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Abstract: Agricultural industry is facing a serious threat from plant diseases that cause production
and economic losses. Early information on disease development can improve disease control us-
ing suitable management strategies. This study sought to detect downy mildew (Peronospora) on
grapevine (Vitis vinifera) leaves at early stages of development using thermal imaging technology
and to determine the best time during the day for image acquisition. In controlled experiments,
1587 thermal images of grapevines grown in a greenhouse were acquired around midday, before
inoculation, 1, 2, 4, 5, 6, and 7 days after an inoculation. In addition, images of healthy and infected
leaves were acquired at seven different times during the day between 7:00 a.m. and 4:30 p.m. Leaves
were segmented using the active contour algorithm. Twelve features were derived from the leaf mask
and from meteorological measurements. Stepwise logistic regression revealed five significant features
used in five classification models. Performance was evaluated using K-folds cross-validation. The
support vector machine model produced the best classification accuracy of 81.6%, F1 score of 77.5%
and area under the curve (AUC) of 0.874. Acquiring images in the morning between 10:40 a.m. and
11:30 a.m. resulted in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC.

Keywords: precision agriculture; disease detection; pre-symptomatic diagnosis; classification; fungal
infection; biotic stress; viticulture

1. Introduction

Plant diseases are a major cause of production losses and economic losses in the
agriculture industry [1]. Pathogens are responsible for direct yield losses of 20–40% of
global agricultural productivity [1]. In order to ensure sustainable agriculture, it is essential
to monitor plant health to prevent disease spread with as little damage to crop production
as possible. However, the main challenge is the difficulty in determining the physical,
chemical, and biological changes in plants before symptoms of infection appear [2].

Disease detection techniques can be classified into invasive and non-invasive methods.
Invasive techniques involve destructive leaf sampling followed by chemical treatments
after direct identification of the pathogen [3]. Non-invasive techniques identify plant
diseases by detecting the impact of the pathogen on the physiological plant response.
Currently, the most promising non-invasive disease detection methods are sensors that
measure temperature, reflectance, or fluorescence [4,5].

Leaf temperature is a rapid response variable that can reveal crop stresses before visible
symptoms appear [6]. Stressed plants respond with physiologic protection mechanisms that
lead to changes in leaf surface temperature [4]. Infrared thermography (IRT) enables the
evaluation of the plant temperature related to changes in water status and transpiration due
to infections by pathogens. Temperature differences within individual leaves, plants, and
crops indicate the presence of disease in plants. Compared to optical, multispectral, and
hyperspectral sensors, thermal sensors have been shown to be more effective at detecting
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disease-induced early modifications [4]. For example, an infrared (IR) camera was able to
differentiate biotic from abiotic stress on cotton [7].

Grapevine downy mildew (DM) is a disease of the foliage caused by Oomycete
Plasmopara viticola that spreads through extremely efficient asexual reproduction cycles [8].
Originally from North America, DM was accidentally introduced to Europe at the end
of the 19th century, where it caused extensive damage to the grape industry [9]. During
the spring, oospores germinate to produce macrosporangia, which under wet conditions
release zoospores. When rain splashes the zoospores into the canopy, they swim to and
through the stomata, where the primary infection occurs. The optimal environmental
conditions for primary infection to occur are at least 10 mm of rainfall (or irrigation), and
a temperature of at least 10 ◦C over 24 h [10]. At early stages of infection, DM causes an
increase in transpiration rate and a decrease in leaf temperature. The opposite occurs with
further DM development: an appearance of chlorotic and necrotic tissue, increased water
loss, and an inability of plant tissue to regulate stomatal opening.

The maximum temperature difference (MTD) within a leaf increases during pathogen-
esis with the formation of necrotic tissue [11]. IRT was used to detect spread of rose DM
infections one or two days before the appearance of visible symptoms [12] and cucumber
DM before visual symptoms as well [13]. The initial signs of infection in the thermal
images were observed as early as four days after infection. However, IRT is often subject to
environmental factors such as ambient temperature, sunlight, rainfall, or wind speed [4].
Changes in environmental conditions may affect leaf temperature, making it difficult to
differentiate it from a change caused by infection or disease [14]. Alchanatis et al. [15]
found that, for estimating and mapping water status variability of cotton, best results from
thermal images were achieved at midday (12:00 p.m.–2:00 p.m.).

A previous study showed the feasibility of detecting grapevine DM by support vector
machine (SVM) on a limited set of data derived from thermal images [16]. Looking at a
small number of infection intervals, DM was detected with an accuracy of 69.2% and F1
score [17] of 74.9%.

