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Abstract: The salient object detection (SOD) technology predicts which object will attract the attention
of an observer surveying a particular scene. Most state-of-the-art SOD methods are top-down
mechanisms that apply fully convolutional networks (FCNs) of various structures to RGB images,
extract features from them, and train a network. However, owing to the variety of factors that affect
visual saliency, securing sufficient features from a single color space is difficult. Therefore, in this
paper, we propose a multi-color space network (MCSNet) to detect salient objects using various
saliency cues. First, the images were converted to HSV and grayscale color spaces to obtain saliency
cues other than those provided by RGB color information. Each saliency cue was fed into two
parallel VGG backbone networks to extract features. Contextual information was obtained from the
extracted features using atrous spatial pyramid pooling (ASPP). The features obtained from both
paths were passed through the attention module, and channel and spatial features were highlighted.
Finally, the final saliency map was generated using a step-by-step residual refinement module (RRM).
Furthermore, the network was trained with a bidirectional loss to supervise saliency detection results.
Experiments on five public benchmark datasets showed that our proposed network achieved superior
performance in terms of both subjective results and objective metrics.

Keywords: salient object detection; multi-color space learning; fully convolutional network; atrous
spatial pyramid pooling module; attention module

1. Introduction

The amount of visual information received through the human visual system (HVS)
for a certain period exceeds the amount of information that the human brain can process [1].
Therefore, the HVS assigns importance to perceived objects according to the visual in-
formation provided and focuses on the highly important ones. Objects on which human
attention is focused in this process are called salient objects. The salient object detection
(SOD) method uses a computational model that detects salient objects in an image by
emulating the selective visual attention mechanism in humans. Its application can improve
the performance of various types of computer vision such as image/video segmentation [2],
image retrieval [3], object tracking [4], image classification [5], and video compression [6,7].
Accordingly, it is primarily applied in the pre-processing stage.

Visual attention operates according to different mechanisms: bottom-up and top-down.
During the advent of saliency detection research, studies primarily focused on bottom-up
attention mechanisms. Stimuli received by humans from a given scene through the eyes
compete with each other while being transmitted from the bottom to the top regions of
the brain [8]. Thus, the bottom-up process can also be referred to as a “data-driven” or
“stimulus-driven” process. Wolfe [9] presented a variety of low-level cues or pre-attention
features reflecting competition that can be acquired prior to the feature integration step.
Most bottom-up saliency detection methods use these features to detect the saliency of a
scene [10–14].

Meanwhile, the top-down attention mechanism is a volitional or mandatory response
that occurs voluntarily to visual information with a specific goal [1,8,15,16]. Voluntary
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response is called a “task-driven” or “goal-driven” process because it discriminates visual
information subjectively and is driven by a specific goal. Mandatory response is called a
“knowledge-based” process because it biases visual information using prior knowledge
derived from past experience, and it works even in the absence of subjective will. Recently,
“knowledge-based” methods have received more attention than “task-driven” methods.
This is because the development of deep learning technology has enabled the implementa-
tion of knowledge-based processes Moreover, detection methods using deep convolutional
neural networks (CNNs) [17] exhibit excellent saliency detection.

Among CNN-based methods, fully convolutional networks (FCNs) [18] have been
widely studied in recent years, and several SOD methods have been proposed based on
them [19–25]. An FCN is an end-to-end network with a pyramid-like structure. From the
input image, the FCN extracts low-level features from the shallow layers and high-level
features from the deeper layers. Subsequently, the features extracted from each layer are
fused to obtain contextual information, defining what the entire network is trained to
detect:salient objects in images.

In conventional bottom-up techniques, researchers manually select the features to be
used for saliency detection. The feature most representative of saliency feature is color. In
any case, other features such as orientation, position, and shape are also used. In contrast,
the FCN-based top-down technique extracts features required for SOD across multiple
layers applied to the input image. Therefore, researchers do not need to manually select
features. However, the SOD network is trained using only a dataset comprising images
from the RGB color space unless pre-processing is performed.

In general, the simplest way to improve the detection performance of a network is to
increase the number of layers in the backbone or the number of filters in each layer. This
serves to obtain more features required for detection by further subdividing the charac-
teristics of the salient object. However, these attempts have only been made on images in
the RGB color space received as input from the network. Although the features obtained
from the RGB channel povide important information to determine saliency, more diverse
cues are involved in the process of recognizing a salient object according to the feature
integration theory (FIT) [26]. Therefore, the network must be trained on the characteristics
of salient objects by extracting features from various input cues and combining them.

