

Sensors 2022, 22, 3577. https://doi.org/10.3390/s22093577 www.mdpi.com/journal/sensors

Article

CBGRU: A Detection Method of Smart Contract Vulnerability
Based on a Hybrid Model
Lejun Zhang 1,2,3,*, Weijie Chen 1, Weizheng Wang 4, Zilong Jin 5, Chunhui Zhao 6, Zhennao Cai 7
and Huiling Chen 7,*

1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China;
mz120200850@yzu.edu.cn

2 Research and Development Center for E-Learning, Ministry of Education, Beijing 100039, China
3 Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China
4 Computer Science Department, City University of Hong Kong, Hong Kong; m5232117@u-aizu.ac.jp
5 School of Computer and Software, Nanjing University of Information Science and Technology,

Nanjing 210044, China; zljin@nuist.edu.cn
6 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;

zhaochunhui@hrbeu.edu.cn
7 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;

cznao@wzu.edu.cn
* Correspondence: zhanglejun@yzu.edu.cn (L.Z.); chenhuiling.jlu@gmail.com (H.C.)

Abstract: In the context of the rapid development of blockchain technology, smart contracts have
also been widely used in the Internet of Things, finance, healthcare, and other fields. There has been
an explosion in the number of smart contracts, and at the same time, the security of smart contracts
has received widespread attention because of the financial losses caused by smart contract
vulnerabilities. Existing analysis tools can detect many smart contract security vulnerabilities, but
because they rely too heavily on hard rules defined by experts when detecting smart contract
vulnerabilities, the time to perform the detection increases significantly as the complexity of the
smart contract increases. In the present study, we propose a novel hybrid deep learning model
named CBGRU that strategically combines different word embedding (Word2Vec, FastText) with
different deep learning methods (LSTM, GRU, BiLSTM, CNN, BiGRU). The model extracts features
through different deep learning models and combine these features for smart contract vulnerability
detection. On the currently publicly available dataset SmartBugs Dataset-Wild, we demonstrate that
the CBGRU hybrid model has great smart contract vulnerability detection performance through a
series of experiments. By comparing the performance of the proposed model with that of past
studies, the CBGRU model has better smart contract vulnerability detection performance.

Keywords: smart contract; security; vulnerability detection; hybrid model

1. Introduction
The concept of smart contracts was introduced by Nick Szabo [1]. He describes a

smart contract as “a set of agreements that are defined digitally and that contain
information about how the participants will fulfill those agreements”. The purpose of
proposing smart contracts was to be able to implement the content of the contracts
through cryptographic protocols and digital security mechanisms. However, due to the
limitation of technology at that time, there was no carrier to carry smart contracts, so smart
contracts were not applied. It was not until 2008 when an academic named Satoshi
Nakamoto proposed the concept of Bitcoin. The underlying technology of Bitcoin is
blockchain, which can be used as the carrier of smart contracts [2]. Blockchain is
essentially a decentralized distributed ledger database. Due to its tamper-evident
characteristic, blockchain is also applied to the Internet of Things (IoT) to ensure the

Citation: Zhang, L.; Chen, W.;

Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.

Chen, H. CBGRU: A Detection

Method of Smart Contract

Vulnerability Based on a Hybrid

Model. Sensors 2022, 22, 3577.

https://doi.org/10.3390/s22093577

Academic Editors: Kamanashis

Biswas, Mohammad Jabed Morshed

Chowdhury and Muhammad

Usman

Received: 31 March 2022

Accepted: 4 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Sensors 2022, 22, 3577 2 of 26

security of connected data. Scholars have done a lot of research on how to improve the
performance of blockchain to meet the needs of IoT; for example, Hang L et al. proposes
a transaction traffic control approach based on fuzzy logic to enhance the blockchain
network’s transaction-processing capacity [3]. In 2013, Vitalik Buterin proposed Ethereum
[4] to formally introduce smart contracts into the blockchain platform, which has a Turing-
complete and powerful scripting system that enables more advanced distributed
applications based on smart contracts. A smart contract [5] is a computer protocol that is
self-executing and self-verifying once deployed. Due to their characteristics, smart
contracts are used in the Internet of Things. Zhang Y et al. proposed a distributed access
control framework for smart cities by combining blockchain smart contract technology
and the attribute-based access control (ABAC) model [6]. B. Duan et al. propose an
Internet of Things (IoT) charging scheduling method based on smart contract technology
[7]. Alzubi O A et al. presents a novel blockchain and artificial intelligence-enabled secure
medical data transmission (BAISMDT) for IoT networks [8]. Similar to traditional
contracts, the life cycle of a smart contract consists of three parts: contract generation,
contract release, and contract execution. The life cycle of a smart contract is shown in
Figure 1. Smart contracts will eventually be deployed to the blockchain for self-
verification and self-execution. When the execution conditions set by the contract content
are triggered, the smart contract can automatically output the response without relying
on the cooperation of third parties.

Figure 1. The life cycle of a smart contract.

Smart contracts have complex time and order dependencies, but errors in the logic of
the contract code and errors in the text of the contract code will lead to vulnerabilities in
the smart contract, which will eventually result in incorrect automatic execution.
Ethereum is one of the most popular blockchain platforms [4], where tens of thousands of
smart contracts are deployed, and the smart contract itself is an Ethereum account, called
the external account controlling billions of dollars’ worth of Ether (cryptocurrency
Ethereum). Such a huge amount of digital assets held by Ethereum is a huge attraction for
attackers. In 2016, USD 55 million worth of Ether was lost due to a vulnerability in The
Dao’s smart contract [9]. In 2017, over USD 30 million worth of Ether was lost due to a
smart contract vulnerability in the Parity wallet [10]. Such security issues create serious

Sensors 2022, 22, 3577 3 of 26

obstacles to the development of blockchain and cause a crisis of trust in smart contracts
among users, so an efficient smart contract vulnerability detection tool is very important
and urgent. Therefore, we propose an efficient deep learning hybrid model named
CBGRU for detecting smart contract vulnerabilities in this paper. Our key contributions
are as follows:
1. By combining different word embedding methods and deep learning methods, the

accuracy of smart contract vulnerability detection is improved.
2. CBGRU applies hybrid networks to smart contract vulnerability detection for the first

time, and the hybrid network model proposed in this paper can detect several
different smart contract vulnerabilities while maintaining good detection
performance.

3. Through extensive experiments, it is demonstrated that the CBGRU model proposed
in this study combines the advantages of deep learning and hybrid learning, and has
better smart contract vulnerability detection performance compared to a single
neural network model.
The paper is organized as follows: We present current research on smart contract

vulnerability detection and hybrid models in Section 2. We discuss our methodology in
Section 3. We present the experimental procedure, which includes dataset processing and
performing performance comparisons, in Section 4. Finally, we conclude the whole paper
and future work in Section 5.

2. Related Work
2.1. Smart Contract Vulnerability Detection

Researchers have also come up with some smart contract vulnerability detection
tools. Oyente, proposed by Luu L et al., is a smart contract vulnerability detection tool
based on symbolic execution and is currently capable of detecting seven types of smart
contract vulnerabilities [11]. SmartCheck is an extensible static analysis tool proposed by
Tikhomirov S et al. SmartCheck converts Solidity source code into an XML-based
intermediate display and checks it against XPath patterns [12]. Mythril is the official smart
contract vulnerability detection tool for Ethereum, which can detect a large number of
smart contract security issues, with the main idea of using symbolic execution to explore
all possible insecure paths [13]. Security is a smart contract static analysis tool for detecting
the security properties of smart contract EVM bytecodes [14]. Slither is also a static
analysis tool for smart contract vulnerability detection [15]. ContractFuzzer is a fuzzy
testing tool for smart contract vulnerabilities, capable of generating fuzzy test inputs
based on the smart contract’s API specification, recording the runtime state of the smart
contract through an Ethernet Virtual Machine (EVM), analyzing logs, and reporting
security vulnerabilities [16]. Echidna [17] and Ethracer [18] are also fuzzy testing tools for
smart contract vulnerabilities. These tools are mainly based on formal verification,
symbolic execution, static analysis, taint analysis, and fuzzy testing, and rely on hard
logical rules defined in advance by experts when performing vulnerability detection.
However, with the development of smart contracts, these tools can no longer meet the
current needs. Traditional smart contract vulnerability detection tools are inadequate for
the following reasons:
1. Smart contracts are becoming more and more complex in their structure to achieve

complex functionality, and the variety of smart contract vulnerabilities is increasing,
and the rules defined by experts based on vulnerabilities cannot keep up with the
speed of smart contract vulnerability updates.