The aim of this study was to determine whether thermal imaging can be used to
reveal early stages of P. viticola infection. The specific objectives were to: (i) extract features
for classification based on temperature and image processing algorithms; (ii) develop
classification models to distinguish between infected and healthy grapevine leaves; and
(iii) determine the best time during the day to acquire thermal images for DM detection.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Experiments were conducted in six campaigns between the end of December 2019
and the end of October 2020 on 169 grapevine plants, cultivar ‘Chardonnay’. The plants
were transplanted into plastic pots with a mixture of organic soil (Even Ari Green LTD,
Beit Elazari, Israel), and grown in experimental greenhouses at 25/18 ◦C (day/night) in
Evogene farm, Naan Road, Israel (31◦47′ 20.472′′ N, 35◦12′ 3.888′′ E). In each campaign,
between 15 to 34 plants were tested (depending on availability) and included different
imaging days (healthy leaves and 1, 2, 4, 5, 6, and 7 days after inoculation). Images on the
3rd day after inoculation were not acquired because it fell on non-working days, so it was
not possible to acquire images on this day. Moreover, according to the literature, symptoms
typically appear on thermal images on the 4th day after inoculation; therefore, the 3rd day
data were not completed. Plants received two daily irrigations of fresh water with organic
liquid fertilizer (ICL Fertilizers, Dublin, OH, USA). Each of the six campaigns included the
following stages:

1. For each stem, the second unfolded leaf from the apex was selected for inoculation
and was marked with a color clip or aluminum foil (2–6 leaves in each plant);

2. On the first day of the campaign, images of the healthy leaves were acquired;
3. The leaves were spray-inoculated with 1× 104 concentration of P. viticola onto the

lower surface using a hand sprayer;
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4. The inoculated plants were incubated in a high humidity chamber under optimal
environmental conditions in order to allow the pathogen to infect the host tissue and
cause DM to develop;

5. In the period of 1–7 days after inoculation, images of healthy and infected leaves were
acquired. Images were only acquired on sunny days with a clear sky, meaning that, if
weather conditions were not suitable on a particular date, images were not acquired.
Table 1 depicts the dates when image acquisition was conducted for each campaign;

6. After the last imaging day (day number 7), the leaves were placed in Petri dishes in
order to evaluate the level of the developed disease, which was visually rated by an
expert between 0 and 10 (0—healthy, 10—severe disease).

Table 1. The experimental schedule.

Campaign Date Days after
Inoculation

Number of Infected
Leaf Samples

Number of Healthy
Leaf Samples

1 30 December 2019 1 71 17
1 31 December 2019 2 74 -
2 16 January 2020 4 60 -
3 26 January 2020 7 52 -
4 3 March 2020 2 94 85
4 5 March 2020 4 86 -
4 8 March 2020 7 86 -
5 26 March 2020 0 - 323
5 2 April 2020 4 101 -
6 25 October 2020 4 45 45
6 26 October 2020 5 45 45
6 27 October 2020 6 45 43
6 28 October 2020 7 45 41

The diurnal response of leaf temperature was measured on 27 October. Images were
acquired along the entire day at seven different times (rounds) between 7:00 a.m. and
4:30 p.m. (Table 2). Each round lasted about one and a half hours and included about
87 samples. In each plant, six leaves were sampled: three were six days after inoculation,
and three were healthy. Each plant received two daily doses of water: one before the first
round and one before the fourth round.

Table 2. Diurnal acquisition: Time of image acquisition and number of samples.

Round Number Acquisition Time Number of Samples

1 7:15–8:25 88
2 9:00–9:45 88
3 10:40–11:30 88
4 12:25–13:15 87
5 14:15–15:05 86
6 15:20–16:00 86
7 16:00–16:30 52

2.2. Thermal and RGB Image Acquisition

To allow optimal photosynthesis of the plants, imaging was conducted outside of the
greenhouse. The plants were taken out of the controlled greenhouse and placed outdoors
for at least one hour before imaging to allow them to adjust to the environmental conditions
that were different from the greenhouse conditions. The images were acquired between
10:00 a.m. and 3:00 p.m. to ensure high solar radiation that allowed plants to conduct
photosynthesis. Each leaf was placed directly in front of the sun to avoid changes in the
illumination of the plant surfaces with the sun angle changes. Meteorological conditions
were continuously monitored and included measurements of air temperature (◦C), relative
humidity, solar radiation (W/m2), wind speed (m/s), and wind direction. An image of
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each leaf was acquired by two cameras—a thermal camera (FLIR SC655, FLIR Systems,
Melville, NY, USA) and an RGB camera (Canon EOS6D, Canon Inc., Taby, Sweden) that
was used for documentation purposes. The IR camera uses an uncooled microbolometer
detector with a resolution of 640 × 480 pixels, sensitive in the spectral range of 7.5–13 µm,
possesses an accuracy of ±2 ◦C or ±2% of the reading, and thermal sensitivity of 0.05 ◦C
@ + 30 ◦C. For each leaf, the thermal camera acquired a half-minute video and the RGB
camera acquired two images. One image from each video was selected for classification.
The image was manually selected by visually estimating the maximal leaf surface exposed
to the camera.

