
 
 

 

 
Sensors 2022, 22, 3577. https://doi.org/10.3390/s22093577 www.mdpi.com/journal/sensors 

Article 

CBGRU: A Detection Method of Smart Contract Vulnerability 
Based on a Hybrid Model 
Lejun Zhang 1,2,3,*, Weijie Chen 1, Weizheng Wang 4, Zilong Jin 5, Chunhui Zhao 6, Zhennao Cai 7  
and Huiling Chen 7,* 

1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China;  
mz120200850@yzu.edu.cn 

2 Research and Development Center for E-Learning, Ministry of Education, Beijing 100039, China 
3 Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China 
4 Computer Science Department, City University of Hong Kong, Hong Kong; m5232117@u-aizu.ac.jp 
5 School of Computer and Software, Nanjing University of Information Science and Technology,  

Nanjing 210044, China; zljin@nuist.edu.cn 
6  College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;  

zhaochunhui@hrbeu.edu.cn 
7 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China; 

cznao@wzu.edu.cn 
* Correspondence: zhanglejun@yzu.edu.cn (L.Z.); chenhuiling.jlu@gmail.com (H.C.) 

Abstract: In the context of the rapid development of blockchain technology, smart contracts have 
also been widely used in the Internet of Things, finance, healthcare, and other fields. There has been 
an explosion in the number of smart contracts, and at the same time, the security of smart contracts 
has received widespread attention because of the financial losses caused by smart contract 
vulnerabilities. Existing analysis tools can detect many smart contract security vulnerabilities, but 
because they rely too heavily on hard rules defined by experts when detecting smart contract 
vulnerabilities, the time to perform the detection increases significantly as the complexity of the 
smart contract increases. In the present study, we propose a novel hybrid deep learning model 
named CBGRU that strategically combines different word embedding (Word2Vec, FastText) with 
different deep learning methods (LSTM, GRU, BiLSTM, CNN, BiGRU). The model extracts features 
through different deep learning models and combine these features for smart contract vulnerability 
detection. On the currently publicly available dataset SmartBugs Dataset-Wild, we demonstrate that 
the CBGRU hybrid model has great smart contract vulnerability detection performance through a 
series of experiments. By comparing the performance of the proposed model with that of past 
studies, the CBGRU model has better smart contract vulnerability detection performance. 
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1. Introduction 
The concept of smart contracts was introduced by Nick Szabo [1]. He describes a 

smart contract as “a set of agreements that are defined digitally and that contain 
information about how the participants will fulfill those agreements”. The purpose of 
proposing smart contracts was to be able to implement the content of the contracts 
through cryptographic protocols and digital security mechanisms. However, due to the 
limitation of technology at that time, there was no carrier to carry smart contracts, so smart 
contracts were not applied. It was not until 2008 when an academic named Satoshi 
Nakamoto proposed the concept of Bitcoin. The underlying technology of Bitcoin is 
blockchain, which can be used as the carrier of smart contracts [2]. Blockchain is 
essentially a decentralized distributed ledger database. Due to its tamper-evident 
characteristic, blockchain is also applied to the Internet of Things (IoT) to ensure the 
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security of connected data. Scholars have done a lot of research on how to improve the 
performance of blockchain to meet the needs of IoT; for example, Hang L et al. proposes 
a transaction traffic control approach based on fuzzy logic to enhance the blockchain 
network’s transaction-processing capacity [3]. In 2013, Vitalik Buterin proposed Ethereum 
[4] to formally introduce smart contracts into the blockchain platform, which has a Turing-
complete and powerful scripting system that enables more advanced distributed 
applications based on smart contracts. A smart contract [5] is a computer protocol that is 
self-executing and self-verifying once deployed. Due to their characteristics, smart 
contracts are used in the Internet of Things. Zhang Y et al. proposed a distributed access 
control framework for smart cities by combining blockchain smart contract technology 
and the attribute-based access control (ABAC) model [6]. B. Duan et al. propose an 
Internet of Things (IoT) charging scheduling method based on smart contract technology 
[7]. Alzubi O A et al. presents a novel blockchain and artificial intelligence-enabled secure 
medical data transmission (BAISMDT) for IoT networks [8]. Similar to traditional 
contracts, the life cycle of a smart contract consists of three parts: contract generation, 
contract release, and contract execution. The life cycle of a smart contract is shown in 
Figure 1. Smart contracts will eventually be deployed to the blockchain for self-
verification and self-execution. When the execution conditions set by the contract content 
are triggered, the smart contract can automatically output the response without relying 
on the cooperation of third parties. 

 
Figure 1. The life cycle of a smart contract. 

Smart contracts have complex time and order dependencies, but errors in the logic of 
the contract code and errors in the text of the contract code will lead to vulnerabilities in 
the smart contract, which will eventually result in incorrect automatic execution. 
Ethereum is one of the most popular blockchain platforms [4], where tens of thousands of 
smart contracts are deployed, and the smart contract itself is an Ethereum account, called 
the external account controlling billions of dollars’ worth of Ether (cryptocurrency 
Ethereum). Such a huge amount of digital assets held by Ethereum is a huge attraction for 
attackers. In 2016, USD 55 million worth of Ether was lost due to a vulnerability in The 
Dao’s smart contract [9]. In 2017, over USD 30 million worth of Ether was lost due to a 
smart contract vulnerability in the Parity wallet [10]. Such security issues create serious 
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obstacles to the development of blockchain and cause a crisis of trust in smart contracts 
among users, so an efficient smart contract vulnerability detection tool is very important 
and urgent. Therefore, we propose an efficient deep learning hybrid model named 
CBGRU for detecting smart contract vulnerabilities in this paper. Our key contributions 
are as follows: 
1. By combining different word embedding methods and deep learning methods, the 

accuracy of smart contract vulnerability detection is improved. 
2. CBGRU applies hybrid networks to smart contract vulnerability detection for the first 

time, and the hybrid network model proposed in this paper can detect several 
different smart contract vulnerabilities while maintaining good detection 
performance. 

3. Through extensive experiments, it is demonstrated that the CBGRU model proposed 
in this study combines the advantages of deep learning and hybrid learning, and has 
better smart contract vulnerability detection performance compared to a single 
neural network model. 
The paper is organized as follows: We present current research on smart contract 

vulnerability detection and hybrid models in Section 2. We discuss our methodology in 
Section 3. We present the experimental procedure, which includes dataset processing and 
performing performance comparisons, in Section 4. Finally, we conclude the whole paper 
and future work in Section 5. 