2. A crude overlay of several expert-defined logic rules can lead to a high false-alarm
rate, and expert rule-based smart contract vulnerability detection tools are not
suitable for general smart contract vulnerability detection situations.

Sensors 2022, 22, 3577 4 of 26

3. The attacker can use techniques to bypass inspection patterns against these rules
defined in advance. Expert rule-based smart contract vulnerability detection tools
cannot be updated on time.
In recent years, deep learning techniques have been used in various fields, including

the field of vulnerability detection. Russell R L et al. used convolutional neural networks
(CNNs) for vulnerability classification, learning features through neural networks, and
extracting control flow graphs (CFGs) of functions at the function level, obtaining
excellent overall results [19]. Sicong Gao et al. proposed the BGNN4VD model, which
performs vulnerability detection by constructing bipartite graph neural networks, and
proved through experiments that BGNN4VD has a high precision and accuracy [20]. Zhen
Li et al. proposed a deep learning-based vulnerability detection system, named
VulDeePecker [21]; it applies bi-directional long and short memory neural networks to
vulnerability detection. Researchers have also combined deep learning with smart
contract vulnerability detection. Yu X et al. developed a systematic and modular
framework for smart contract vulnerability, called DeeSCVHunter, proposing the concept
of vulnerability candidate slicing (VCS), which contains rich semantic and syntactic
features that can significantly improve the performance of deep learning smart contract
models in smart contract vulnerability detection [22]. DeeSCVHunter can only detect re-
entry vulnerabilities and timestamp vulnerabilities, while the CBGRU model proposed in
this paper can detect multiple vulnerabilities, and DeeSCVHunter does not consider the
correlation between word embedding models and deep learning models when
performing word embedding and feature extraction. Wu H et al. used a smart contract
representation method based on key data flow graph information for capturing the key
features of contracts before performing smart contract vulnerability detection, while
overfitting can be avoided during training, and proposed a new tool, named Peculiar [23].
Peculiar improves detection performance by leveraging the technique of critical data flow
graphs, but the process of building critical data flow graphs is complex and Peculiar can
only detect smart contract reentry vulnerability. Qian P et al. proposed to combine a
bidirectional long-short memory network with an attention mechanism for smart contract
vulnerability detection, named BLTM-ATT, and they demonstrated through extensive
experiments that this method can achieve better accuracy [11]. The BLSTM-ATT model
also does not consider the association between the word embedding model and the deep
learning model. The BLSTM-ATT model can only detect smart contract reentry
vulnerability. Xing C et al. proposed a new slicing matrix for detecting vulnerabilities and
experimentally demonstrated that the slicing matrix can improve the accuracy of
vulnerability detection [24]. Xing C et al. select “Return” as the segmentation point when
segmenting the contracts opcodes, but this cannot completely distinguish between useful
and useless operands, which leads to partial feature loss and thus affects the performance
of the model in detecting smart contract vulnerabilities. The CBGRU model pre-
processing takes into account the integrity of the smart contract to ensure the integrity of
the smart contract semantics when performing feature extraction. Zhipeng Gao et al.
proposed a method for automatically learning smart contract features based on character
embedding and vector space comparison. The main approach is to parse smart contract
code into a stream of characters with code structure information, convert the code
elements into vectors, and thus compare the similarity between the coded vectors and
known bugs to identify potential smart contract vulnerabilities [25]. Goswami S et al.
proposed a smart contract vulnerability detection tool named TokenCheck, which was
tested on the Ethernet smart contract dataset ERC-20 and obtained good results [26].
Goswami S et al. used a single LSTM neural network for feature extraction. The CBGRU
model proposed in this paper combines the advantages of multiple deep learning models
with more adequate feature extraction. From the above study, it can be seen that the
combination of deep learning and vulnerability detection is feasible to obtain excellent
vulnerability detection results, and the combination of smart contract vulnerability
detection and deep learning can achieve the same good results. However, the association

Sensors 2022, 22, 3577 5 of 26

between word embedding models and deep learning models was not considered in
previous studies, and the advantages of combining multiple deep models were not
combined when extracting feature extraction.

2.2. Deep Learning Hybrid Models
The CBGRU model proposed in this paper is a hybrid learning model, and the role

of the hybrid model is to combine the strengths of each network to achieve better results.
Hybrid models have been used in many fields and have obtained great results. Du S et al.
combined one-dimensional convolutional neural networks (1D-CNNs) with bi-directional
long-short memory networks (Bi-LSTMs) for air quality prediction, where convolutional
neural networks are used to extract features and bi-directional long-short memory neural
networks are used to learn the correlation of features [27]. Fu L et al. argued that deep
learning models based on convolutional networks with DNA sequences as input found
limited information and the prediction would be unsatisfactory, so they proposed a new
deep learning model based on hybrid sequences [28]. Xi J et al. applied hybrid networks
to high-resolution image classification, combining fully connected networks,
convolutional neural networks, and fully convolutional networks, and showed
experimentally that hybrid integrated learning methods have better performance
compared to single classical neural networks and deep learning methods [29]. Yue W et
al. combined the word vector model (Word2vec), the bi-directional long-term short-term
memory network (BiLSTM), and the convolutional neural network (CNN), and
experimentally demonstrated that the hybrid network model outperformed the single-
structured neural network in short text classification [30]. Chuang P J et al. combined the
Naive Bayes model and C4.5 algorithms to improve the performance and training time of
training classification models in network intrusion detection, and experimental results
show that their proposed hybrid model can reduce the required training time while
providing good detection performance [31]. Duan J et al. proposed a hybrid neural
network model (MLCN and BiGRU-ATT) that combines the multilayer convolutional
neural network (MLCNN) and the bidirectional gated recurrent unit (BiGRU) with the
attention mechanism to be applied to news classification [32]. The following conclusions
can be drawn from the above research.
1. Hybrid models have been well used in image recognition, sentiment classification,

network intrusion detection, and news classification.
2. Hybrid models have better performance compared to a single deep learning model,

and the training time is faster than a single model due to the lower complexity of
each model in the hybrid model.

3. Hybrid networks are more conducive to classification because they combine the
advantages of different deep learning models.
Therefore, in this paper, we choose to apply the hybrid network to the task of smart

contract vulnerability detection.

2.3. Research Motivation
In previous deep learning-based smart contract vulnerability detection tasks, the

neural network models used are linear and had a single structure, and the training process
for the models is similar. The training process has four steps.
1. Determining the label of the training data.
2. Pre-processing of training data and making changes to the form of training data
3. Extracting the feature values by deep learning models
4. Classification of training data by the classifier of the model

The process is shown in Figure 2.

Sensors 2022, 22, 3577 6 of 26

Figure 2. The single model classification process.

The single deep learning model can be achieved by increasing the number of layers
of the model to obtain a higher accuracy of classification, but it brings the problem that
the complexity of the model will also grow, and problems such as overfitting and a long
training time will occur. The emergence of hybrid networks can improve such problems.
Hybrid models perform feature extraction by two deep learning models, and then the
extracted feature values are weighted so that the extracted feature values are more
adequate. The hybrid model training process is shown in Figure 3.

Figure 3. The hybrid model classification process.

Before a deep learning model can be used to extract the features, the data needs to be
processed so that it fits the input of the neural network. In previous research, word
embedding has been used to convert smart contracts into multidimensional matrices.
However, the connection between deep learning methods and word embedding methods
has not been considered in previous studies. Each deep learning method and word
embedding method has its advantages and disadvantages, so combining the advantages
of deep learning models with the advantages of word embedding models is the key to
improving the accuracy of smart contract vulnerability detection. Each deep learning
method has different characteristics for solving different types of tasks; on the other hand,
each word embedding method has its advantages and disadvantages, it is of great
importance to combine the optimal word embedding method and the optimal deep
learning model for smart contract vulnerability detection tasks. Since each word
embedding approach may be incomplete in its representation of smart contract features,
the proposed solution to this problem is to combine the advantages of different word
embedding approaches and deep learning models, so we propose a new hybrid deep
learning model named CBGRU after discussing various neural networks and word
embedding approaches. The model uses two different word embedding methods for
word embedding and two different deep learning models for the feature extraction phase.
In addition, a large number of classification experiments are conducted in this study,

Sensors 2022, 22, 3577 7 of 26

which is used to demonstrate the excellent performance of CBGRU in smart contract
vulnerability detection.