2.3. Datasets

The classification dataset included 1403 records (599 healthy leaves and 804 infected
leaves). The records included thermographic measurements of the leaves, meteorological
measurements collected simultaneously, calculated features from raw data, and manual
evaluation of the disease severity. To determine the earliest day that a model can detect the
disease, a subset was created from this dataset, which included records with actual disease
severity of 5 or higher. This set included 1097 records (599 healthy leaves and 498 infected
leaves). Outliers were removed from the new set, which resulted in 1012 records (571
healthy leaves and 441 infected leaves). The dataset for determining the best acquisition
time contained 575 records (280 healthy leaves and 295 infected leaves).

2.4. Algorithm for Leaf Delineation

Leaves were segmented using edge detection with the ‘Chan-Vese’ active contour
algorithm [18]. This method ensures an unbiased contour enabling to either shrink or
expand based on the image features. The software was implemented using MATLAB
version R2019b (MathWorks Inc., Natick, MA, USA) with additional functions (Shawn
Lankton, 2007). The inputs for the algorithm were a thermal image converted to grayscale
and an initial mask; the outputs were an image with the leaf contour and a final mask. For
each leaf, the position and size of the initial mask were set manually. The active contour
algorithm was run on the mask for a maximum of 100 iterations with a smoothing term of
0.3 (Lambda).

2.5. Feature Extraction

Leaf features were calculated from the leaf’s mask (Table 3). The thermal camera provided
leaf absolute temperature, after being provided with the values for ambient temperature,
reflected temperature, emissivity, and distance from the object. For the analysis, relative values
were used by normalizing features expressing temperature by T—Tair. Healthy leaves had
an average temperature of 30 ◦C with a standard deviation of 4, whereas infected leaves had
an average temperature of 31.1 ◦C with a standard deviation of 5.22. The difference in the
temperature between healthy and infected leaves was around 1 ◦C.

Table 3. Features description.

Variable Name Description Range Symbol Calculation

Minimum temperature
The minimum temperature in the leaf,

minus the air temperature measured at the
same time

(−6.3)–10.7 Tmin Tmin-Tair

Maximum temperature
The maximum temperature in the leaf,

minus the air temperature measured at the
same time

(−4.2)–14.6 Tmax Tmax-Tair

Average temperature
The average of the leaf temperatures values,
minus the air temperature measured at the

same time
(−5.11)–12.98 Tavg Tavg-Tair
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Table 3. Cont.

Variable Name Description Range Symbol Calculation

Median temperature
The median of the leaf temperatures values,
minus the air temperature measured at the

same time
(−5.06)–13.11 median median-Tair

Maximum temperature
difference

The difference between the maximum and
minimum temperature in the leaf 0.5–7.1 MTD Tmax-Tmin

Standard deviation The standard deviation value of the leaf
temperature values 0.1–1.73 STD std

Interquartile range
A measure of statistical dispersion and

equal to the difference between 75th and
25th percentiles

0.17–3.28 IQR T0.75-T0.25

Mean absolute
deviation

A robust measure of the variability. Defined
as the mean of the absolute deviations from

the mean of the data
0.1–1.53 MAD ∑|Ti−mean|

n

Coefficient of variation

Or relative standard deviation, a
standardized measure of the dispersion of a

probability distribution or
frequency distribution.

0.004–0.061 CV STD
mean

Percentile 10
The percentile is a score at or below which a

given percentage fall, minus the air
temperature measured

(−5.9)–11.9 perc10 T0.1-Tair

Percentile 90 (−4.8)–13.9 perc90 T0.9-Tair

Crop water stress index

A means of irrigation scheduling and crop
water stress quantification based on leaf

temperature measurements and prevailing
meteorological conditions [19]

0.37–1.53 CWSI Tl−Twet
Tdry−Twet

2.6. Analysis

Outliers defined in this research as a data point that is 1.5 times the interquartile
range above the upper quartile and below the lower quartile (Q1 − (1.5*IQR) or (Q3
+ (1.5*IQR)) were removed. The correlation between the predictors was examined by
Pearson’s correlation coefficient. To avoid misleading information, the partial correlation
coefficient between the predictors was also calculated. Using a correlation coefficient to
determine whether there is a numerical relationship between two variables of interest will
produce misleading results if there is another, confounding variable numerically related
to them both. Therefore, the partial correlation coefficient controlling the confounding
variable was used [20]. The correlation between the predictors to the response variable was
examined by point-biserial correlation.