2. Related Work 
2.1. Smart Contract Vulnerability Detection 

Researchers have also come up with some smart contract vulnerability detection 
tools. Oyente, proposed by Luu L et al., is a smart contract vulnerability detection tool 
based on symbolic execution and is currently capable of detecting seven types of smart 
contract vulnerabilities [11]. SmartCheck is an extensible static analysis tool proposed by 
Tikhomirov S et al. SmartCheck converts Solidity source code into an XML-based 
intermediate display and checks it against XPath patterns [12]. Mythril is the official smart 
contract vulnerability detection tool for Ethereum, which can detect a large number of 
smart contract security issues, with the main idea of using symbolic execution to explore 
all possible insecure paths [13]. Security is a smart contract static analysis tool for detecting 
the security properties of smart contract EVM bytecodes [14]. Slither is also a static 
analysis tool for smart contract vulnerability detection [15]. ContractFuzzer is a fuzzy 
testing tool for smart contract vulnerabilities, capable of generating fuzzy test inputs 
based on the smart contract’s API specification, recording the runtime state of the smart 
contract through an Ethernet Virtual Machine (EVM), analyzing logs, and reporting 
security vulnerabilities [16]. Echidna [17] and Ethracer [18] are also fuzzy testing tools for 
smart contract vulnerabilities. These tools are mainly based on formal verification, 
symbolic execution, static analysis, taint analysis, and fuzzy testing, and rely on hard 
logical rules defined in advance by experts when performing vulnerability detection. 
However, with the development of smart contracts, these tools can no longer meet the 
current needs. Traditional smart contract vulnerability detection tools are inadequate for 
the following reasons: 
1. Smart contracts are becoming more and more complex in their structure to achieve 

complex functionality, and the variety of smart contract vulnerabilities is increasing, 
and the rules defined by experts based on vulnerabilities cannot keep up with the 
speed of smart contract vulnerability updates. 

2. A crude overlay of several expert-defined logic rules can lead to a high false-alarm 
rate, and expert rule-based smart contract vulnerability detection tools are not 
suitable for general smart contract vulnerability detection situations. 
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3. The attacker can use techniques to bypass inspection patterns against these rules 
defined in advance. Expert rule-based smart contract vulnerability detection tools 
cannot be updated on time. 
In recent years, deep learning techniques have been used in various fields, including 

the field of vulnerability detection. Russell R L et al. used convolutional neural networks 
(CNNs) for vulnerability classification, learning features through neural networks, and 
extracting control flow graphs (CFGs) of functions at the function level, obtaining 
excellent overall results [19]. Sicong Gao et al. proposed the BGNN4VD model, which 
performs vulnerability detection by constructing bipartite graph neural networks, and 
proved through experiments that BGNN4VD has a high precision and accuracy [20]. Zhen 
Li et al. proposed a deep learning-based vulnerability detection system, named 
VulDeePecker [21]; it applies bi-directional long and short memory neural networks to 
vulnerability detection. Researchers have also combined deep learning with smart 
contract vulnerability detection. Yu X et al. developed a systematic and modular 
framework for smart contract vulnerability, called DeeSCVHunter, proposing the concept 
of vulnerability candidate slicing (VCS), which contains rich semantic and syntactic 
features that can significantly improve the performance of deep learning smart contract 
models in smart contract vulnerability detection [22]. DeeSCVHunter can only detect re-
entry vulnerabilities and timestamp vulnerabilities, while the CBGRU model proposed in 
this paper can detect multiple vulnerabilities, and DeeSCVHunter does not consider the 
correlation between word embedding models and deep learning models when 
performing word embedding and feature extraction. Wu H et al. used a smart contract 
representation method based on key data flow graph information for capturing the key 
features of contracts before performing smart contract vulnerability detection, while 
overfitting can be avoided during training, and proposed a new tool, named Peculiar [23]. 
Peculiar improves detection performance by leveraging the technique of critical data flow 
graphs, but the process of building critical data flow graphs is complex and Peculiar can 
only detect smart contract reentry vulnerability. Qian P et al. proposed to combine a 
bidirectional long-short memory network with an attention mechanism for smart contract 
vulnerability detection, named BLTM-ATT, and they demonstrated through extensive 
experiments that this method can achieve better accuracy [11]. The BLSTM-ATT model 
also does not consider the association between the word embedding model and the deep 
learning model. The BLSTM-ATT model can only detect smart contract reentry 
vulnerability. Xing C et al. proposed a new slicing matrix for detecting vulnerabilities and 
experimentally demonstrated that the slicing matrix can improve the accuracy of 
vulnerability detection [24]. Xing C et al. select “Return” as the segmentation point when 
segmenting the contracts opcodes, but this cannot completely distinguish between useful 
and useless operands, which leads to partial feature loss and thus affects the performance 
of the model in detecting smart contract vulnerabilities. The CBGRU model pre-
processing takes into account the integrity of the smart contract to ensure the integrity of 
the smart contract semantics when performing feature extraction. Zhipeng Gao et al. 
proposed a method for automatically learning smart contract features based on character 
embedding and vector space comparison. The main approach is to parse smart contract 
code into a stream of characters with code structure information, convert the code 
elements into vectors, and thus compare the similarity between the coded vectors and 
known bugs to identify potential smart contract vulnerabilities [25]. Goswami S et al. 
proposed a smart contract vulnerability detection tool named TokenCheck, which was 
tested on the Ethernet smart contract dataset ERC-20 and obtained good results [26]. 
Goswami S et al. used a single LSTM neural network for feature extraction. The CBGRU 
model proposed in this paper combines the advantages of multiple deep learning models 
with more adequate feature extraction. From the above study, it can be seen that the 
combination of deep learning and vulnerability detection is feasible to obtain excellent 
vulnerability detection results, and the combination of smart contract vulnerability 
detection and deep learning can achieve the same good results. However, the association 
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between word embedding models and deep learning models was not considered in 
previous studies, and the advantages of combining multiple deep models were not 
combined when extracting feature extraction. 

2.2. Deep Learning Hybrid Models 
The CBGRU model proposed in this paper is a hybrid learning model, and the role 

of the hybrid model is to combine the strengths of each network to achieve better results. 
Hybrid models have been used in many fields and have obtained great results. Du S et al. 
combined one-dimensional convolutional neural networks (1D-CNNs) with bi-directional 
long-short memory networks (Bi-LSTMs) for air quality prediction, where convolutional 
neural networks are used to extract features and bi-directional long-short memory neural 
networks are used to learn the correlation of features [27]. Fu L et al. argued that deep 
learning models based on convolutional networks with DNA sequences as input found 
limited information and the prediction would be unsatisfactory, so they proposed a new 
deep learning model based on hybrid sequences [28]. Xi J et al. applied hybrid networks 
to high-resolution image classification, combining fully connected networks, 
convolutional neural networks, and fully convolutional networks, and showed 
experimentally that hybrid integrated learning methods have better performance 
compared to single classical neural networks and deep learning methods [29]. Yue W et 
al. combined the word vector model (Word2vec), the bi-directional long-term short-term 
memory network (BiLSTM), and the convolutional neural network (CNN), and 
experimentally demonstrated that the hybrid network model outperformed the single-
structured neural network in short text classification [30]. Chuang P J et al. combined the 
Naive Bayes model and C4.5 algorithms to improve the performance and training time of 
training classification models in network intrusion detection, and experimental results 
show that their proposed hybrid model can reduce the required training time while 
providing good detection performance [31]. Duan J et al. proposed a hybrid neural 
network model (MLCN and BiGRU-ATT) that combines the multilayer convolutional 
neural network (MLCNN) and the bidirectional gated recurrent unit (BiGRU) with the 
attention mechanism to be applied to news classification [32]. The following conclusions 
can be drawn from the above research. 
1. Hybrid models have been well used in image recognition, sentiment classification, 

network intrusion detection, and news classification. 
2. Hybrid models have better performance compared to a single deep learning model, 

and the training time is faster than a single model due to the lower complexity of 
each model in the hybrid model. 