To improve SOD performance by considering multiple cues contributing to visual
attention, we propose a multi-color space network (MCSNet). First, the input RGB images
are converted to the HSV and grayscale color space to obtain additional cues relating to
saturation and luminance. The RGB channels with color information and the channels
with information on saturation and luminance of the scene are input to the backbone
network based on VGG-16 [27], and the features are extracted in parallel. An atrous spatial
pyramid pooling (ASPP) [28] module is applied to the features output from each level of the
VGG network to obtain spatial information. The enriched spatial information of saliency
cue channels extracted by the ASPP is then weighted by the attention module [29–31]
according to the predetermined characteristics. Finally, a saliency map is generated by
further recovering the local details through a residual refinement module (RRM).

The primary contributions of this study are summarized below:

• An MCSNet was developed to achieve more accurate top-down saliency detection.
In contrast to conventional methods that only use RGB color cues to learn the charac-
teristics of salient objects, HSV and grayscale color spaces were utilized to leverage the
information provided by various saliency cues. The VGG-based backbone network
was divided into two parallel paths to extract features from RGB channels as well as
channels with saturation and luminance information.

• Contextual information was obtained from the features extracted from the two back-
bone networks using the ASPP module. In addition, the attention module was applied
to classify information according to the importance of features or spatial locations
extracted from the color, saturation, and luminance information of the image. Features
extracted from each level of the backbone network were mutually fused to create a final
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saliency map using RRM. Furthermore, bidirectional loss function was implemented
to supervise the generation of the final saliency results.

• Five public salient object detection benchmarks were used in the experiment. Ex-
perimental results demonstrated that our proposed method achieved superior or
comparable performance to the state-of-the-art methods.

2. Related Works

During the advent of saliency detection, low-level or handcrafted features that can
be obtained from images were used to model human cognitive processes. These features
include color [10,32,33], intensity [10], orientation [10], location [34], motion [35], horizontal-
ity [36], wavelet [37], curvature [38], spatial resolution [39], optical flow [40], symmetry [41],
and texture contrast [42]. Low-level features are the most intuitive stimuli acquired by
the HVS. Consequently, most saliency detection methods developed to implement the
bottom-up recognition process use low-level features.

Recently, owing to the development of deep learning, saliency detection methods have
significantly improved. Deep learning techniques are advantageous because they learn
features from multiple images and use them to infer salient regions or objects from new
images. Therefore, it has been actively used in research on top-down saliency detection
methods that have largely been limited in the past. In particular, Long et al. [18] first
presented the potential of pixel-to-pixel prediction networks for semantic segmentation
by proposing an end-to-end FCN. Various FCN-based methods have been proposed since
the advent of FCN. Deng et al. [43] proposed R3Net that progressively improves the
saliency map by alternating low-level features and high-level features using a residual
refinement block. Hu et al. [44] proposed RADF that aggregates the features of each layer
in an iterative manner, with multiple levels of deep features, to produce distinct features
that contain both the semantics and the details of the salient. Chen et al. [45] proposed
RANet that applies residual learning into a holistically-nested edge detection (HED) [46]
architecture and inverse attention to guide residual learning to discover missing object parts
and residual details. Wu et al. [47] proposed CPD to improve performance by discarding
low-level features and utilizing the generated relatively accurate attention maps to enhance
high-level features. Zhao et al. [30] proposed PFANet, which applies a spatial attention
module to low-level features and a context-aware pyramid function extraction module and
channel-specific attention module to high-level features.

Unlike the method of integrating the context domain as a whole for saliency detec-
tion, methods for integrating the multi-scale context of the U-Net [48] architecture using
various network modules have also been proposed. Zhang et al. [20] proposed Amulet
that integrates features extracted from multilevel networks into the resolution of each
level, combines features at each level, and subsequently predicts the saliency map in a
recursive manner. Wang et al. [49] proposed a DGRL that localizes the salient object by
iteratively focusing on the spatial distribution and refines the saliency map by the rela-
tionship between each pixel and its neighbors. Zhang et al. [50] proposed PAGR, which
selectively integrates multiple contextual information of multi-level features using multi-
path recurrent feedback that transfers global semantic information from the top layer to
the shallower layers. Liu et al. [21] proposed PiCANet that improves the coarse saliency
map by connecting features rich in spatial detail from the lower layers with features in
the upper layer. Qin et al. [51] proposed a BASNet that consists of a deeply supervised
encoder–decoder and residual refinement module. Liu et al. [22] proposed the PoolNet
that improves saliency detection results through edge detection while extending the role of
pooling based on the U-Net architecture. Chen et al. [52] proposed GCPANet that improves
the relationships among different salient regions integrating low-level details, high-level
semantic information, and global contextual information in an interweaved way.