To create supervised learning models, different feature selection techniques were used
to identify the best set of features (Information Gain, Fisher’s score, Recursive Feature
Elimination, and stepwise logistic regression). A stepwise logistic regression [21] resulted
in the significant features (p-value < 0.05) that provided the best model accuracy (step, stats,
RStudio). The stepwise method combined “forward” and “backward” regression. The
features selected by the stepwise logistic regression were used in all models. Pearson’s
correlation coefficient [22] examined the correlation between the derived features. To give
equal importance to each feature and improve the model’s accuracy, quality, and learning
rate, the data were normalized using the Z-score [23]. A zero centering of data were
performed by subtracting the mean value from each attribute value, then dividing each
dimension by its standard deviation. A Min-Max normalization was also used, but it did
not significantly improve the results. Normalization and standardization were conducted
with MATLAB. In order to evaluate the statistical validity of the best model, statistical tests
were conducted between the best model and the second-best model. An F-test was used
to test the null hypothesis that the variances of both models are equal. This test was used
to determine which t-test to use (equal or unequal variance). A t-test was used to test the
null hypothesis that both models have equal means. A sensitivity analysis was conducted
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for different distributions of data to explain the different classification results between the
days after inoculation.

2.7. Classification Models

Five classification models were trained to classify infected and healthy leaves using
MATLAB version R2019b (MathWorks Inc., Natick, MA, USA):

• Decision tree—one of the most widely used and practical methods for inference and
classification. It has a fast prediction speed and is easy to interpret. This information
gain method does not assume any statistical properties of the data itself (e.g., normal
distribution) and, as such, it is best suited to this case where the statistical distribution
is unknown. When building a decision tree, overfitting may arise, which is represented
in the decision tree as a deep tree with many levels. To avoid over-fitting, the maximum
number of splits has been limited [24,25].

• Logistic regression—a statistical model that uses a logistic function to model a binary
dependent variable and is suitable in this case where there are two classes [26].

• Naïve Bayes (NB)—a statistical classification technique based on Bayes Theorem. A
simple supervised learning algorithm which provides fast and accurate classification.
The classifier assumes that the effect of a particular feature in a class is indepen-
dent of other features. However, the algorithm still appears to work well when the
independence assumption is not valid [27,28].

• Support vector machine (SVM)—robust prediction models with very high accuracy
of disease detection. An SVM training algorithm builds a model that assigns new
examples to one category, making it a non-probabilistic binary linear classifier [29,30].

• Ensemble—The technique combines predictions from multiple machine-learning al-
gorithms. In this work, the decision tree ensemble algorithm using the Boosting
method was used. Boosting refers to a group of algorithms that trains weak learners
sequentially, each trying to correct its predecessor [31].

K-fold cross-validation (K = 5) was used for each model.

2.8. Performance Measures

The classification performance was quantified using the accuracy, precision, recall, F1
score [17], and the area under the receiver operating characteristic (ROC) curve, known as
the AUC [32]. The class set contained two labels: positive (infected) and negative (healthy).
Given a classifier and an instance, there were four possible outcomes:

• True positive (TP): the leaf was infected, and it was classified as infected;
• False-negative (FN): the leaf was infected, but it was classified as healthy;
• True negative (TN): the leaf was healthy, and it was classified as healthy;
• False-positive (FP): the leaf was healthy, but it was classified as

Accuracy is defined as the probability of correctly classifying a test instance:

Accuracy =
TP + TN

Total number of instances
(1)

Precision is called positive predictive value and computed as:

Precision =
TP

TP + FP
(2)

Recall is also referred to true positive rate (TPR) and computed as:

Recall =
TP

TP + FN
(3)
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The F1 score is the harmonic mean of the precision and recall and computed as:

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

An ROC curve is a graph showing the performance of a classification model at all
classification thresholds displaying two parameters:

• Recall (also TPR);
• False Positive Rate (FPR).

False Positive Rate is defined as follows:

FPR =
FP

FP + TN
(5)

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering
the classification threshold classifies more items as positive, thus increasing both False
Positives and True Positives. AUC measures the entire two-dimensional area underneath
the entire ROC curve.

3. Results and Discussion

Figure 1 depicts the active contour process. Image and initial mask were the algorithm
inputs (Figure 1A(a,b)). The algorithm performed iterations to find the contours of the leaf
(Figure 1A(c)). After a maximum of 100 iterations, a final mask was obtained (Figure 1A(d)).
An image of the leaf with contour was returned (Figure 1B). The returned final mask was a
matrix where pixels inside the mask were set to leaf temperature and pixels outside the
mask were set to zero.
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Figure 1. The output of the active contour algorithm. (A) includes image, initial, and final mask;
(B) image with final mask.