3. Hybrid networks are more conducive to classification because they combine the 
advantages of different deep learning models. 
Therefore, in this paper, we choose to apply the hybrid network to the task of smart 

contract vulnerability detection. 

2.3. Research Motivation 
In previous deep learning-based smart contract vulnerability detection tasks, the 

neural network models used are linear and had a single structure, and the training process 
for the models is similar. The training process has four steps. 
1. Determining the label of the training data. 
2. Pre-processing of training data and making changes to the form of training data 
3. Extracting the feature values by deep learning models 
4. Classification of training data by the classifier of the model 

The process is shown in Figure 2. 
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Figure 2. The single model classification process. 

The single deep learning model can be achieved by increasing the number of layers 
of the model to obtain a higher accuracy of classification, but it brings the problem that 
the complexity of the model will also grow, and problems such as overfitting and a long 
training time will occur. The emergence of hybrid networks can improve such problems. 
Hybrid models perform feature extraction by two deep learning models, and then the 
extracted feature values are weighted so that the extracted feature values are more 
adequate. The hybrid model training process is shown in Figure 3. 

 
Figure 3. The hybrid model classification process. 

Before a deep learning model can be used to extract the features, the data needs to be 
processed so that it fits the input of the neural network. In previous research, word 
embedding has been used to convert smart contracts into multidimensional matrices. 
However, the connection between deep learning methods and word embedding methods 
has not been considered in previous studies. Each deep learning method and word 
embedding method has its advantages and disadvantages, so combining the advantages 
of deep learning models with the advantages of word embedding models is the key to 
improving the accuracy of smart contract vulnerability detection. Each deep learning 
method has different characteristics for solving different types of tasks; on the other hand, 
each word embedding method has its advantages and disadvantages, it is of great 
importance to combine the optimal word embedding method and the optimal deep 
learning model for smart contract vulnerability detection tasks. Since each word 
embedding approach may be incomplete in its representation of smart contract features, 
the proposed solution to this problem is to combine the advantages of different word 
embedding approaches and deep learning models, so we propose a new hybrid deep 
learning model named CBGRU after discussing various neural networks and word 
embedding approaches. The model uses two different word embedding methods for 
word embedding and two different deep learning models for the feature extraction phase. 
In addition, a large number of classification experiments are conducted in this study, 
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which is used to demonstrate the excellent performance of CBGRU in smart contract 
vulnerability detection. 

3. Overall Framework 
The core idea of this paper is to combine the advantages of different deep learning 

models with models of different word embeddings to improve the performance of smart 
contract vulnerability detection. The framework of the hybrid deep learning network 
proposed in this paper is shown in Figure 4. 

 
Figure 4. Hybrid network overall framework in this paper. 

As can be seen in Figure 4, the proposed framework of this paper is divided into four 
parts. 
1. Pre-processing of the dataset. 
2. Mapping high-dimensional smart contracts to low-dimensional vectors via word 

embedding models. 
3. Extract the feature values by two neural networks, then concatenate the feature 

values. 
4. Performing classification and deriving results. 

The research in this paper focuses on the second and third parts, combining the 
advantages of different word embedding methods and different depth models to improve 
the performance of smart contract vulnerabilities. In Part two and Part three, we discuss 
the currently popular word embedding methods, Word2Vec and FastText, and the 
currently commonly used deep learning models GRU, CNN, BiLSTM, LSTM, and BiGRU. 

3.1. Overall Model Structure 
Each deep learning model has its advantages and disadvantages in extracting 

features, for example, CNN (Convolutional Neural Networks) has strong feature 
extraction and generalization ability, but the performance is average for context-
dependent information. RNN (Recurrent Neural Network) has a good feature extraction 
ability for information with sequential dependence. However, RNNs are less capable of 
extracting features for data with long-term dependencies. LSTM (Long Short-Term 
Memory) can solve the long time-dependency problem of RNN [33], but it takes too long 
to perform feature extraction and the effect of the feature extraction is not as good as CNN. 
The characteristics of each word embedding method are also different. As can be seen in 
Figure 4, the structure of the deep learning model used in this paper is composed of two 
branches, and the deep learning model of each branch condenses the feature values after 
extracting them so that the extracted feature values are more adequate compared to the 
neural network structure of a single branch. Because CNN can extract features from smart 
contract sample data and have both good expressiveness and generalization capabilities, 
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they can improve the vulnerability detection capability of hybrid networks [34]. So, one 
of the two branches of the CBGRU model proposed in this study chooses CNN as the deep 
learning model. In studies on hybrid networks, CNNs are also mostly used in the feature 
extraction process of models due to their powerful feature extraction capabilities; for 
example, the CNN-SVM classifier proposed by Gong W et al. [35] and the DAQFF model 
proposed by Du S et al. [27]. The network model used in the feature extraction process of 
the other branch of the hybrid network proposed in this paper is the BiGRU model 
because smart contracts are context-dependent at runtime. GRU is a variant of RNN. Like 
LSTM, GRU is proposed to solve the gradient-vanishing problem that occurs in RNN, but 
GRU deals with the gradient-vanishing problem differently from LSTM. Compared with 
LSTM, GRU adds an update gate to replace the forgetting gate and input gate in LSTM, 
which greatly simplifies the results and parameters of the network and thus improves the 
training speed of the model. Furthermore, according to the study of Junyoung Chung et 
al. [36], GRU outperforms LSTM in some areas, and this paper also demonstrates 
experimentally that GRU outperforms LSTM in smart contract vulnerability detection 
tasks. BiGRU can further enhance the model’s feature-extraction capability in the feature-
extraction phase. Therefore, the structure of the hybrid model proposed in this paper is 
shown in Figure 5. 

 
Figure 5. CBGRU hybrid model structure. 