3. Overall Framework
The core idea of this paper is to combine the advantages of different deep learning

models with models of different word embeddings to improve the performance of smart
contract vulnerability detection. The framework of the hybrid deep learning network
proposed in this paper is shown in Figure 4.

Figure 4. Hybrid network overall framework in this paper.

As can be seen in Figure 4, the proposed framework of this paper is divided into four
parts.
1. Pre-processing of the dataset.
2. Mapping high-dimensional smart contracts to low-dimensional vectors via word

embedding models.
3. Extract the feature values by two neural networks, then concatenate the feature

values.
4. Performing classification and deriving results.

The research in this paper focuses on the second and third parts, combining the
advantages of different word embedding methods and different depth models to improve
the performance of smart contract vulnerabilities. In Part two and Part three, we discuss
the currently popular word embedding methods, Word2Vec and FastText, and the
currently commonly used deep learning models GRU, CNN, BiLSTM, LSTM, and BiGRU.

3.1. Overall Model Structure
Each deep learning model has its advantages and disadvantages in extracting

features, for example, CNN (Convolutional Neural Networks) has strong feature
extraction and generalization ability, but the performance is average for context-
dependent information. RNN (Recurrent Neural Network) has a good feature extraction
ability for information with sequential dependence. However, RNNs are less capable of
extracting features for data with long-term dependencies. LSTM (Long Short-Term
Memory) can solve the long time-dependency problem of RNN [33], but it takes too long
to perform feature extraction and the effect of the feature extraction is not as good as CNN.
The characteristics of each word embedding method are also different. As can be seen in
Figure 4, the structure of the deep learning model used in this paper is composed of two
branches, and the deep learning model of each branch condenses the feature values after
extracting them so that the extracted feature values are more adequate compared to the
neural network structure of a single branch. Because CNN can extract features from smart
contract sample data and have both good expressiveness and generalization capabilities,

Sensors 2022, 22, 3577 8 of 26

they can improve the vulnerability detection capability of hybrid networks [34]. So, one
of the two branches of the CBGRU model proposed in this study chooses CNN as the deep
learning model. In studies on hybrid networks, CNNs are also mostly used in the feature
extraction process of models due to their powerful feature extraction capabilities; for
example, the CNN-SVM classifier proposed by Gong W et al. [35] and the DAQFF model
proposed by Du S et al. [27]. The network model used in the feature extraction process of
the other branch of the hybrid network proposed in this paper is the BiGRU model
because smart contracts are context-dependent at runtime. GRU is a variant of RNN. Like
LSTM, GRU is proposed to solve the gradient-vanishing problem that occurs in RNN, but
GRU deals with the gradient-vanishing problem differently from LSTM. Compared with
LSTM, GRU adds an update gate to replace the forgetting gate and input gate in LSTM,
which greatly simplifies the results and parameters of the network and thus improves the
training speed of the model. Furthermore, according to the study of Junyoung Chung et
al. [36], GRU outperforms LSTM in some areas, and this paper also demonstrates
experimentally that GRU outperforms LSTM in smart contract vulnerability detection
tasks. BiGRU can further enhance the model’s feature-extraction capability in the feature-
extraction phase. Therefore, the structure of the hybrid model proposed in this paper is
shown in Figure 5.

Figure 5. CBGRU hybrid model structure.

As shown in Figure 5, the CBGRU hybrid model in this paper is composed of a total
of three layers, namely, the word embedding layer, the feature extraction layer, and the
classification layer. The word embedding model used in the first branch of the hybrid
model is word2vec. Mikolov et al. proposed the word vector method word2vec can
control the feature vector dimension and solve the dimensional catastrophe problem
without ignoring the relative position relationship of phrases in the text and preserving
the semantic relationship of phrases [37]. Word2Vec has two training modes, CBOW and
Skip Gram, and the one used in this study is CBOW, which predicts intermediate words
by context [38]. The use of Word2Vec in combination with CNN has been widely used in
previous research, and word2vec is also one of the most popular word embedding

Sensors 2022, 22, 3577 9 of 26

methods that have been widely used in previous research, so word2vec is used in the first
branch of the hybrid neural network proposed in this paper. The word embedding model
used in the second branch is FastText, which is a variant form of word2Vec and differs
from Word2vec in that the central word of the CBOW model is replaced with a category
label. Finally, the model concatenates the features obtained from the two branches and
performs vulnerability detection on the input smart contract. When the smart contract C
is input to the model, the feature-learning process of the CBGRU hybrid model at moment
t can be expressed as follows: 𝑊𝑜𝑟𝑑2𝑉𝑒𝑐(𝐶) ⟶ 𝐶 (1) 𝐹𝑎𝑠𝑡𝑡𝑒𝑥𝑡(𝐶) ⟶ 𝐶 (2) 𝐶𝑜𝑛𝑣𝑠(𝐶𝜔) ⟶ 𝐿𝑡 (3) 𝐵𝑖𝐺𝑅𝑈(𝐶) ⟶ 𝑆 (4) 𝐶𝑜𝑛𝑐𝑎𝑡(𝐿 , 𝑆) ⟶ 𝑂 (5)
where 𝐿 denotes the features extracted by the CNN at moment t and 𝑆 denotes the
features extracted by BiGRU at moment t. After that, feature fusion is performed to obtain
the output of the CBGRU model at moment t. The CBGRU model detects the smart
contract vulnerability process, as shown in Algorithm 1.

Algorithm 1 Smart contract vulnerability detection process
Input: S: Smart contracts that need to be tested
Output: result: the result of detection
1: Step1. Use the preprocessing function P to preprocess the smart contract S to obtain 𝑠
2: 𝑆 = 𝑃(𝑆)
3: Step2. Embedding 𝑆 using 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 to obtain the embedding matrix 𝑀𝟏
4: 𝑀𝟏 = 𝑊𝑜𝑟𝑑𝟐𝑣𝑒𝑐 𝑆
5: Step3. Embedding 𝑆 using FastText to obtain the embedding matrix 𝑀𝟐
6: 𝑀𝟐 = 𝐹𝑎𝑠𝑡𝑇𝑒𝑥𝑡 𝑆
7: Step4. CNN performs feature extraction on 𝑀𝟏 to obtain features 𝐹
8: 𝐹 = 𝐶𝑁𝑁(𝑀𝟏)
9: Step5. BiGRU performs feature extraction on 𝑀𝟐 to obtain features 𝐹
10: 𝐹 = 𝐵𝑖𝐺𝑅𝑈 (𝑀𝟐) + 𝐵𝑖𝐺𝑅𝑈 (𝑀𝟐)
11: Step6. Fusion of extracted feature values
12: 𝐹 = 𝐹 ⊕ 𝐹
13: Step7. Classification by softmax to obtain results
14: result = Softmax (W𝐹 +b)

3.2. Word Embedding Layer
The main function of the word embedding layer is to process the original smart

contract at the character level into the matrix, thus conforming to the input of the neural
network. We collected all the keywords of solidity from Ethereum before the word
embedding process, such as bool, break, case, catch, const, only owner, return, assert,
event, indexed, union, etc. This is due to the smart contract vulnerability associated with

Sensors 2022, 22, 3577 10 of 26

the solidity keyword. For example, in the case of the reentrancy vulnerability, the attacker
mainly uses the features of the call.value function of the Ethereum smart contract to
achieve reentrant. We have processed the smart contract as follows.
1. Remove the solidity code version, such as “pragma solidity^0.4.4” in the

ProofExistence contract in Figure 6.
2. Removes comments, non-ASCII values, and blank lines from the contract.
3. Represent user-defined function names as FUN plus numbers, and user-defined

variable names as VAR plus numbers in smart contracts. This is because user-defined
function names and variable names have little effect on whether the smart contract
contains vulnerabilities and also add noise when performing feature extraction,
which negatively affects the final feature extraction.

4. Remove all spaces from the smart contract and perform word embedding; after the
smart contract is processed, only the keywords in the solidity language will remain.
The process is shown in Figure 6.

Figure 6. Smart contract word embedding process.

As shown in Figure 6, the smart contract has been processed a total of three times.
The first process is to remove the parts of the smart contract components that are not
relevant to the vulnerability. The second process is to use each line of the previously
processed smart contract as a fragment. The third process is to collect each character
fragment in each line as a token, and the tokens are collected to generate a matrix form
conforming to the deep learning neural network through the word embedding method.
In this study, the processing is the same for both Word2Vec and FastText.

3.3. CBGRU Hybrid Network Layer
This subsection will introduce the CBGRU model proposed in this paper in detail.

The layer structure of CBGRU is shown in Figure 7.