3.1. Classification of Healthy and Infected Leaves

Figure 2 depicts examples of thermal and RGB images acquired at different days after
inoculation. The displayed thermal images do not have the same temperature scale to allow
higher contrast within each leaf. Compared with the digital images, the changes in the color
of the typical thermal images were more noticeable compared to the visual observations.



Sensors 2022, 22, 3585 8 of 16

Sensors 2022, 22, x FOR PEER REVIEW 8 of 17 
 

 

the color of the typical thermal images were more noticeable compared to the visual ob-
servations. 

 
Figure 2. Examples of RGB images (top row) and thermal images (bottom row) of different leaves 
from different infected days. 

3.1.1. Feature Selection 
The feature selection conducted by stepwise logistic regression (Table 4) resulted in 

seven significant variables: MTD, STD, CV, Tavg, median temperature, percentile 90, and 
CWSI. This result was unexpected because Pearson’s partial correlation matrix showed 
that Tavg and median temperature were in a high positive linear correlation (r = 0.97), 
which led to the expectation that the model would not include both. Another unexpected 
result was the estimate of Tavg (β = −9.53) that had the opposite sign of the median tem-
perature (β = 3.696). A possible reason for these results is that the selected method for 
stepwise logistic regression (“both”) begins with the full model. When the two variables 
(Tavg and median temperature) are together in the model and have high multicollinearity 
and opposite signs, they cancel each other out and stay in the model instead of removing 
both. Therefore, both variables were removed from the model manually. This led to a 
higher AIC, resulting with a better model. Finally, to train the classification models, the 
five remained significant variables were selected: MTD, STD, CV, percentile 90, and CWSI. 

Table 4. Stepwise regression- estimated coefficients, standard errors, and p-value. 

Variable Estimated Coefficients Standard Errors p-Value 
MTD 0.6543 0.1782 0.00024 
STD −2.4373 1.1323 0.03136 
CV 79.2226 24.7641 0.00138 

percentile 90 0.2709 0.0388 3.06 × 10−12 
CWSI 1.6405 0.4575 0.00034 

3.1.2. Classification Analysis 
The hyperparameter values for each model were tuned using Bayesian optimization 

using MATLAB version R2019b. A Bayesian optimization is an approach that uses the 
Bayes Theorem to direct the search in each iteration (30 iterations) in order to find the 
minimum or maximum of an objective function. Table 5 describes the hyperparameters 
optimized for each type of model, their search range, and their optimal value. 

  

Figure 2. Examples of RGB images (top row) and thermal images (bottom row) of different leaves
from different infected days.

3.1.1. Feature Selection

The feature selection conducted by stepwise logistic regression (Table 4) resulted in
seven significant variables: MTD, STD, CV, Tavg, median temperature, percentile 90, and
CWSI. This result was unexpected because Pearson’s partial correlation matrix showed that
Tavg and median temperature were in a high positive linear correlation (r = 0.97), which
led to the expectation that the model would not include both. Another unexpected result
was the estimate of Tavg (β = −9.53) that had the opposite sign of the median temperature
(β = 3.696). A possible reason for these results is that the selected method for stepwise
logistic regression (“both”) begins with the full model. When the two variables (Tavg
and median temperature) are together in the model and have high multicollinearity and
opposite signs, they cancel each other out and stay in the model instead of removing both.
Therefore, both variables were removed from the model manually. This led to a higher AIC,
resulting with a better model. Finally, to train the classification models, the five remained
significant variables were selected: MTD, STD, CV, percentile 90, and CWSI.

Table 4. Stepwise regression-estimated coefficients, standard errors, and p-value.

Variable Estimated Coefficients Standard Errors p-Value

MTD 0.6543 0.1782 0.00024
STD −2.4373 1.1323 0.03136
CV 79.2226 24.7641 0.00138

percentile 90 0.2709 0.0388 3.06 × 10−12

CWSI 1.6405 0.4575 0.00034

3.1.2. Classification Analysis

The hyperparameter values for each model were tuned using Bayesian optimization
using MATLAB version R2019b. A Bayesian optimization is an approach that uses the
Bayes Theorem to direct the search in each iteration (30 iterations) in order to find the
minimum or maximum of an objective function. Table 5 describes the hyperparameters
optimized for each type of model, their search range, and their optimal value.