As shown in Figure 5, the CBGRU hybrid model in this paper is composed of a total 
of three layers, namely, the word embedding layer, the feature extraction layer, and the 
classification layer. The word embedding model used in the first branch of the hybrid 
model is word2vec. Mikolov et al. proposed the word vector method word2vec can 
control the feature vector dimension and solve the dimensional catastrophe problem 
without ignoring the relative position relationship of phrases in the text and preserving 
the semantic relationship of phrases [37]. Word2Vec has two training modes, CBOW and 
Skip Gram, and the one used in this study is CBOW, which predicts intermediate words 
by context [38]. The use of Word2Vec in combination with CNN has been widely used in 
previous research, and word2vec is also one of the most popular word embedding 
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methods that have been widely used in previous research, so word2vec is used in the first 
branch of the hybrid neural network proposed in this paper. The word embedding model 
used in the second branch is FastText, which is a variant form of word2Vec and differs 
from Word2vec in that the central word of the CBOW model is replaced with a category 
label. Finally, the model concatenates the features obtained from the two branches and 
performs vulnerability detection on the input smart contract. When the smart contract C 
is input to the model, the feature-learning process of the CBGRU hybrid model at moment 
t can be expressed as follows: 𝑊𝑜𝑟𝑑2𝑉𝑒𝑐(𝐶) ⟶ 𝐶  (1) 𝐹𝑎𝑠𝑡𝑡𝑒𝑥𝑡(𝐶) ⟶ 𝐶  (2) 𝐶𝑜𝑛𝑣𝑠(𝐶𝜔) ⟶ 𝐿𝑡 (3) 𝐵𝑖𝐺𝑅𝑈(𝐶 ) ⟶ 𝑆  (4) 𝐶𝑜𝑛𝑐𝑎𝑡(𝐿 , 𝑆 ) ⟶ 𝑂  (5) 
where 𝐿  denotes the features extracted by the CNN at moment t and 𝑆  denotes the 
features extracted by BiGRU at moment t. After that, feature fusion is performed to obtain 
the output of the CBGRU model at moment t. The CBGRU model detects the smart 
contract vulnerability process, as shown in Algorithm 1. 

Algorithm 1 Smart contract vulnerability detection process 
Input: S: Smart contracts that need to be tested 
Output: result: the result of detection 
1: Step1. Use the preprocessing function P to preprocess the smart contract S to obtain 𝑠  
2: 𝑆  = 𝑃(𝑆) 
3: Step2. Embedding 𝑆  using 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 to obtain the embedding matrix 𝑀𝟏 
4: 𝑀𝟏 = 𝑊𝑜𝑟𝑑𝟐𝑣𝑒𝑐 𝑆  
5: Step3. Embedding 𝑆  using FastText to obtain the embedding matrix 𝑀𝟐 
6: 𝑀𝟐 = 𝐹𝑎𝑠𝑡𝑇𝑒𝑥𝑡 𝑆  
7: Step4. CNN performs feature extraction on 𝑀𝟏 to obtain features 𝐹  
8: 𝐹  = 𝐶𝑁𝑁(𝑀𝟏) 
9: Step5. BiGRU performs feature extraction on 𝑀𝟐 to obtain features 𝐹  
10: 𝐹  = 𝐵𝑖𝐺𝑅𝑈 (𝑀𝟐) + 𝐵𝑖𝐺𝑅𝑈 (𝑀𝟐) 
11: Step6. Fusion of extracted feature values 
12: 𝐹  = 𝐹 ⊕ 𝐹  
13: Step7. Classification by softmax to obtain results 
14: result = Softmax (W𝐹 +b) 

3.2. Word Embedding Layer 
The main function of the word embedding layer is to process the original smart 

contract at the character level into the matrix, thus conforming to the input of the neural 
network. We collected all the keywords of solidity from Ethereum before the word 
embedding process, such as bool, break, case, catch, const, only owner, return, assert, 
event, indexed, union, etc. This is due to the smart contract vulnerability associated with 
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the solidity keyword. For example, in the case of the reentrancy vulnerability, the attacker 
mainly uses the features of the call.value function of the Ethereum smart contract to 
achieve reentrant. We have processed the smart contract as follows. 
1. Remove the solidity code version, such as “pragma solidity^0.4.4” in the 

ProofExistence contract in Figure 6. 
2. Removes comments, non-ASCII values, and blank lines from the contract. 
3. Represent user-defined function names as FUN plus numbers, and user-defined 

variable names as VAR plus numbers in smart contracts. This is because user-defined 
function names and variable names have little effect on whether the smart contract 
contains vulnerabilities and also add noise when performing feature extraction, 
which negatively affects the final feature extraction. 

4. Remove all spaces from the smart contract and perform word embedding; after the 
smart contract is processed, only the keywords in the solidity language will remain. 
The process is shown in Figure 6. 

 
Figure 6. Smart contract word embedding process. 

As shown in Figure 6, the smart contract has been processed a total of three times. 
The first process is to remove the parts of the smart contract components that are not 
relevant to the vulnerability. The second process is to use each line of the previously 
processed smart contract as a fragment. The third process is to collect each character 
fragment in each line as a token, and the tokens are collected to generate a matrix form 
conforming to the deep learning neural network through the word embedding method. 
In this study, the processing is the same for both Word2Vec and FastText. 

3.3. CBGRU Hybrid Network Layer 
This subsection will introduce the CBGRU model proposed in this paper in detail. 

The layer structure of CBGRU is shown in Figure 7. 
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Figure 7. CBGRU layer structure. 

As can be seen in Figure 7, after the smart contract has been completed by the 
Word2Vec and Fastest models for word embedding, the two deep learning models start 
to perform feature extraction. In this branch of the CNN model, CNN uses the one-
dimensional convolutional layer, because the size of the matrix generated after the smart 
contract has gone through the word embedding layer is (300, 100). After the data passes 
through the first convolution layer, it goes through a pooling layer to compress the 
number and parameters and reduce overfitting. The formula for the calculation of the one-
dimensional convolutional layer in the model can be expressed as 𝑐  =  𝑋 ∗ 𝑤  + 𝑏  (6) 

𝑋  =  𝑅𝑒𝐿𝑈 𝑐  (7) 𝑋  =  𝐹𝑙𝑎𝑡𝑡𝑒𝑛 𝑋  (8) 𝑋  =  𝐹𝐶 𝑤 𝑥  + 𝑏  (9) 
where w represents the filter and b represents the offset; these symbols are the same as 
below. 𝑋  in Equation (6) represents the input of the convolution layer. We use the 
ReLU function as the activation function in the convolution calculation where 𝑐  denotes 
the output vector of the convolution layer. The n in the formula indicates the layers 
involved. In this study, a total of two convolutional layers are used for local feature 
learning. The next layer learns a nonlinear representation based on the output of the 
previous layer, and then feeds the learned representation to the next layer, forming a 
layered feature representation. Flatten in the formula represents the Flatten layer, and FC 
represents the fully connected layer, whose role is to reduce the dimension of the final 
output vector. 