Sensors 2022, 22, 3577 11 of 26

Figure 7. CBGRU layer structure.

As can be seen in Figure 7, after the smart contract has been completed by the
Word2Vec and Fastest models for word embedding, the two deep learning models start
to perform feature extraction. In this branch of the CNN model, CNN uses the one-
dimensional convolutional layer, because the size of the matrix generated after the smart
contract has gone through the word embedding layer is (300, 100). After the data passes
through the first convolution layer, it goes through a pooling layer to compress the
number and parameters and reduce overfitting. The formula for the calculation of the one-
dimensional convolutional layer in the model can be expressed as 𝑐 = 𝑋 ∗ 𝑤 + 𝑏 (6)

𝑋 = 𝑅𝑒𝐿𝑈 𝑐 (7) 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 𝑋 (8) 𝑋 = 𝐹𝐶 𝑤 𝑥 + 𝑏 (9)
where w represents the filter and b represents the offset; these symbols are the same as
below. 𝑋 in Equation (6) represents the input of the convolution layer. We use the
ReLU function as the activation function in the convolution calculation where 𝑐 denotes
the output vector of the convolution layer. The n in the formula indicates the layers
involved. In this study, a total of two convolutional layers are used for local feature
learning. The next layer learns a nonlinear representation based on the output of the
previous layer, and then feeds the learned representation to the next layer, forming a
layered feature representation. Flatten in the formula represents the Flatten layer, and FC
represents the fully connected layer, whose role is to reduce the dimension of the final
output vector.

The deep learning model in another branch of CBGRU is BiGRU. Smart contracts first
go through the Fastest model word embedding and then BiGRU for feature extraction.
Since the size of the data is (300, 100), the unit of BiGRU is set to 300. After the feature
extraction is completed, the activation operation is performed by the ReLU function, and
the dropout layer is added to prevent overfitting. The forward propagation equation of
the classical GRU model is expressed as

Sensors 2022, 22, 3577 12 of 26

𝑟 = 𝜎(𝑊 ⋅ ℎ , 𝑋) (10) 𝑍 = 𝜎(𝑊 ⋅ ℎ , 𝑋) (11) ℎ = 𝑡𝑎𝑛ℎ(𝑊 ⋅ 𝑟 ∗ ℎ , 𝑥) (12) ℎ = (1 − 𝑍) ∗ ℎ + 𝑍 ∗ ℎ (13) 𝑦 = 𝜎(𝑊 , ℎ) (14)

The 𝑍 and 𝑟 in the formula represents the update gate and reset gate,
respectively, and [] represents that the two vectors are connected. ℎ is represented as
the candidate set at moment t, where X is the same as represented in the one-dimensional
convolutional neural network as the input to the neural network. The W in the formula
denotes the parameter to be learned. The BiGRU is added to the original one-way
feedback as two-way feedback, and the BiGRU is capable of iterative processing of data
in two directions. The equations for BiGRU can be expressed as 𝑟 = 𝜎 𝑊 ⋅ ℎ ⃗, 𝑋⃗ (15) 𝑍⃗ = 𝜎 𝑊 ⋅ ℎ ⃗, 𝑋⃗ (16)

ℎ⃗ = 𝑡𝑎𝑛ℎ 𝑊 ⃗ ⋅ 𝑟 ∗ ℎ ⃗, 𝑥⃗ (17)

ℎ⃗ = 1 − 𝑍⃗ ∗ ℎ ⃗ + 𝑍⃗ ∗ ℎ⃗ (18)

𝑦⃗ = 𝜎 𝑊⃗, ℎ⃗ (19) �⃖� = 𝜎 𝑊 ⋅⃖ ℎ⃖ , �⃖� (20)

ℎ⃖ = 𝑡𝑎𝑛ℎ �⃖� ⋅ �⃖� ∗ ℎ⃖ , �⃖� (21)

ℎ⃖ = 1 − �⃖� ∗ ℎ ⃖ + �⃖� ∗ ℎ⃖ (22)

�⃖� = 𝜎 �⃖� , ℎ⃖ (23) 𝑦 = y⃗ ∗ �⃖� (24)
where the arrows in two directions indicate the forward and backward processes,
respectively, and the final node output at moment t in the hidden layer is 𝑦 . After the
feature extraction of the two branches of CBGRU’s smart contracts is completed, feature
fusion is then performed through the connection layer. The feature fusion uses the concat
method, and the fused feature matrix will be more adequate than the feature matrix
extracted from a single network. Finally, the softmax layer will be used for classification
to obtain the final result.

3.4. CBGRU Model Overall Process
The dataset used in this study can be expressed as 𝐷 = {𝐶 , 𝐶 , 𝐶 , … . 𝐶 } after

preprocessing is completed, where m represents a value of 42,569, which is the sum of
samples in the dataset, 𝐶 is represented as a contract and 𝐶 is composed of k tokens
that can be expressed as 𝐶 = {𝑥 , 𝑥 … . , 𝑥 }, where x is denoted as a token. In the first
branch, the input data needs to be processed by word2vec to be transformed into input

Sensors 2022, 22, 3577 13 of 26

data suitable for CNN, and each token has to be embedded by word2vec to become 𝑥 ,
denoting the l-th embedding vector of the i-th smart contract. After word2vec processing,
the smart contract is transformed from 𝐶 to 𝐶 . The composition of 𝐶 can be
expressed as 𝐶 = {𝑥 , 𝑥 , 𝑥   ⋅⋅⋅,  𝑥  }, then 𝐶 is input to CNN for feature extraction.
The CNN model mainly includes a pooling layer and convolutional layer, which performs
convolutional operations on data at different scales to eventually produce more complex
features. The CNN model implementation process used in this paper is shown in the
following equation. 𝐹 = (𝑤 ⋅ 𝑥 : + 𝑏) (25)

𝐹 = 𝐹 𝐹 𝐹 … . , 𝐹 (26)
where w denotes a filter for the CNN whose role is to generate a new feature value by
convolution, s denotes the step size of the filter, b denotes the offset of the CNN, 𝐹
denotes a feature obtained by convolution operation, and 𝐹 denotes the feature vector
obtained after pooling. In the second branch, the input data are processed by the FastText
word embedding model, and the token in the original smart contract is transformed into 𝑥 , which represents the l-th embedding vector of the i-th smart contract. The deep
learning model used in the second branch is BiGRU, which consists of a forward GRU
(forward GRU) and a back GRU (back GRU). The BiGRU model implementation process
used in this paper is shown in the following equation. 𝐹 = 𝐹 , 𝑥 (27)

𝐹 = 𝐹 , 𝑥 (28)

𝐹 = 𝐹 + 𝐹 + 𝑏 = 𝐹 , 𝐹 , 𝐹 … 𝐹 (29)
where 𝐺𝑅𝑈 represents the hidden input of the forward GRU, 𝐺𝑅𝑈 represents the
hidden input of the back GRU, 𝑥 denotes the output of GRU at moment t, and 𝑏
denotes the offset vector at time t. The features extracted by the two neural networks are
fused to obtain the final features extracted by the CBGRU model. The features extracted
by CBGRU are expressed in the following equation. 𝐹 = 𝐹 ⊕ 𝐹 (30)

The obtained hybrid features will be used as the input to the softmax layer of the
model and the results will be obtained after classification. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊𝐹 + 𝑏 (31)

where W represents the weight matrix and b represents the offset matrix.
During the training of the CBGRU model, the main purpose is to improve the

accuracy of the CBGRU model for smart contract vulnerability detection. The smart
contract vulnerability detection task is also essentially a binary classification task, and the
CBGRU model uses two different deep learning networks for feature extraction, and the
two branches of the deep learning network are constantly learning during training, with
the model trained to minimize the loss function. The CBGRU model uses the focal loss for
calculating the loss, which is formulated as follows.

𝐿𝑜𝑠𝑠 = − 1𝑛 𝛼(1 − 𝑦) log 𝑦 + (1 − 𝛼)𝑦 log(1 − 𝑦) (32)

The use of focal loss is mainly to solve the problem of sample imbalance and to reduce
the weight of a large number of negative samples in training. In the formula, 𝑦 is the

Sensors 2022, 22, 3577 14 of 26

probability that the i-th sample is predicted to be positive, and ζ is the adjustment factor,
whose the main function is to adjust the loss contribution of simple samples, paying
special attention to hard-to-classify samples, and reduce the impact of simple samples. α
is a balancing factor to balance the proportion of positive and negative samples and adjust
their significance. In this study, along the lines of [39], default values (ζ = 2 and α = 0.25)
were used. The training process of the CBGRU model is shown in Algorithm 2.