The accuracy, precision, recall, F1 score, and AUC of all constructed models (Table 6)
reveal that the best results were achieved by the SVM model with major differences between
the performance measures of the other models. The accuracy of 81.6% indicates that it is
possible to distinguish between infected and non-infected DM on a single grapevine leaf. It
is supported by Stoll’s findings, which found statistically significant differences between



Sensors 2022, 22, 3585 9 of 16

inoculated and non-inoculated treatments in the slope of the regressions [33]. Figure 3
depicts the ROC curve of each model.

Table 5. Hyperparameters, search range, and selected optimal value.

Model Hyperparameter Range Optimal

Decision Tree

Maximum number of splits [1, 1011] 17

Split criterion Gini’s diversity index, Twoing rule,
and Maximum deviance reduction Maximum deviance reduction

Naive Bayes

Distribution names Gaussian and Kernel Kernel

Kernel type Gaussian, Box, Epanechnikov, and
Triangle Box

SVM
Kernel function Gaussian, Linear, Quadratic, and

Cubic Cubic

Box constraint level [0.001, 1000] 1

Ensemble

Ensemble method AdaBoost, RUSBoost, LogitBoost,
GentleBoost, and Bag GentleBoost

Maximum number of splits [1, 1011] 960

Number of learners [10, 500] 498

Learning rate [0.001, 1] 0.057385

Table 6. All results from all models based on all data.

Model Measure Decision Tree Logistic Regression NB SVM Ensemble

F1 score 60.5% 64.9% 66.9% 77.5% 66.7%
Precision 70.5% 70.8% 70.4% 83.1% 69.3%

Recall 53.1% 59.9% 64.2% 71.6% 64.4%
AUC 0.728 0.762 0.782 0.874 0.782

Accuracy 69.9% 71.7% 72.6% 81.6% 72%Sensors 2022, 22, x FOR PEER REVIEW 10 of 17 
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The results of the F-test between the best model (SVM) and the second-best model (NB)
using the F1 scores of each of the five folds (cross-validation) revealed that the variances
of both models were equal (F (=3.27) < F Critical one-tail (=6.39)) implying that the null
hypothesis was not rejected). Thus, the two-tail t-test assuming equal variances revealed
that the null hypothesis was rejected (t Stat (=−5.56) < t Critical two-tail (=−2.31)). The
observed difference between the sample means (0.77–0.67) suggests a significant difference
between the models. SVM was chosen to be the best model. To determine the earliest day
for DM detection, the results in the following table (Table 7) obtained by the SVM were
detailed according to each of the ‘days after inoculation’.

Table 7. Results by day after infection.

Days after Inoculation Number of Samples Number of Misses Accuracy

0 571 65 88.6%
1 19 2 89.5%
2 61 3 95.1%
4 180 55 69.4%
5 39 4 89.7%
6 44 17 61.4%
7 98 40 59.2%

Model - - 81.6%

The results revealed that later days after inoculation produced lower results than
earlier ones, contrary to expectations (since the disease develops over time and should
be easier to detect as time passes). To determine the cause of this, a series of analyses, as
described in Figure 4, were conducted based on different explanations that may have led to
these results.

Exp1.To avoid bias, the dataset was balanced.

a. By removing records from the healthy leaves, the samples number between the
diseased and healthy leaves was balanced. The accuracy achieved with these
balance results was 79.1%, the F1 score was 77.9%, and the AUC was 0.86. The
model’s accuracy of the later days after inoculation improved (Table 8).

b. Besides taking similar numbers of samples from healthy and infected leaves,
the number of samples taken each day after inoculation was also balanced. The
accuracy achieved was 73.8%, the F1 score was 71%, and the AUC was 0.756.
This did not yield improvement in the model’s results, but the accuracy of the
later days after inoculation improved greatly.

Exp2.To examine the effects of different climatic conditions on the results, the data were
divided into different training and test sets.

a. As the climatic conditions differed between imaging days, it was difficult to
classify the data. Each imaging day’s data were split in two: 80% from the data
for the training set and 20% from the data for the test set. The accuracy of the
training set was 82.5%, with an F1 score of 78.3% and an AUC of 0.886. The test
set accuracy was 76.5%, with an F1 score of 70.8% and an AUC of 0.827. Some
days’ results improved, while others did not. The model’s performance did
not improve.

b. The test set included one specific experiment (No. 10446), and the training
set included the rest. Experiment 10,446 included the days 0, 4, 5, 6, 7 after
inoculation. Days 5, 6 were not included in any other experiments, so they
appear only in the test set. The accuracy of the training set was 86.4%, the F1
score was 82%, and the AUC was 0.892. The test set accuracy was 57.8%, with
an F1 score of 48.9% and an AUC of 0.593. The training and test sets were very
different in their accuracy. Even on the days that appear in the training set (0, 4,
7), the results are poor. According to this analysis, it is not possible to classify
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healthy and DM infected from images acquired on an imaging day that is not
included in the training set.