The deep learning model in another branch of CBGRU is BiGRU. Smart contracts first 
go through the Fastest model word embedding and then BiGRU for feature extraction. 
Since the size of the data is (300, 100), the unit of BiGRU is set to 300. After the feature 
extraction is completed, the activation operation is performed by the ReLU function, and 
the dropout layer is added to prevent overfitting. The forward propagation equation of 
the classical GRU model is expressed as 
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𝑟  =  𝜎(𝑊 ⋅ ℎ , 𝑋 ) (10) 𝑍  =  𝜎(𝑊 ⋅ ℎ , 𝑋 ) (11) ℎ  =  𝑡𝑎𝑛ℎ(𝑊 ⋅ 𝑟 ∗ ℎ , 𝑥 ) (12) ℎ  =  (1 − 𝑍 ) ∗ ℎ  +  𝑍 ∗ ℎ  (13) 𝑦  =  𝜎(𝑊 , ℎ ) (14) 

The 𝑍  and 𝑟  in the formula represents the update gate and reset gate, 
respectively, and [] represents that the two vectors are connected. ℎ  is represented as 
the candidate set at moment t, where X is the same as represented in the one-dimensional 
convolutional neural network as the input to the neural network. The W in the formula 
denotes the parameter to be learned. The BiGRU is added to the original one-way 
feedback as two-way feedback, and the BiGRU is capable of iterative processing of data 
in two directions. The equations for BiGRU can be expressed as 𝑟  =  𝜎 𝑊 ⋅ ℎ ⃗, 𝑋⃗  (15) 𝑍⃗  =  𝜎 𝑊 ⋅ ℎ ⃗, 𝑋⃗  (16) 

ℎ⃗  =  𝑡𝑎𝑛ℎ 𝑊 ⃗ ⋅ 𝑟 ∗ ℎ ⃗, 𝑥⃗  (17) 

ℎ⃗  =  1 − 𝑍⃗ ∗ ℎ  ⃗ + 𝑍⃗  ∗  ℎ⃗ (18) 

𝑦⃗  =  𝜎 𝑊⃗, ℎ⃗  (19) �⃖�  =  𝜎 𝑊 ⋅⃖ ℎ⃖ , �⃖�  (20) 

ℎ⃖  =  𝑡𝑎𝑛ℎ �⃖� ⋅ �⃖� ∗ ℎ⃖ , �⃖�  (21) 

ℎ⃖  =  1 − �⃖� ∗ ℎ  ⃖ + �⃖� ∗ ℎ⃖   (22) 

�⃖�  =  𝜎 �⃖� , ℎ⃖  (23) 𝑦  =  y⃗ ∗ �⃖�   (24) 
where the arrows in two directions indicate the forward and backward processes, 
respectively, and the final node output at moment t in the hidden layer is 𝑦 . After the 
feature extraction of the two branches of CBGRU’s smart contracts is completed, feature 
fusion is then performed through the connection layer. The feature fusion uses the concat 
method, and the fused feature matrix will be more adequate than the feature matrix 
extracted from a single network. Finally, the softmax layer will be used for classification 
to obtain the final result. 

3.4. CBGRU Model Overall Process 
The dataset used in this study can be expressed as 𝐷 = {𝐶 ,  𝐶 ,  𝐶 , … .  𝐶 }  after 

preprocessing is completed, where m represents a value of 42,569, which is the sum of 
samples in the dataset, 𝐶  is represented as a contract and 𝐶  is composed of k tokens 
that can be expressed as 𝐶  =  {𝑥 , 𝑥 … . , 𝑥 }, where x is denoted as a token. In the first 
branch, the input data needs to be processed by word2vec to be transformed into input 
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data suitable for CNN, and each token has to be embedded by word2vec to become 𝑥 , 
denoting the l-th embedding vector of the i-th smart contract. After word2vec processing, 
the smart contract is transformed from 𝐶  to 𝐶 . The composition of 𝐶  can be 
expressed as 𝐶 = {𝑥 ,  𝑥 ,  𝑥   ⋅⋅⋅,  𝑥  }, then 𝐶  is input to CNN for feature extraction. 
The CNN model mainly includes a pooling layer and convolutional layer, which performs 
convolutional operations on data at different scales to eventually produce more complex 
features. The CNN model implementation process used in this paper is shown in the 
following equation. 𝐹  =  (𝑤 ⋅ 𝑥 : + 𝑏) (25) 

𝐹  =  𝐹 𝐹 𝐹 … . , 𝐹  (26) 
where w denotes a filter for the CNN whose role is to generate a new feature value by 
convolution, s denotes the step size of the filter, b denotes the offset of the CNN, 𝐹  
denotes a feature obtained by convolution operation, and 𝐹  denotes the feature vector 
obtained after pooling. In the second branch, the input data are processed by the FastText 
word embedding model, and the token in the original smart contract is transformed into 𝑥 , which represents the l-th embedding vector of the i-th smart contract. The deep 
learning model used in the second branch is BiGRU, which consists of a forward GRU 
(forward GRU) and a back GRU (back GRU). The BiGRU model implementation process 
used in this paper is shown in the following equation. 𝐹  =  𝐹 , 𝑥  (27) 

𝐹  =  𝐹 , 𝑥  (28) 

𝐹  =  𝐹  + 𝐹  + 𝑏  =  𝐹 ,  𝐹 ,  𝐹 …  𝐹  (29) 
where 𝐺𝑅𝑈  represents the hidden input of the forward GRU, 𝐺𝑅𝑈  represents the 
hidden input of the back GRU, 𝑥  denotes the output of GRU at moment t, and 𝑏  
denotes the offset vector at time t. The features extracted by the two neural networks are 
fused to obtain the final features extracted by the CBGRU model. The features extracted 
by CBGRU are expressed in the following equation. 𝐹  =  𝐹  ⊕  𝐹  (30) 

The obtained hybrid features will be used as the input to the softmax layer of the 
model and the results will be obtained after classification. 𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊𝐹  +  𝑏  (31) 

where W represents the weight matrix and b represents the offset matrix. 
During the training of the CBGRU model, the main purpose is to improve the 

accuracy of the CBGRU model for smart contract vulnerability detection. The smart 
contract vulnerability detection task is also essentially a binary classification task, and the 
CBGRU model uses two different deep learning networks for feature extraction, and the 
two branches of the deep learning network are constantly learning during training, with 
the model trained to minimize the loss function. The CBGRU model uses the focal loss for 
calculating the loss, which is formulated as follows. 

𝐿𝑜𝑠𝑠  =  − 1𝑛 𝛼(1 − 𝑦 ) log 𝑦  + (1 −  𝛼)𝑦 log(1 − 𝑦 ) (32) 

The use of focal loss is mainly to solve the problem of sample imbalance and to reduce 
the weight of a large number of negative samples in training. In the formula, 𝑦  is the 
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probability that the i-th sample is predicted to be positive, and ζ is the adjustment factor, 
whose the main function is to adjust the loss contribution of simple samples, paying 
special attention to hard-to-classify samples, and reduce the impact of simple samples. α 
is a balancing factor to balance the proportion of positive and negative samples and adjust 
their significance. In this study, along the lines of [39], default values (ζ = 2 and α = 0.25) 
were used. The training process of the CBGRU model is shown in Algorithm 2. 