Algorithm 2 training model
1: Initialize model parameters randomly
2: Set the max number of epochs: 𝑒𝑝𝑜𝑐ℎ
3: Set the origin dataset: D
4: for S in D do
5: // Use the preprocessing function P to process the processing smart contract S
6: P(S)
7: end for
8: for t in 1, 2, 3…, T do
9: Pack the dataset t into mini-batch: 𝐷
10: end for
11: for epoch in 1,2,3…,𝑒𝑝𝑜𝑐ℎ
12: //Merge all datasets.
13: D = 𝐷 ∪ 𝐷 … ∪ 𝐷
14: for 𝑏 in 𝐷 do
15: 𝐹 = CNN (𝑊𝑜𝑟𝑑2𝑣𝑒𝑐(𝑏))
16: 𝐹 = BiGRU (𝐹𝑎𝑠𝑡𝑇𝑒𝑥𝑡(𝑏))
17: result = Softmax (𝐹 + 𝐹)
18: Loss (𝜃) = Equation (32)
19: Compute gradient: ▽(𝜃)
20: Update model: 𝜃 = 𝜃 − 𝜀 ▽(𝜃)
21: end for
22: end for

The hybrid model CBGRU proposed in this paper differs from the models in previous

studies in that we combine different word embedding methods with different distinctive
deep learning methods to obtain better results. The CBGRU model is the first to apply
hybrid networks to smart contract vulnerability detection while achieving good detection
results. In the following section, we present the experimental part of this paper to
demonstrate the superiority of the performance of the hybrid model proposed in this
paper through a large number of experiments.

4. Experiments and Results
In this subsection, we first introduce the performance metrics that we used in our

experiments. The optimizer chosen for our study is Adam, which is used to update and
compute the network parameters that affect the model training and model output to
approximate or reach the optimal value. We chose Adam as the optimizer because Adam
combines the performance of AdaGrad and RMSProp [40]. Adam provides optimization
of methods for solving sparse matrix and noise problems and has been widely used in
deep learning applications in recent years, especially for computer vision and natural

Sensors 2022, 22, 3577 15 of 26

language processing tasks. Referring to the currently popular TensorFlow [41] and Keras,
the learning rate of the Adam optimizer was set to 0.001. The dropout of the Dropout layer
in the CBGRU model was set to 0.5. This is because the randomly generated network
structure is the most when the dropout is set to 0.5, which is beneficial for enhancing the
generalization of the model. We set the epoch to 50 and the batch size to 128 in our
experiments.

The experiments in this paper are divided into two parts: the first part is to discuss
different deep learning models and word embedding models to prove the correctness of
the CBGRU model proposed in this study, and the second part is to demonstrate the good
performance of our proposed CBGRU model by comparing it with the models proposed
in previous researches. In addition, we used different performance metrics, such as
accuracy (ACC), precision (PRE), F1-score (F1), and false-positive rate (FPR), to evaluate
the performance of our models.

4.1. Dataset
The dataset used in this paper is the recently released SmartBugs Dataset-Wild [42],

a large-scale dataset of smart contract vulnerabilities based on the Solidity language. This
dataset contains 47,587 real and unique sol files, which contain a total of about 203,716
smart contracts. We labeled the dataset based on the research of Durieux T et al. [43].
Because smart contracts can call each other, we treat a sol file as a smart contract when
labeling data. According to the research of Durieux T et al., the sol files in SmartBugs
Dataset-Wild were finally divided into two categories: smart contracts with vulnerabilities
and smart contracts without vulnerabilities. There are six types of vulnerabilities
contained in vulnerable smart contracts; the smart contract vulnerability categories are
Stack Call Depth Attack vulnerability (Callstack Depth Attack), Integer Overflow
vulnerability (Integer Overflow), Integer Underflow vulnerability (Integer Underflow),
Reentry vulnerability (Reentry), Timestamp Dependency vulnerability (Timestamp
Dependency), and Transaction Ordering Dependence vulnerability (Transaction
Ordering Dependence). The number of smart contracts with vulnerabilities is 35,151, and
the number of smart contracts without vulnerabilities is 12,247. The distribution of the
numbers in the dataset is given in Figure 8.

Figure 8. Dataset distribution.

From Figure 8, we can see that the sample data of smart contracts with and without
vulnerabilities are not evenly distributed, and if such a dataset is used it will lead to
overfitting. Therefore, we also used the smart contract dataset published by Peng Qian et
al. [11]. To compare with previous studies, we change the transaction order dependency

Sensors 2022, 22, 3577 16 of 26

vulnerability (Transaction Ordering Dependence) to the Infinite Loop vulnerability
(Infinite Loop) in the dataset. The distribution of the number of vulnerabilities in the final
dataset is shown in Figure 9.

Figure 9. Distribution of the number of vulnerabilities.

It can be seen from Figure 6 that the distribution of the number of various
vulnerabilities in the dataset used in this study is reasonable compared to the original
dataset. The number of vulnerabilities is shown in Table 1.

Table 1. Number of smart contract vulnerabilities.

Vulnerability Name Numbers
Callstack Depth Attack 1378

Integer Overflow 1640
Integer Underflow 1988

Reentry 1719
Timestamp Dependency 1671

Infinite Loop 1317

Finally, we selected the same number of smart contracts that do not contain
vulnerabilities to form the final smart contract dataset.

4.2. Experiment
4.2.1. Comparative Experiments

The core idea of the CBGRU model proposed in this paper is to combine the
advantages of the word embedding model with those of the deep learning model to
improve the performance of the model. Therefore, among the word embedding models,
we chose the currently popular word2vec and FastText models, and among the deep
learning models, we chose CNN, LSTM, GRU, BiGRU, and BiLSTM. We compare the
performance of different deep learning models combined with different word embedding
methods under the same algorithm and parameters. Among the models compared, M1 to
M9 are hybrid models, which are structurally consistent with the CBGRU model, and M11
to M14 are single-branch deep learning models, where M10-A and M15-B are the branches
in our proposed hybrid neural network, respectively. We conducted several experiments
on 15 models to demonstrate that the CBGRU model is the optimal choice for smart
contract vulnerability detection.

Sensors 2022, 22, 3577 17 of 26

Since deep learning networks change their parameters after each training, we
recorded the data from multiple tests of the model and chose the best one. In the
experiment, each model was trained 50 times. The performance metric in the self-
comparison experiment is the accuracy of the test set. The final results are shown in Table
2.

Table 2. Self-comparison model.

Model
Name

Classification
Method One

Embedding
Method

Classification
Method Two

Embedding
Method

Embedding
Size

Dropout Epoch Accuracy
(%)

M1 CNN Word2Vec CNN Word2vec 300 0.5 50 80.78
M2 CNN Word2Vec GRU Word2vec 300 0.5 50 80.33
M3 CNN Word2Vec LSTM Word2vec 300 0.5 50 79.67
M4 CNN Word2Vec BiLSTM Word2vec 300 0.5 50 81.14
M5 CNN Word2Vec BiGRU Word2vec 300 0.5 50 82.10
M6 CNN Word2Vec CNN FastText 300 0.5 50 79.25
M7 CNN Word2Vec GRU FastText 300 0.5 50 80.67
M8 CNN Word2Vec LSTM FastText 300 0.5 50 79.45
M9 CNN Word2Vec BiLSTM FastText 300 0.5 50 83.55

CBGRU CNN Word2Vec BiGRU FastText 300 0.5 50 85.80
M10-A CNN Word2Vec \ \ 300 0.5 50 75.67

M11 BiLSTM Word2Vec \ \ 300 0.5 50 74.60
M12 BiGRU Word2Vec \ \ 300 0.5 50 75.56
M13 CNN FastText \ \ 300 0.5 50 77.65
M14 BiLSTM FastText \ \ 300 0.5 50 75.04

M15-B BiGRU FastText \ \ 300 0.5 50 78.75

From Table 2, we can see that the CBGRU model proposed in this paper has better
performance than the hybrid model proposed in this paper for data containing multiple
smart contract vulnerabilities. The comparison between M11-A and M13 can be concluded
that the combination of CNN and Word2Vec can obtain better detection performance in
smart contract vulnerability detection. Similarly, the comparison between M11 and M12
shows that under the same conditions, BiGRU is more adequate for the extraction of smart
contract vulnerability features. The comparison of M12 and M14 shows that the
combination of BiGRU and FastText can achieve better feature extraction. Comparing M2
with M5, we can conclude that the bi-directional network is better than the normal
network in feature extraction of smart contract vulnerabilities, and comparing M3 with
M4, we can also get the same conclusion. Comparing M9 and CBGRU, it can be concluded
that the CBGRU model proposed in this paper has good performance. From Table 2, we
can see that M15-B has an excellent performance in single-structured networks. We also
conducted experiments with M15-B as two branches of the hybrid model. We also
experimented with M15-B as two branches of the hybrid model, but a gradient explosion
occurred during the training period, indicating a problem with the structure of the
network. The training process of the CBGRU model proposed in this paper is shown in
Figure 10.