Exp3.Considering that the accuracy on days 1 and 2 after inoculation was greater than that
of the other days, it was tested whether these days affect the prediction.

a. The following hypothesis was tested: whether with a dataset of leaves from
healthy and 1 and 2 days after inoculation, the accuracy of the prediction for
these days still remains high (Table 9). The data for this analysis were balanced.
The accuracy achieved was 91.9%, the F1 score was 92.1%, and the AUC was
0.961. The results showed that, even without the later days, the early days’
predictions held true very well.

b. The same was done by using a dataset of days 0, 4, 5, 6, and 7 after inoculation.
Here also the data were balanced (Table 10). The accuracy achieved was 79.1%,
with an F1 score of 78.4% and an AUC of 0.856. The results showed that, when
days 1 and 2 after inoculation were removed, the classification results of the
later days improved.

Exp4.Since the results of the other approaches varied each day after inoculation, an analysis
was performed to examine if the response variable should be ordinal instead of bi-
nary. The assumption was that disease development increased every day, suggesting
some kind of order as imaging days progressed. Therefore, an ordinal regression
was performed on the imbalanced data. A new feature selection was conducted to
accommodate for the new response variable and resulted in the following features:
MTD, IQR, MAD, median, perc10, perc90, and CV. The accuracy of the ordinal clas-
sification was 65.4% with many observations classified as healthy even though they
were infected (and were not classified as infected on another day, Figure 5). Since
it does not matter which day after inoculation was classified, but whether the leaf
was healthy or infected, the results were converted to binary so all days that were not
classified as 0 (healthy) were deemed infected. This classification of the converted
response variable resulted in an accuracy of 74.9%. The binary response variable
performed better than both the ordinal response variable and the converted response
variable and hence was selected.
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Table 8. Results after balancing healthy and infected samples (Exp1a).

Days after Inoculation Number of Samples Number of Misses Accuracy

0 441 68 84.6%
1 19 1 94.7%
2 61 5 91.8%
4 180 55 69.4%
5 39 5 87.2%
6 44 14 68.2%
7 98 36 63.3%

Model - - 79.1%

Table 9. Results of a dataset with days 0, 1, 2 after inoculation (Exp3a).

Days after Inoculation Number of Samples Number of Misses Accuracy

0 99 10 89.9%
1 21 1 95.2%
2 78 5 93.6%

Model - - 91.9%

Table 10. Results of a dataset with days 0, 4, 5, 6, 7 after inoculation (Exp3b).

Days after Inoculation Number of Samples Number of Misses Accuracy

0 399 72 81.9%
4 197 54 72.6%
5 45 5 88.9%
6 45 9 80%
7 112 27 75.9%

Model - - 79.1%

All approaches were also evaluated after a new feature selection process was per-
formed (except for Exp4, which anyway included a new feature selection). The purpose of
this was to examine whether the results and features selected were different. In each ap-
proach, the new selected features were very similar to the first selection, with performance
differing by only +−3%. These results indicated that the first feature selection was indeed
suitable for the different datasets.

Table 11 summarizes the results of the different approaches used to explain the differ-
ences in disease detection between days after inoculation. Although the best results were
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with the SVM model using a dataset with healthy and infected leaves from only 1 and 2
days after inoculation, this dataset itself was not selected since it included only the two
first days after inoculation without the remaining days. These good results were probably
due to the fact that the plants were disturbed by the controlled inoculation, which was
what was probably actually detected. The best relevant results were obtained from an SVM
model using a balanced dataset of healthy leaves and infected leaves.

Table 11. A summary of all approaches and their results.

Approach F1 Score AUC Accuracy

SVM—all data 77.5% 0.874 81.6%
Balance between healthy and infected (Exp1a) 77.9% 0.86 79.1%

Balance between the infected days (Exp1b) 71% 0.756 73.8%
Each imaging day’s data—80% training set and 20% test

set (Exp2a) 70.8% 0.827 76.5%

Experiment 10446 as test (Exp2b) 48.9% 0.593 57.8%
Days 0,1,2 (Exp3a) 92.1% 0.961 91.9%

Days 0,4,5,6,7 (Exp3b) 78.4% 0.856 79.1%
As ordinal instead of binary (Exp4) - - 74.9%

A possible explanation for the differences in disease detection between days after
inoculation (days 4–7 after inoculation) might be that IRT measurements are influenced by
many other factors that affect leaf temperature, including ambient temperature, humidity,
sunlight, and wind [34]. The images were acquired at different dates, times of day, and under
different environmental conditions, which may have affected the characteristics of the images
or even the plants. Although each variable related to temperature has been normalized
(T-Tair), this might not have been sufficient to accommodate environmental changes.