Algorithm 2 training model 
1: Initialize model parameters randomly 
2: Set the max number of epochs: 𝑒𝑝𝑜𝑐ℎ  
3: Set the origin dataset: D 
4: for S in D do 
5:    // Use the preprocessing function P to process the processing smart contract S 
6:    P(S) 
7: end for 
8: for t in 1, 2, 3…, T do 
9:    Pack the dataset t into mini-batch: 𝐷  
10: end for 
11: for epoch in 1,2,3…,𝑒𝑝𝑜𝑐ℎ  
12:    //Merge all datasets. 
13:    D = 𝐷  ∪ 𝐷 … ∪ 𝐷  
14:    for 𝑏  in 𝐷 do 
15:        𝐹  = CNN (𝑊𝑜𝑟𝑑2𝑣𝑒𝑐(𝑏 )) 
16:        𝐹  = BiGRU (𝐹𝑎𝑠𝑡𝑇𝑒𝑥𝑡(𝑏 )) 
17:        result = Softmax (𝐹  + 𝐹 ) 
18:        Loss (𝜃) = Equation (32) 
19:        Compute gradient: ▽(𝜃) 
20:        Update model: 𝜃 = 𝜃 − 𝜀 ▽(𝜃) 
21:        end for 
22: end for 

 
The hybrid model CBGRU proposed in this paper differs from the models in previous 

studies in that we combine different word embedding methods with different distinctive 
deep learning methods to obtain better results. The CBGRU model is the first to apply 
hybrid networks to smart contract vulnerability detection while achieving good detection 
results. In the following section, we present the experimental part of this paper to 
demonstrate the superiority of the performance of the hybrid model proposed in this 
paper through a large number of experiments. 

4. Experiments and Results 
In this subsection, we first introduce the performance metrics that we used in our 

experiments. The optimizer chosen for our study is Adam, which is used to update and 
compute the network parameters that affect the model training and model output to 
approximate or reach the optimal value. We chose Adam as the optimizer because Adam 
combines the performance of AdaGrad and RMSProp [40]. Adam provides optimization 
of methods for solving sparse matrix and noise problems and has been widely used in 
deep learning applications in recent years, especially for computer vision and natural 
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language processing tasks. Referring to the currently popular TensorFlow [41] and Keras, 
the learning rate of the Adam optimizer was set to 0.001. The dropout of the Dropout layer 
in the CBGRU model was set to 0.5. This is because the randomly generated network 
structure is the most when the dropout is set to 0.5, which is beneficial for enhancing the 
generalization of the model. We set the epoch to 50 and the batch size to 128 in our 
experiments. 

The experiments in this paper are divided into two parts: the first part is to discuss 
different deep learning models and word embedding models to prove the correctness of 
the CBGRU model proposed in this study, and the second part is to demonstrate the good 
performance of our proposed CBGRU model by comparing it with the models proposed 
in previous researches. In addition, we used different performance metrics, such as 
accuracy (ACC), precision (PRE), F1-score (F1), and false-positive rate (FPR), to evaluate 
the performance of our models. 

4.1. Dataset 
The dataset used in this paper is the recently released SmartBugs Dataset-Wild [42], 

a large-scale dataset of smart contract vulnerabilities based on the Solidity language. This 
dataset contains 47,587 real and unique sol files, which contain a total of about 203,716 
smart contracts. We labeled the dataset based on the research of Durieux T et al. [43]. 
Because smart contracts can call each other, we treat a sol file as a smart contract when 
labeling data. According to the research of Durieux T et al., the sol files in SmartBugs 
Dataset-Wild were finally divided into two categories: smart contracts with vulnerabilities 
and smart contracts without vulnerabilities. There are six types of vulnerabilities 
contained in vulnerable smart contracts; the smart contract vulnerability categories are 
Stack Call Depth Attack vulnerability (Callstack Depth Attack), Integer Overflow 
vulnerability (Integer Overflow), Integer Underflow vulnerability (Integer Underflow), 
Reentry vulnerability (Reentry), Timestamp Dependency vulnerability (Timestamp 
Dependency), and Transaction Ordering Dependence vulnerability (Transaction 
Ordering Dependence). The number of smart contracts with vulnerabilities is 35,151, and 
the number of smart contracts without vulnerabilities is 12,247. The distribution of the 
numbers in the dataset is given in Figure 8. 

 
Figure 8. Dataset distribution. 

From Figure 8, we can see that the sample data of smart contracts with and without 
vulnerabilities are not evenly distributed, and if such a dataset is used it will lead to 
overfitting. Therefore, we also used the smart contract dataset published by Peng Qian et 
al. [11]. To compare with previous studies, we change the transaction order dependency 
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vulnerability (Transaction Ordering Dependence) to the Infinite Loop vulnerability 
(Infinite Loop) in the dataset. The distribution of the number of vulnerabilities in the final 
dataset is shown in Figure 9. 

 
Figure 9. Distribution of the number of vulnerabilities. 

It can be seen from Figure 6 that the distribution of the number of various 
vulnerabilities in the dataset used in this study is reasonable compared to the original 
dataset. The number of vulnerabilities is shown in Table 1. 

Table 1. Number of smart contract vulnerabilities. 

Vulnerability Name Numbers 
Callstack Depth Attack 1378 

Integer Overflow 1640 
Integer Underflow 1988 

Reentry 1719 
Timestamp Dependency 1671 

Infinite Loop 1317 

Finally, we selected the same number of smart contracts that do not contain 
vulnerabilities to form the final smart contract dataset. 

4.2. Experiment 
4.2.1. Comparative Experiments 

The core idea of the CBGRU model proposed in this paper is to combine the 
advantages of the word embedding model with those of the deep learning model to 
improve the performance of the model. Therefore, among the word embedding models, 
we chose the currently popular word2vec and FastText models, and among the deep 
learning models, we chose CNN, LSTM, GRU, BiGRU, and BiLSTM. We compare the 
performance of different deep learning models combined with different word embedding 
methods under the same algorithm and parameters. Among the models compared, M1 to 
M9 are hybrid models, which are structurally consistent with the CBGRU model, and M11 
to M14 are single-branch deep learning models, where M10-A and M15-B are the branches 
in our proposed hybrid neural network, respectively. We conducted several experiments 
on 15 models to demonstrate that the CBGRU model is the optimal choice for smart 
contract vulnerability detection. 
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Since deep learning networks change their parameters after each training, we 
recorded the data from multiple tests of the model and chose the best one. In the 
experiment, each model was trained 50 times. The performance metric in the self-
comparison experiment is the accuracy of the test set. The final results are shown in Table 
2. 

Table 2. Self-comparison model. 

Model 
Name 

Classification 
Method One 

Embedding 
Method 

Classification 
Method Two 

Embedding 
Method 

Embedding 
Size 

Dropout Epoch Accuracy 
(%) 

M1 CNN Word2Vec CNN Word2vec 300 0.5 50 80.78 
M2 CNN Word2Vec GRU Word2vec 300 0.5 50 80.33 
M3 CNN Word2Vec LSTM Word2vec 300 0.5 50 79.67 
M4 CNN Word2Vec BiLSTM Word2vec 300 0.5 50 81.14 
M5 CNN Word2Vec BiGRU Word2vec 300 0.5 50 82.10 
M6 CNN Word2Vec CNN FastText 300 0.5 50 79.25 
M7 CNN Word2Vec GRU FastText 300 0.5 50 80.67 
M8 CNN Word2Vec LSTM FastText 300 0.5 50 79.45 
M9 CNN Word2Vec BiLSTM FastText 300 0.5 50 83.55 

CBGRU CNN Word2Vec BiGRU FastText 300 0.5 50 85.80 
M10-A CNN Word2Vec \ \ 300 0.5 50 75.67 