Sensors 2022, 22, 3577 18 of 26

Figure 10. CBGRU training process.

As can be seen from Figure 10, all four curves of the model gradually flatten out after
the training count reaches 30 (epoch ≥ 30). Moreover, during the training process, the
curves in the validation and training sets have the same trend and are close to each other,
indicating that there is no overfitting in the model during the training. In the training
process shown in Figure 10, the results of the model show an accuracy of 85.80%, recall of
86.18%, precision of 85.54%, and F1 of 85.86%. In this subsection, we experimentally
demonstrate that the combination of CBHRU models proposed in this study is reasonable.

4.2.2. Comparison with Previous Studies
In the previous subsection, we justified the CBGRU model by comparing it with

different hybrid models, and this subsection will compare it with the models proposed in
previous studies to demonstrate that the CBGRU model has good performance in smart
contracts vulnerability detection. Since the methods proposed in the previous study target
different vulnerabilities, the CBGRU model proposed in this paper is also tested for
different smart contract vulnerabilities to compare the performance in smart contract
vulnerability detection. The performance metrics used are accuracy, precision, recall, and
F1. The CBGRU model proposed in this paper is trained and tested for six common smart
contract vulnerabilities, namely, Infinite Loop, Timestamp Dependency, Integer
Overflow, Reentry, Callstack Depth Attack, and Integer Underflow. The training process
is shown in Figure 11.

Sensors 2022, 22, 3577 19 of 26

Figure 11. CBGRU model training process.

From Figure 11, it can be concluded that the CBGRU model proposed in this paper
has good detection performance for all six smart contract vulnerabilities. The test results
for the six different vulnerabilities are shown in Table 3.

Table 3. Test results for the six different vulnerabilities.

Vulnerability Type Accuracy Precision Recall F1-Score
Infinite Loop 93.16% 89.15% 98.29% 93.50%
Reentrancy 93.30% 96.30% 85.95% 90.92%

Integer Overflow 86.54% 87.23% 85.66% 86.43%
Callstack Depth Attack 90.31% 90.04% 88.41% 90.21%

Timestamp Dependency 93.02% 89.47% 97.45% 93.29%
Integer Underflow 85.43% 86.15% 84.42% 85.28%

As can be seen from the table, for the four vulnerabilities of infinite loop, re-entry,
timestamp dependency, and call stack depth attack, the CBGRU model proposed in this
paper achieves accuracy and an F1-score of over 90%. However, both Integer Underflow
and Integer Overflow have accuracy and an F1-score around 85%, which is lower than the
remaining four vulnerabilities. The reason for this situation is that the features of these
two vulnerabilities are not obvious in the code, so the correct rate is low. To demonstrate
the superiority of the performance of the CBGRU model, we chose the models proposed
in previous studies to compare the detection performance in the case of the same
vulnerability. In the same experimental setting, we chose to compare the DeeSCVHunter
model proposed by Yu X et al. [22], the Peculiar model proposed by Wu H et al. [23], the
BLSTM-ATT model proposed by Peng Qian et al. [11], the TMP and DR-GCN models
proposed by Zhang et al. [44], and the AME model proposed by Liu Z et al. [45]. Three
different smart contract vulnerabilities were selected for comparison, and the results of
the comparison are shown in Figures 12–14.

Sensors 2022, 22, 3577 20 of 26

Figure 12. Reentry vulnerability detection results.

Figure 13. Timestamp vulnerability detection results.

Sensors 2022, 22, 3577 21 of 26

Figure 14. Infinite loop vulnerability detection results.

As can be seen in Figure 12, the CBGRU model performs well in the smart contract
reentry vulnerability detection task, with a precision of 96.30%, recall of 85.95%, an
accuracy of 93.30%, and an F1-score of 90.02%. Peculiar has a precision of 91.80%, an
accuracy of 92.37%, a recall of 92.40%, and an F1-score of 92.10%, which is the best
performance among the models involved in the comparison. This was followed by
DeeSCVHunter, with a precision of 90.70%, a recall of 83.46%, an accuracy of 93.02%, and
an F1-score of 86.87%. Furthermore, the BLSTM-ATT has a precision of 88.50%, a recall of
88.48%, an accuracy of 88.47%, and an F1 score of 88.26%. The AME has a precision of
86.25%, a recall of 89.69%, an accuracy of 90.19%, and an F1 score of 87.94%. The DA-GCN
has a precision of 89.84%, a recall of 82.00%, an accuracy of 91.15%, and an F1 score of
85.43%. The TMP has resulted in performance with a precision of 74.06%, a recall of
82.63%, an accuracy of 84.48%, and an F1-score of 83.82%. Finally, the obtained results
portrayed that the DR-GCN has demonstrated poor performance by offering the lowest
precision, 72.36%; the lowest recall, 80.89%; the lowest accuracy, 81.47%; and the lowest
F1-score, 76.39%. The performance of TMP and DR-GCN is lower than the rest of the
models and performs poorly. Since the F1-score is used to measure the values of precision
and recall, we discuss the models involved in the comparison in terms of both accuracy
and F1-score. From the comparison results, it can be seen that the accuracy of the CBGRU
model proposed in this paper is higher than that of DeeSCVHunter, Peculiar, BLSTM-
ATT, AME, and DA-GCN. When performing a single smart contract vulnerability
detection test in this paper, the number of smart contract samples containing
vulnerabilities and the number of samples without smart contract vulnerabilities in the
dataset is the same, so the higher the correct rate indicates the better the performance of
the deep learning network when performing vulnerability detection. Among the models
involved in the comparison, the BLSTM-ATT uses the word2vec model for word
embedding and feature extraction via the BLSTM model. The BLSTM-ATT model uses a
single word embedding approach and a single deep learning model. The CBGRU model
proposed in the paper combines the advantages of different word embedding models and
deep learning models, and it can be seen from the comparison results that the accuracy of
the CBGRU model is 4.49% higher than that of BLSTM-ATT and the F1-score is 2.66%
higher than that of the BLSTM-ATT. Among all the models involved in the comparison,
the models with an F1-score higher than 90% are the CBGRU model and the Peculiar
model, and when the F1-score is high, it indicates that the vulnerability detection method

Sensors 2022, 22, 3577 22 of 26

used in the model is efficient. The F1-score of Peculiar is slightly higher than the F1-score
of the CBGRU model proposed in this paper. In performance metrics, Peculiar has a
higher recall rate but lower precision rate than the CBGRU model. It means that Peculiar
can detect more samples containing smart contract vulnerabilities than the CBGRU model,
while the CBGRU model can identify more samples containing smart contract
vulnerabilities than Peculiar in the detection results. The reason is that Peculiar is a
detection model designed for smart contract reentry vulnerabilities. Peculiar also uses
critical data flow graph (CDFG) techniques for pre-processing; so, Peculiar only uses
critical information related to reentry vulnerabilities to detect whether a smart contract
contains a reentry vulnerability. The Peculiar model reduces the interference of useless
information in vulnerability detection information by using CDFG. The CBGRU model
proposed in this paper is capable of detecting multiple vulnerabilities. The CBGRU model
reduces the impact of irrelevant information during smart contract vulnerability detection
by extracting smart contract keywords, replacing custom variables, and removing parts
that are irrelevant to vulnerability detection when pre-processing smart contract samples.
However, different smart contract vulnerabilities are associated with different keywords,
and when the CBGRU model performs the reentry vulnerability detection task, the
processed smart contract samples still contain the keywords used to detect other
vulnerabilities, thus affecting the extraction of vulnerability features by the CBGRU
model. This results in a slightly lower F1-score for the CBGRU model than for the Peculiar
model.