The classification results of days one and two after inoculation, which were better
than those of the other days, was probably not because the DM was detected early; it is
more likely that the inoculation itself, which was manually induced, may have affected
the leaves locally and caused a strong physiological reaction to the leaves. As the virus
penetrated the plant, the local effect diminished.

Since each of the models (the model with data of days 0, 1, 2 and the model with data
of days 0, 4, 5, 6, 7) provided good results, future research should consider dividing the
data into three groups: healthy, infected at first days, and infected at late days.

3.2. Best Acquisition Time

Examples of thermal images from infected and healthy leaves acquired at different
times of the day are depicted in Figure 6. The displayed images have the same scale
(23.6–34.6 ◦C).
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For all rounds, the accuracy, F1 score, and AUC obtained by the SVM model are shown
in Table 12. Best results were obtained when data were collected 10:40 a.m.–11:30 a.m.
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(round 3) with accuracy differences of about 6% and 23% from the next best and worst
rounds, respectively. These results are different from results of Alchanatis et al. [15], who
found that midday (12:00 p.m.–2:00 p.m.) was the best time to map and estimate water
status variability using thermal imaging. Although these are two different problems, they
are similar in expectance to see temperature differences within the leaves.

Table 12. Performance for each round of the diurnal measurements.

Measure

Round No./Time Accuracy F1 Score AUC

(1) 7:15–8:25 75% 75.6% 0.774
(2) 9:00–9:45 72.7% 72.7% 0.794

(3) 10:40–11:30 80.7% 80.5% 0.895
(4) 12:25–13:15 59.8% 61.5% 0.676
(5) 14:15–15:05 65.1% 67.4% 0.691
(6) 15:20–16:00 58.1% 61.7% 0.644
(7) 16:00–16:30 57.7% 59.3% 0.557

The results of the F-test between the best round (3) and the second-best round (1)
using the accuracy of each of the five folds from cross-validation (since the data were
balanced) revealed that the null hypothesis was not rejected (F (=4.08) < F Critical one-tail
(=6.39)), implying that the variances of both rounds were equal. Thus, the two-tail t-test
assuming equal variances revealed that the null hypothesis was not rejected (-t Critical
two-tail (=−2.31) < t Stat (=−1.12) < t Critical two-tail (=2.31)). The observed difference
between the sample means (0.807–0.751) is not convincing enough to say that the results
differ significantly.

Although the 3rd round was not statistically better, records from these hours were
analyzed to generalize the findings since best results were obtained at this acquisition time.
A special new dataset of 239 records (95 healthy and 144 infected) was created using only
observations that were acquired from 10:40 a.m. and 11:30 a.m. from the classification
model (the complete dataset). This dataset was used to create a new model; the results
are detailed in Table 12. To improve the results, a new feature selection was performed.
The selected features were: MTD, Tavg, Tmin, perc10, perc90, and CV. The new features
improved the results and the model produced good results (Table 13).

Table 13. Results of a dataset from 10:40 a.m. to 11:30 a.m. and after a new feature selection.

Model Number of Samples F1 score AUC Accuracy

Hours 10:40–11:30 239 72.7% 0.764 67.4%
New features 239 80.8% 0.826 76.6%

As compared with the model that used all the data, the model from the best hours
included fewer observations, but the results were quite similar. This model would likely
perform even better if it were trained on a larger dataset. Therefore, it is worth considering
acquiring images at similar times during the day, even if they are acquired on different days.
Further research is needed on this topic. However, even when the acquisition occurred
during the best hours, results are strongly affected by the environmental conditions, which
may change day by day, and impact the results.

4. Summary and Conclusions

The results indicate that thermograms can detect downy mildew, even before any
visible symptoms appear. The best model for classifying between healthy and infected
leaves was an SVM model built on a balanced dataset with the following features: MTD,
STD, percentile 90, CV, and CWSI. The model resulted in 10% higher performance than
all other models tested (81.6% accuracy, 77.5% F1 score, and 0.874 AUC). The inconsistent
results between the days (days 4–7 after inoculation) could not be explained.
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The best time of day for acquiring images for downy mildew detection was between
10:40 a.m. and 11:30 a.m. resulting in 80.7% accuracy, 80.5% F1 score, and 0.895 AUC. Using
images from the best hours probably can improve performance, even if the images are not
from the same days. However, even when the image acquisition is conducted at the best
time, variations in illumination cannot be avoided, resulting in reduced performance. There
is a trade-off between using a large and wide database (acquired along many dates) and
detecting the disease (the fewer dates, the easier). Early disease detection using thermal
imaging is possible and should be further advanced.
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