M11 BiLSTM Word2Vec \ \ 300 0.5 50 74.60 
M12 BiGRU Word2Vec \ \ 300 0.5 50 75.56 
M13 CNN FastText \ \ 300 0.5 50 77.65 
M14 BiLSTM FastText  \ \ 300 0.5 50 75.04 

M15-B BiGRU FastText \ \ 300 0.5 50 78.75 

From Table 2, we can see that the CBGRU model proposed in this paper has better 
performance than the hybrid model proposed in this paper for data containing multiple 
smart contract vulnerabilities. The comparison between M11-A and M13 can be concluded 
that the combination of CNN and Word2Vec can obtain better detection performance in 
smart contract vulnerability detection. Similarly, the comparison between M11 and M12 
shows that under the same conditions, BiGRU is more adequate for the extraction of smart 
contract vulnerability features. The comparison of M12 and M14 shows that the 
combination of BiGRU and FastText can achieve better feature extraction. Comparing M2 
with M5, we can conclude that the bi-directional network is better than the normal 
network in feature extraction of smart contract vulnerabilities, and comparing M3 with 
M4, we can also get the same conclusion. Comparing M9 and CBGRU, it can be concluded 
that the CBGRU model proposed in this paper has good performance. From Table 2, we 
can see that M15-B has an excellent performance in single-structured networks. We also 
conducted experiments with M15-B as two branches of the hybrid model. We also 
experimented with M15-B as two branches of the hybrid model, but a gradient explosion 
occurred during the training period, indicating a problem with the structure of the 
network. The training process of the CBGRU model proposed in this paper is shown in 
Figure 10. 
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Figure 10. CBGRU training process. 

As can be seen from Figure 10, all four curves of the model gradually flatten out after 
the training count reaches 30 (epoch ≥ 30). Moreover, during the training process, the 
curves in the validation and training sets have the same trend and are close to each other, 
indicating that there is no overfitting in the model during the training. In the training 
process shown in Figure 10, the results of the model show an accuracy of 85.80%, recall of 
86.18%, precision of 85.54%, and F1 of 85.86%. In this subsection, we experimentally 
demonstrate that the combination of CBHRU models proposed in this study is reasonable. 

4.2.2. Comparison with Previous Studies 
In the previous subsection, we justified the CBGRU model by comparing it with 

different hybrid models, and this subsection will compare it with the models proposed in 
previous studies to demonstrate that the CBGRU model has good performance in smart 
contracts vulnerability detection. Since the methods proposed in the previous study target 
different vulnerabilities, the CBGRU model proposed in this paper is also tested for 
different smart contract vulnerabilities to compare the performance in smart contract 
vulnerability detection. The performance metrics used are accuracy, precision, recall, and 
F1. The CBGRU model proposed in this paper is trained and tested for six common smart 
contract vulnerabilities, namely, Infinite Loop, Timestamp Dependency, Integer 
Overflow, Reentry, Callstack Depth Attack, and Integer Underflow. The training process 
is shown in Figure 11. 
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Figure 11. CBGRU model training process. 

From Figure 11, it can be concluded that the CBGRU model proposed in this paper 
has good detection performance for all six smart contract vulnerabilities. The test results 
for the six different vulnerabilities are shown in Table 3. 

Table 3. Test results for the six different vulnerabilities. 

Vulnerability Type Accuracy Precision Recall F1-Score 
Infinite Loop 93.16% 89.15% 98.29% 93.50% 
Reentrancy 93.30% 96.30% 85.95% 90.92% 

Integer Overflow 86.54% 87.23% 85.66% 86.43% 
Callstack Depth Attack 90.31% 90.04% 88.41% 90.21% 

Timestamp Dependency 93.02% 89.47% 97.45% 93.29% 
Integer Underflow 85.43% 86.15% 84.42% 85.28% 

As can be seen from the table, for the four vulnerabilities of infinite loop, re-entry, 
timestamp dependency, and call stack depth attack, the CBGRU model proposed in this 
paper achieves accuracy and an F1-score of over 90%. However, both Integer Underflow 
and Integer Overflow have accuracy and an F1-score around 85%, which is lower than the 
remaining four vulnerabilities. The reason for this situation is that the features of these 
two vulnerabilities are not obvious in the code, so the correct rate is low. To demonstrate 
the superiority of the performance of the CBGRU model, we chose the models proposed 
in previous studies to compare the detection performance in the case of the same 
vulnerability. In the same experimental setting, we chose to compare the DeeSCVHunter 
model proposed by Yu X et al. [22], the Peculiar model proposed by Wu H et al. [23], the 
BLSTM-ATT model proposed by Peng Qian et al. [11], the TMP and DR-GCN models 
proposed by Zhang et al. [44], and the AME model proposed by Liu Z et al. [45]. Three 
different smart contract vulnerabilities were selected for comparison, and the results of 
the comparison are shown in Figures 12–14. 
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Figure 12. Reentry vulnerability detection results. 

 
Figure 13. Timestamp vulnerability detection results. 
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Figure 14. Infinite loop vulnerability detection results. 

