing training images for
construction sign detection.

Table 1. Experimental results on CSS138 validation set.

Method AP AP50

A . Baseline (cut-and-paste) 60.53 75.84
B. + Pasteable region 62.74 77.30
C. + Instance size 65.57 82.44
D. + Content swapping 68.51 82.73
E. + Color difference 70.36 84.98

In Table 2, we additionally validate the efficacy of our instance size adjustment method.
As described in Section 3.5.2, we resize the instance by projecting it to real-world coordi-
nates. We can compare it with Fixed, which uses the original scale of the construction sign
image. We can further compare it with Random, which uses a randomly sampled value for
scaling construction sign images and was used in cut-and-paste [7]. As shown in Table 2,
we significantly surpass Fixed and Random by 5% and 2%, respectively, in terms of the
AP50 score. The results demonstrate the superiority of our instance size adjustment method.

Table 2. Analysis experiment on instance size.

Instance Size AP AP50

Fixed 62.74 77.30
Random [7] 65.14 80.12
Ours 65.57 82.44

In Table 3, we conduct an ablation study using a different backbone. In the ablation
study, we use DarkNet-19 in YOLOv3-tiny. As shown in Table 3, our proposed method
improves the detection quality of both YOLOv3-tiny and YOLOv3 networks. This result
demonstrates that our proposed method is effective in various networks.

Table 3. Ablation study with various backbone networks.

Method YOLOv3-tiny (DarkNet-19) YOLOv3 (DarkNet-53)
AP AP50 AP AP50

Baseline 53.40 70.67 60.53 75.84
Proposed 54.95 75.57 70.36 84.98

4.3. Grad-CAM Result

In this subsection, we analyze the effectiveness of our proposed method using Grad-
CAM. In Figure 8, we visualize the Grad-CAM [29] results of YOLOv3. To extract Grad-
CAM, we compute the gradient of the score for objectness at three different resolution

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
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outputs. Then, we average the three activations in each last layer of the decoder. To
validate the efficacy of our proposed method, we compare two methods for synthesizing
training images. One is to synthesize images simply using naive cut-and-paste method
(baseline), and the other one is to synthesize the images using our proposed method. As
shown in Figure 8, YOLOv3 trained using a baseline often cannot detect construction signs
(second and third rows), while YOLOv3 trained with our proposed method gives accurate
activation maps. This result demonstrates that our proposed method helps to learn the
discriminative features for construction sign detection.

Image + GT Baseline Ours

Figure 8. Grad-CAM result. In the first column, input images and corresponding ground truth
bonding boxes of the construction sign are shown. In the second and third columns, Grad-CAM
results are given. In the Grad-CAM results, high activation values are visualized in blue, while low
activation values are visualized in red.

4.4. Effect of Daylight

In this subsection, we analyze the effect of daylight and whether on the performance.
We build a hierarchical structure in our CSS138 training set by splitting it into two parts:
one is captured under sufficient daylight (i.e., outdoor scene), and the other one is captured
under low daylight (i.e., tunnel scene). Among 992 road images, 796 images were taken
outdoors and 196 images were taken in tunnel. Examples of outdoor and tunnel scenes are
given in Figure 9.

Outdoor Tunnel

Figure 9. An example of synthesized training set in outdoor and tunnel scenes.

With this split, we train detection networks, and the results for the two different
daylight conditions are given in Table 4. As shown in the table, daylight significantly
contributed to the performance. Specifically, the performance difference between outdoors
and the tunnel is about 30%, and the training set captured under sufficient daylight is more
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effective than the one under low daylight in improving detection performance. Therefore,
daylight and weather are crucial for construction sign detection.

Table 4. Results on two different daylight conditions.

Split YOLOv3-tiny (DarkNet-19) YOLOv3 (DarkNet-53)
AP AP50 AP AP50

Outdoor 56.34 76.81 69.32 84.88
Tunnel 16.20 32.29 39.91 55.53

4.5. Qualitative Analysis

The synthesized training images are shown in Figure 10. Baseline (A) often pastes the
construction sign on the sky, which never occurs in real-world scenarios. After considering
the pasteable region (B), the construction sign is placed on the road, but the scale seems
very unfamiliar. Our instance size adjustment method (C) could address this problem,
but the problem of limited sign images remained. Our content swapping (D) effectively
augments the construction sign images, preventing overfitting. Finally, the color difference
(E) between the background road image and foreground construction sign image is adjusted
to create a realistic image.

E. +Color differenceD. +Content swappingC. +Instance sizeB. +Pasteable regionA. Baseline

Figure 10. Synthesized training images. For each method, we sampled from the same five back-
ground images.

Figure 11 shows the qualitative results of the proposed methods on the CSS138 vali-
dation set, as well as the results of the baseline. As shown in the figure, our method finds
small instances (first, second, and third rows) and precisely determines the bounding box
of the construction sign (fourth row).

In Figure 12, we present some failure cases, and they show some limitation of our
method. The first two rows present false negatives, while the last row present false positive.
In the first two rows, construction signs are often missed when they are occluded by other
objects such as traffic cones. The last row is the example of the false positive. As can be
seen, a rectangular shape object is sometimes detected as a construction sign. We expect
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that this problem can be solved by various methods, e.g., pre-designing sign shape [10,12],
hard example mining [30,31], or learning with strong generalization [32,33].

GT Baseline Ours

1 missed 0 missed

1 missed

0 missed

0 missed1 missed (IOU<0.9)

3 missed

1 missed

Figure 11. Qualitative results on CSS138 validation set. From left to right, each row shows ground
truth (GT), the baseline (naive cut-and-paste), and Ours. For each result on the baseline and ours, we
denote the number of missed construction signs.

GT Ours

4 missed

2 missed

1 wrong detection

Figure 12. Limitations: if the construction sign is severely occluded, we cannot detect it accurately
(first and second rows). A rectangle shape can be detected as a construction sign (third row).
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5. Conclusions

In this paper, we have presented a new approach for synthesizing training images
for construction sign detection and trained a deep learning detector on them. Since this is
the first paper which deals with the construction sign detection, there is not a benchmark
set, and we have applied our method to real-world images. Our approach is effective,
even when only a few construction sign images are available. Furthermore, our main
proposal, content swapping, allows us to use out-domain construction sign data, effectively
alleviating the problem of data hunger. To demonstrate the efficacy of our approach, we
collected road and construction sign images in person and collected out-domain construc-
tion sign images from the Internet. The images used in our experiments are gathered as a
dataset CSS138, and we made the dataset available online for the benefit of our community.
Even though our method was tested only on the dataset gathered in Seoul, South Korea,
we firmly believe that our methods will be applied to other countries and other similar
sign-related tasks successfully. Since our content swapping allows us to train networks
with a few images, it has the potential to be applied to the few-shot learning field. In this
paper, we applied our method only to images, but our proposed method can be extended
to videos by applying content swapping and realistic transformations smoothly over time.
In addition, our method can be extended to stereo-camera by modeling a construction sign
in 3D and projecting it into stereo-view. In addition, a laser scanner sensor can also be
considered to measure the distance between the vehicle and the construction sign. The
measured distance can improve the quality of the realistic transformations. Furthermore,
the future direction of this work would be deciding the action of the autonomous vehicles,
after detecting construction signs.
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