As can be seen in Figure 13, the CBGRU model has an accuracy of 93.02%, a recall of
97.45%, a precision of 89.47%, and an F1-score of 93.29% in the timestamp vulnerability
detection task. From the comparison results, it can be seen that the CBGRU model
outperforms the rest of the models in the timestamp vulnerability detection task. Among
the models involved in the comparison, the DA-GCN model uses a single GCN model for
smart contract vulnerability feature extraction, while the CBGRU model uses a BiGRU
model and CNN model for feature extraction. The CBGRU model is 5.48% higher than
DA-GCN in terms of accuracy and 8.46% higher than DA-GCN in terms of F1-score, which
can be concluded that the feature values extracted by combining the advantages of
different deep learning networks are more adequate. From Figure 14, it can be seen that
the CBGRU model proposed in this paper performs very well in the infinite loop
vulnerability detection, with an accuracy of 93.16%, recall of 89.15%, precision of 98.29%,
and F1-score of 93.50%; it also can be seen that CBGRU model is higher than the rest of
the models in terms of performance metrics. Compared to the AME model, which
performed well in the comparison model, the CBGRU model improved 12.84% in
accuracy and 14.62% in F1-score.

From the above discussion, it can be seen that the CBGRU model proposed in this
paper is higher than the rest of the models in terms of accuracy in the smart contract
reentry vulnerability detection task, and only the F1-score was slightly lower than the F1-
score of the Peculiar model. The CBGRU model performs well in both the timestamp
vulnerability detection task and the infinite loop vulnerability detection task. From Figure
14, we can see that the CBGRU model outperforms other models in detecting timestamp
vulnerabilities detection and in finite loop vulnerabilities detection. In the test results of
all three vulnerabilities of smart contracts, the CBGRU model proposed in this paper
maintains an above 90% F1 score. In summary, the CBGRU model proposed in this study
has good performance for smart contract vulnerability detection.

On the one hand, the CBGRU model has higher accuracy in vulnerability detection
tasks and is capable of detecting multiple vulnerabilities compared to previous studies.
On the other hand, the smart contract vulnerability detection model proposed in this
paper also has limitations. First, our proposed CBGRU model can only detect whether a
smart contract contains a vulnerability, and cannot identify the type of vulnerability for a
smart contract that contains multiple vulnerabilities. Second, our proposed CBGRU
model is capable of detecting multiple smart contract vulnerabilities, but the accuracy of

Sensors 2022, 22, 3577 23 of 26

detecting smart contract vulnerabilities with distinct features is higher than that of smart
contract vulnerabilities with insignificant features. For example, in the Integer Overflow
vulnerability detection task, CBGRU has an accuracy of 86.54%, but in the Infinite Loop
vulnerability detection task, CBGRU has an accuracy of 93.16%. Finally, deep learning
models are more effective on huge datasets, but the dataset used in this study is not very
large.

5. Conclusions
In this paper, we propose a deep learning-based hybrid network model CBGRU. The

presented model operates on four stages, namely, smart contract pre-processing, word
embedding, feature extraction, and classification. We completed the word embedding of
the smart contracts using the FastText and Wrod2Vec models. In one branch of the
CBGRU model, the features are extracted from the Word2vec embedding using CNN,
whereas, in another branch, features are obtained from FastText embedding using BiGRU.
In the classification phase, the features obtained from the two branches are merged and
transferred to the softmax layer for classification.

We conducted two different main experiments in order to verify the performance of
the CBGRU model proposed in this paper. We use a publicly available dataset in our
experiments. In the first experiment, we created 15 basic deep learning models by
combining different deep learning models with different word embedding models. We
experimentally demonstrate that our proposed CBGRU model outperforms other basic
models in performing smart contract vulnerability detection. In the second experiment,
we chose three different smart contract vulnerabilities for comparison purposes. The
results of the comparison show that CBGRU model has accomplished maximum
performance with an accuracy of 93.30%, 93.02%, and 93.16% in reentry vulnerability,
timestamp vulnerability, and infinite loop vulnerability, respectively. The results show
that the CBGRU proposed in this paper has a higher accuracy and better classification
performance and that the CBGRU model is capable of detecting multiple smart contract
vulnerabilities.

We experimentally demonstrate that the CBGRU approach has excellent smart
contract vulnerability detection and higher accuracy than other models in testing tasks
against a wide range of smart contract vulnerabilities. In addition, CBGRU can perform
vulnerability detection in the local network, which is more convenient and faster than
traditional smart contract vulnerability detection tools. In this paper, we also
experimentally demonstrate that using different word embedding methods enables the
model to extract feature values more adequately. In the follow-up work, we will try to
identify multiple smart contract vulnerabilities in the same smart contract and improve
the accuracy of the CBGRU model to detect vulnerabilities in smart contracts with obscure
features.

Author Contributions: Conceptualization, W.C. and L.Z.; methodology, W.C.; software, W.C.;
validation, W.C., L.Z. and H.C.; formal analysis, W.C.; investigation, W.W.; resources, L.Z.; data
curation, Z.J.; writing—original draft preparation, W.C.; writing—review and editing, W.C.;
visualization, W.C.; supervision, C.Z. and Z.C.; project administration, L.Z.; funding acquisition,
L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2021YFE0102100). National Natural Science Foundation of China under grant number No.
62172353. Future Network Scientific Research Fund Project No. FNSRFP-2021-YB-48. Science and
Technology Program of Yangzhou City No. YZU202003 and Six Talent Peaks Project in Jiangsu
Province No. XYDXX-108.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 3577 24 of 26

Data Availability Statement: The experimental data and associated code used in this study have
been deposited in the GitHub repository (https://github.com/xiaoaochen/CBGRU) accessed on 31
March 2022.

Acknowledgments: The authors would like to thank the reviewers for their detailed reviews and
constructive comments, which have helped improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.-Y. Blockchain-Enabled Smart Contracts: Architecture, Applications,

and Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. https://doi.org/10.1109/TSMC.2019.2895123.
2. Kawaguchi, N. Application of Blockchain to Supply Chain: Flexible Blockchain Technology. Procedia Comput. Sci. 2019, 164, 143–

148. https://doi.org/10.1016/j.procs.2019.12.166.
3. Hang, L.; Kim, B.; Kim, D. A Transaction Traffic Control Approach Based on Fuzzy Logic to Improve Hyperledger Fabric

Performance. Wirel. Commun. Mob. Comput. 2022, 2022, 2032165. https://doi.org/10.1155/2022/2032165.
4. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.-B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and

Opportunities. IIEEE Trans. Softw. Eng. 2021, 47, 2084–2106. https://doi.org/10.1109/TSE.2019.2942301.
5. Zhang, B.; Yu, H.; Yan, Y. NTOPNG based Traffic Monitoring and Modelling. In Proceedings of the 2019 IEEE 4th Advanced

Information Technology, Electronic and Automation Control Conference (IAEAC 2019), Chengdu, China, 20–22 December 2019;
Xu, B.; Mou, K., Eds.; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; ISBN 9781728119076.

6. Zhang, Y.; Yutaka, M.; Sasabe, M.; Kasahara, S. Attribute-Based Access Control for Smart Cities: A Smart-Contract-Driven
Framework. IEEE Internet Things J. 2021, 8, 6372–6384. https://doi.org/10.1109/JIOT.2020.3033434.

7. Duan, B.; Xin, K.; Zhong, Y. Optimal Dispatching of Electric Vehicles Based on Smart Contract and Internet of Things. IEEE
Access 2020, 8, 9630–9639. https://doi.org/10.1109/ACCESS.2019.2961394.

8. Alzubi, O.A.; Alzubi, J.A.; Shankar, K.; Gupta, D. Blockchain and artificial intelligence enabled privacy--preserving medical
data transmission in Internet of Things. Trans. Emerg. Telecommun. Technol. 2021, 32, e4360. https://doi.org/10.1002/ett.4360.

9. Liao, J.-W.; Tsai, T.-T.; He, C.-K.; Tien, C.-W. SoliAudit: Smart Contract Vulnerability Assessment Based on Machine Learning
and Fuzz Testing. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), Granada, Spain, 22–25 October 2019; Alsmirat, M., Jararweh, Y., Eds.; IEEE: Piscataway, NJ, USA, 2019; pp.
458–465. ISBN 9781728129495.

10. Liu, J.; Liu, Z. A Survey on Security Verification of Blockchain Smart Contracts. IEEE Access 2019, 7, 77894–77904.
https://doi.org/10.1109/ACCESS.2019.2921624.

11. Qian, P.; Liu, Z.; He, Q.; Zimmermann, R.; Wang, X. Towards Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models. IEEE Access 2020, 8, 19685–19695. https://doi.org/10.1109/ACCESS.2020.2969429.

12. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB 2018), Gothenburg, Sweden, 27 May 2018; Tonelli, R., Destefanis, G., Counsell, S., Marchesi, M., Eds.;
ACM: New York, NY, USA, 2018; pp. 9–16, ISBN 9781450357265.