As can be seen in Figure 12, the CBGRU model performs well in the smart contract 
reentry vulnerability detection task, with a precision of 96.30%, recall of 85.95%, an 
accuracy of 93.30%, and an F1-score of 90.02%. Peculiar has a precision of 91.80%, an 
accuracy of 92.37%, a recall of 92.40%, and an F1-score of 92.10%, which is the best 
performance among the models involved in the comparison. This was followed by 
DeeSCVHunter, with a precision of 90.70%, a recall of 83.46%, an accuracy of 93.02%, and 
an F1-score of 86.87%. Furthermore, the BLSTM-ATT has a precision of 88.50%, a recall of 
88.48%, an accuracy of 88.47%, and an F1 score of 88.26%. The AME has a precision of 
86.25%, a recall of 89.69%, an accuracy of 90.19%, and an F1 score of 87.94%. The DA-GCN 
has a precision of 89.84%, a recall of 82.00%, an accuracy of 91.15%, and an F1 score of 
85.43%. The TMP has resulted in performance with a precision of 74.06%, a recall of 
82.63%, an accuracy of 84.48%, and an F1-score of 83.82%. Finally, the obtained results 
portrayed that the DR-GCN has demonstrated poor performance by offering the lowest 
precision, 72.36%; the lowest recall, 80.89%; the lowest accuracy, 81.47%; and the lowest 
F1-score, 76.39%. The performance of TMP and DR-GCN is lower than the rest of the 
models and performs poorly. Since the F1-score is used to measure the values of precision 
and recall, we discuss the models involved in the comparison in terms of both accuracy 
and F1-score. From the comparison results, it can be seen that the accuracy of the CBGRU 
model proposed in this paper is higher than that of DeeSCVHunter, Peculiar, BLSTM-
ATT, AME, and DA-GCN. When performing a single smart contract vulnerability 
detection test in this paper, the number of smart contract samples containing 
vulnerabilities and the number of samples without smart contract vulnerabilities in the 
dataset is the same, so the higher the correct rate indicates the better the performance of 
the deep learning network when performing vulnerability detection. Among the models 
involved in the comparison, the BLSTM-ATT uses the word2vec model for word 
embedding and feature extraction via the BLSTM model. The BLSTM-ATT model uses a 
single word embedding approach and a single deep learning model. The CBGRU model 
proposed in the paper combines the advantages of different word embedding models and 
deep learning models, and it can be seen from the comparison results that the accuracy of 
the CBGRU model is 4.49% higher than that of BLSTM-ATT and the F1-score is 2.66% 
higher than that of the BLSTM-ATT. Among all the models involved in the comparison, 
the models with an F1-score higher than 90% are the CBGRU model and the Peculiar 
model, and when the F1-score is high, it indicates that the vulnerability detection method 
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used in the model is efficient. The F1-score of Peculiar is slightly higher than the F1-score 
of the CBGRU model proposed in this paper. In performance metrics, Peculiar has a 
higher recall rate but lower precision rate than the CBGRU model. It means that Peculiar 
can detect more samples containing smart contract vulnerabilities than the CBGRU model, 
while the CBGRU model can identify more samples containing smart contract 
vulnerabilities than Peculiar in the detection results. The reason is that Peculiar is a 
detection model designed for smart contract reentry vulnerabilities. Peculiar also uses 
critical data flow graph (CDFG) techniques for pre-processing; so, Peculiar only uses 
critical information related to reentry vulnerabilities to detect whether a smart contract 
contains a reentry vulnerability. The Peculiar model reduces the interference of useless 
information in vulnerability detection information by using CDFG. The CBGRU model 
proposed in this paper is capable of detecting multiple vulnerabilities. The CBGRU model 
reduces the impact of irrelevant information during smart contract vulnerability detection 
by extracting smart contract keywords, replacing custom variables, and removing parts 
that are irrelevant to vulnerability detection when pre-processing smart contract samples. 
However, different smart contract vulnerabilities are associated with different keywords, 
and when the CBGRU model performs the reentry vulnerability detection task, the 
processed smart contract samples still contain the keywords used to detect other 
vulnerabilities, thus affecting the extraction of vulnerability features by the CBGRU 
model. This results in a slightly lower F1-score for the CBGRU model than for the Peculiar 
model. 

As can be seen in Figure 13, the CBGRU model has an accuracy of 93.02%, a recall of 
97.45%, a precision of 89.47%, and an F1-score of 93.29% in the timestamp vulnerability 
detection task. From the comparison results, it can be seen that the CBGRU model 
outperforms the rest of the models in the timestamp vulnerability detection task. Among 
the models involved in the comparison, the DA-GCN model uses a single GCN model for 
smart contract vulnerability feature extraction, while the CBGRU model uses a BiGRU 
model and CNN model for feature extraction. The CBGRU model is 5.48% higher than 
DA-GCN in terms of accuracy and 8.46% higher than DA-GCN in terms of F1-score, which 
can be concluded that the feature values extracted by combining the advantages of 
different deep learning networks are more adequate. From Figure 14, it can be seen that 
the CBGRU model proposed in this paper performs very well in the infinite loop 
vulnerability detection, with an accuracy of 93.16%, recall of 89.15%, precision of 98.29%, 
and F1-score of 93.50%; it also can be seen that CBGRU model is higher than the rest of 
the models in terms of performance metrics. Compared to the AME model, which 
performed well in the comparison model, the CBGRU model improved 12.84% in 
accuracy and 14.62% in F1-score. 

From the above discussion, it can be seen that the CBGRU model proposed in this 
paper is higher than the rest of the models in terms of accuracy in the smart contract 
reentry vulnerability detection task, and only the F1-score was slightly lower than the F1-
score of the Peculiar model. The CBGRU model performs well in both the timestamp 
vulnerability detection task and the infinite loop vulnerability detection task. From Figure 
14, we can see that the CBGRU model outperforms other models in detecting timestamp 
vulnerabilities detection and in finite loop vulnerabilities detection. In the test results of 
all three vulnerabilities of smart contracts, the CBGRU model proposed in this paper 
maintains an above 90% F1 score. In summary, the CBGRU model proposed in this study 
has good performance for smart contract vulnerability detection. 

On the one hand, the CBGRU model has higher accuracy in vulnerability detection 
tasks and is capable of detecting multiple vulnerabilities compared to previous studies. 
On the other hand, the smart contract vulnerability detection model proposed in this 
paper also has limitations. First, our proposed CBGRU model can only detect whether a 
smart contract contains a vulnerability, and cannot identify the type of vulnerability for a 
smart contract that contains multiple vulnerabilities. Second, our proposed CBGRU 
model is capable of detecting multiple smart contract vulnerabilities, but the accuracy of 
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detecting smart contract vulnerabilities with distinct features is higher than that of smart 
contract vulnerabilities with insignificant features. For example, in the Integer Overflow 
vulnerability detection task, CBGRU has an accuracy of 86.54%, but in the Infinite Loop 
vulnerability detection task, CBGRU has an accuracy of 93.16%. Finally, deep learning 
models are more effective on huge datasets, but the dataset used in this study is not very 
large. 

5. Conclusions 
In this paper, we propose a deep learning-based hybrid network model CBGRU. The 

presented model operates on four stages, namely, smart contract pre-processing, word 
embedding, feature extraction, and classification. We completed the word embedding of 
the smart contracts using the FastText and Wrod2Vec models. In one branch of the 
CBGRU model, the features are extracted from the Word2vec embedding using CNN, 
whereas, in another branch, features are obtained from FastText embedding using BiGRU. 
In the classification phase, the features obtained from the two branches are merged and 
transferred to the softmax layer for classification. 

We conducted two different main experiments in order to verify the performance of 
the CBGRU model proposed in this paper. We use a publicly available dataset in our 
experiments. In the first experiment, we created 15 basic deep learning models by 
combining different deep learning models with different word embedding models. We 
experimentally demonstrate that our proposed CBGRU model outperforms other basic 
models in performing smart contract vulnerability detection. In the second experiment, 
we chose three different smart contract vulnerabilities for comparison purposes. The 
results of the comparison show that CBGRU model has accomplished maximum 
performance with an accuracy of 93.30%, 93.02%, and 93.16% in reentry vulnerability, 
timestamp vulnerability, and infinite loop vulnerability, respectively. The results show 
that the CBGRU proposed in this paper has a higher accuracy and better classification 
performance and that the CBGRU model is capable of detecting multiple smart contract 
vulnerabilities. 

We experimentally demonstrate that the CBGRU approach has excellent smart 
contract vulnerability detection and higher accuracy than other models in testing tasks 
against a wide range of smart contract vulnerabilities. In addition, CBGRU can perform 
vulnerability detection in the local network, which is more convenient and faster than 
traditional smart contract vulnerability detection tools. In this paper, we also 
experimentally demonstrate that using different word embedding methods enables the 
model to extract feature values more adequately. In the follow-up work, we will try to 
identify multiple smart contract vulnerabilities in the same smart contract and improve 
the accuracy of the CBGRU model to detect vulnerabilities in smart contracts with obscure 
features. 
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