13. Prechtel, D.; Gros, T.; Muller, T. Evaluating Spread of ‘Gasless Send’ in Ethereum Smart Contracts. In Proceedings of the 2019
9th IFIP International Conference on New Technologies, Mobility and Security (NTMS 2019), Canary Island, Spain, 24–26 June
2019; IEEE: Piscataway, NJ, USA, 2019; ISBN 9781728115429.

14. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Bünzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,
Canada, 15 October 2018; Lie, D., Mannan, M., Backes, M., Wang, X., Eds.; ACM: New York, NY, USA, 2018; pp. 67–82, ISBN
9781450356930.

15. Feist, J.; Grieco, G.; Groce, A. Slither: A Static Analysis Framework for Smart Contracts. In Proceedings of the 2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada,
27 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8–15, ISBN 9781728122571.

16. Jiang, B.; Liu, Y.; Chan, W.K. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE ’18), Montpellier, France, 3–7 September 2018;
Huchard, M., Kästner, C., Fraser, G., Eds.; ACM: New York, NY, USA, 2018; pp. 259–269, ISBN 9781450359375.

17. Grieco, G.; Song, W.; Cygan, A.; Feist, J.; Groce, A. Echidna: Effective, usable, and fast fuzzing for smart contracts. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’20), Virtual Event, 18–22 July
2020; Khurshid, S., Păsăreanu, C.S., Eds.; ACM: New York, NY, USA, 2020; pp. 557–560, ISBN 9781450380089.

18. Kolluri, A.; Nikolic, I.; Sergey, I.; Hobor, A.; Saxena, P. Exploiting the laws of order in smart contracts. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’19), Beijing, China, 15–19 July 2019;
Zhang, D., Møller, A., Eds.; ACM: New York, NY, USA, 2019; pp. 363–373, ISBN 9781450362245.

19. Harer, J.A.; Kim, L.Y.; Russell, R.L.; Ozdemir, O.; Kosta, L.R.; Rangamani, A.; Hamilton, L.H.; Centeno, G.I.; Key, J.R.;
Ellingwood, P.M.; et al. Automated software vulnerability detection with machine learning. arXiv 2018, arXiv:1803.04497.

Sensors 2022, 22, 3577 25 of 26

20. Cao, S.; Sun, X.; Bo, L.; Wei, Y.; Li, B. BGNN4VD: Constructing Bidirectional Graph Neural-Network for Vulnerability Detection.
Inf. Softw. Technol. 2021, 136, 106576. https://doi.org/10.1016/j.infsof.2021.106576.

21. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings 2018 Network and Distributed System Security Symposium, San Diego, CA, USA, 18–
21 February 2018; Traynor, P., Oprea, A., Eds.; Internet Society: Reston, VA, USA, 2018; ISBN 1891562495.

22. Yu, X.; Zhao, H.; Hou, B.; Ying, Z.; Wu, B. DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnerability
Detection. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8, ISBN 978-1-6654-3900-8.

23. Wu, H.; Zhang, Z.; Wang, S.; Lei, Y.; Lin, B.; Qin, Y.; Zhang, H.; Mao, X. Peculiar: Smart Contract Vulnerability Detection Based
on Crucial Data Flow Graph and Pre-training Techniques. In Proceedings of the 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 378–389,
ISBN 9781665425872.

24. Xing, C.; Chen, Z.; Chen, L.; Guo, X.; Zheng, Z.; Li, J. A new scheme of vulnerability analysis in smart contract with machine
learning. Wirel. Netw. 2020, 1–10. https://doi.org/10.1007/s11276-020-02379-z.

25. Gao, Z.; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. Checking Smart Contracts With Structural Code Embedding. IIEEE Trans. Software
Eng. 2021, 47, 2874–2891. https://doi.org/10.1109/TSE.2020.2971482.

26. Goswami, S.; Singh, R.; Saikia, N.; Bora, K.K.; Sharma, U. TokenCheck: Towards Deep Learning Based Security Vulnerability
Detection in ERC-20 Tokens. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, 23–25 August
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. ISBN 9781665400268.

27. Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Deep Air Quality Forecasting Using Hybrid Deep Learning Framework. IEEE Trans. Knowl.
Data Eng. 2021, 33, 2412–2424. https://doi.org/10.1109/TKDE.2019.2954510.

28. Fu, L.; Peng, Q.; Chai, L. Predicting DNA Methylation States with Hybrid Information Based Deep-Learning Model. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2020, 17, 1721–1728. https://doi.org/10.1109/TCBB.2019.2909237.

29. Xi, J.; Xie, D.; Jiang, W.; Xiang, Y. High Resolution Remote Sensing Image Classification Using Hybrid Ensemble Learning. In
Proceedings of the 2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent
Oil Field (ICMSP), Xi’an, China, 23–25 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 152–157, ISBN 9781665437158.

30. Yue, W.; Li, L. Sentiment Analysis using Word2vec-CNN-BiLSTM Classification. In Proceedings of the 2020 Seventh
International Conference on Social Networks Analysis, Management and Security (SNAMS), Paris, France, 14–16 December
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. ISBN 9780738111803.

31. Chuang, P.-J.; Li, S.-H. Network Intrusion Detection using Hybrid Machine Learning. In Proceedings of the 2019 International
Conference on Fuzzy Theory and Its Applications (iFUZZY), Taipei, Taiwan, 7–10 November 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 1–5, ISBN 9781728108407.

32. Duan, J.; Zhao, H.; Qin, W.; Qiu, M.; Liu, M. News Text Classification Based on MLCNN and BiGRU Hybrid Neural Network.
In Proceedings of the 2020 3rd International Conference on Smart BlockChain (SmartBlock), Zhengzhou, China, 23–25 October
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6, ISBN 9781665440738.

33. Di, W.; Jiang, Z.; Xie, X.; Wei, X.; Yu, W.; Li, R. LSTM Learning with Bayesian and Gaussian Processing for Anomaly Detection
in Industrial IoT. IEEE Trans. Ind. Inf. 2020, 16, 5244–5253. https://doi.org/10.1109/TII.2019.2952917.

34. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. https://doi.org/10.1186/s40537-021-00444-8.

35. Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A Novel Deep Learning Method for Intelligent Fault
Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Sensors 2019, 19, 1693.
https://doi.org/10.3390/s19071693.

36. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

37. Remya, S.; Sasikala, R. Performance evaluation of optimized and adaptive neuro fuzzy inference system for predictive modeling
in agriculture. Comput. Electr. Eng. 2020, 86, 106718. https://doi.org/10.1016/j.compeleceng.2020.106718.

38. Onan, A. Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach. Comput.
Appl. Eng. Educ. 2021, 29, 572–589. https://doi.org/10.1002/cae.22253.

39. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp.
2999–3007, ISBN 9781538610329.

40. Qiao, S.; Han, N.; Huang, J.; Yue, K.; Mao, R.; Shu, H.; He, Q.; Wu, X. A Dynamic Convolutional Neural Network Based Shared-
Bike Demand Forecasting Model. ACM Trans. Intell. Syst. Technol. 2021, 12, 1–24. https://doi.org/10.1145/3447988.

41. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

42. Durieux, T.; Ferreira, J.F.; Abreu, R.; Cruz, P. Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart
Contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Korea, 27 June–19
July 2020; pp. 530–541. https://doi.org/10.1145/3377811.3380364.

Sensors 2022, 22, 3577 26 of 26

43. Durieux, T.; Madeiral, F.; Martinez, M.; Abreu, R. Empirical review of Java program repair tools: A large-scale experiment on
2141 bugs and 23,551 repair attempts. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19), Tallinn, Estonia, 26–30 August 2019;
Dumas, M., Ed.; Association for Computing Machinery: New York, NY, USA, 2019; pp. 302–313, ISBN 9781450355728.

44. Zhuang, Y.; Liu, Z.; Qian, P.; Liu, Q.; Wang, X.; He, Q. Smart Contract Vulnerability Detection using Graph Neural Network. In
Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020; des Jardins,
M., Bessiere, C., Eds.; ACM: New York, NY, USA, 2020; pp. 3283–3290, ISBN 9780999241165.

45. Liu, Z.; Qian, P.; Wang, X.; Zhu, L.; He, Q.; Ji, S. Smart Contract Vulnerability Detection: From Pure Neural Network to Interpre
Graph Feature and Expert Pattern Fusion. arXiv 2021, arXiv:2106.09282.