The abovementioned deep learning-based top-down methods take RGB images as
input and extract features necessary for saliency detection using a convolutional layer.
Meanwhile, detection methods for images from color spaces other than RGB have been
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proposed. These methods use RGB-D data to which the depth information of an image
is added as an additional cue, which is required to generate the saliency map of images.
Qu et al. [53] proposed a DF using deep learning technology for the first time for RGB-D-
based SOD tasks. DF derives saliency confidence values through the CNN architecture
from RGB-D data and subsequently integrates the superpixel-based Laplacian propagation
framework with the trained CNN to generate final detection results. Han et al. [54]
proposed a CTMF that utilizes a CNN to learn high-level features from RGB and depth
images. In addition, it complements the depths modalities by integrating the structure of
color networks into them. The DMRA proposed by Piao et al. [55] and the MMCI proposed
by Chen et al. [56] have a two-stream architecture that applies the same backbone network
to RGB images and depth data. Color and depth features extracted through backbone
complement each other through additional feature integration methods to create the final
saliency map.

Maximizing the number of acquired features is essential for improving the accuracy of
saliency detection. RGB-D-based methods accordingly use depth information in addition
to image color. Moreover, various methods for designing deep learning networks to exploit
these extra sources of information have been developed. Furthermore, considering that
salient objects are prioritized by observers, they are probably located in the front region of
the image. Thus, salient objects correspond to the foreground, and the rest of the image can
be considered as the background. Therefore, the depth map is useful for detecting salient
objects. However, a special device such as a Kinect is required to obtain a depth map. In
addition, the failure area formed during the generation of the depth map must be filled or
disparity correction must be performed.

To implement a deep learning-based SOD network that receives multiple features
as input, we proposed an MCSNet using easy-extractable features that are conducive to
saliency prediction. It converts the original RGB image into HSV and grayscale color spaces
that provide information other than color. Backbone networks extract low-level to high-
level features from different color space inputs in parallel. The features extracted from the
two streams are combined while considering global characteristics. The two streams learn
global characteristics in a manner that complements each other’s information according
to the level of the backbone. Finally, the network is subjected to a refinement process to
generate the final saliency map.

3. Proposed Methodology

In this section, we introduce details of the proposed MCSNet as shown in Figure 1.
We focus on the components of MCSNet: color space converter (CSC), backbone network
based on VGG, ASPP, the two types of attention modules, and RRM. Finally, we introduce
the loss function developed to strictly supervise the saliency map results generated by
the MCSNet.

3.1. Preprocessing for Additional Saliency Cues

To create additional saliency cues for use in SOD other than those from the RGB color
space, we first applied CSC as a preprocessor to transform the color space. The overall
process followed by the CSC is shown in Figure 2.
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Figure 1. Overall architecture of the proposed MCSNet. CSC represents a color space converter for
creating additional saliency cues from the input image. L1-L5 represent each level of the backbone
network modified based on the VGG network. ASPP represents atrous spatial pyramid pooling.
SAM and PAM represent serial attention module and parallel attention module, respectively. RRM
represents residual refinement module. The various ⊕ denote the element-wise summation module.

Figure 2. Structure and details of the CSC module. “C” denotes the concatenation module.

First, the input RGB image is converted into the HSV color space to obtain the satura-
tion and value components for use as additional saliency cues. The H, S, and V represent
the hue, saturation, and value channels, respectively, and are calculated as follows, where
R, G, and B represent the red, green, and blue channels, respectively, normalized to the
range of [0, 1].
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Cmax = max(R, G, B), Cmin = min(R, G, B), ∆ = Cmax − Cmin,

H =


60◦ ×

(
G−B

∆

)
mod 6 if Cmax = R

60◦ ×
(

B−R
∆

)
+ 2 if Cmax = G

60◦ ×
(

B−R
∆

)
+ 4 if Cmax = B

S =

{
0 if Cmax = 0
∆

Cmax
if Cmax 6= 0

V = Cmax

(1)

Next, the input RGB image is converted to a grayscale color space to obtain the
luminance component. Luminance L is calculated as follows, according to the ITU-R BT.709
specification [57].

L = 0.2125R + 0.7154G + 0.0721B (2)

Finally, SVL channels are created by concatenating the S, V, and L channels computed
through Equations (1) and (2).

There are two reasons for excluding a hue channel from network training. The first is
that the RGB color space and the hue channel possess overlapping color information. The
second is the discontinuity of the hue component that can be seen in Figure 3. Figure 3a
shows the original RGB image and the hue spectrum normalized to [0, 1]. Furthermore,
hue is expressed as an angle relative to red on the color wheel based on the Munsell
color system [58,59]. Thus, red-based colors are distributed around the minimum and
maximum values of the spectrum. Therefore, although the flower in Figure 3a is colored
red throughout, different regions of the flower are divided by the values at both ends of the
hue spectrum as shown in Figure 3b,c. This discontinuity in a particular color can interfere
with the training of the filter to extract the features. Thus, the hue channel is excluded from
the process of acquiring additional saliency cues.

(a) (b) (c)

Figure 3. Example of why the hue channel of the HSV color space must be excluded. The images
in the first row are RGB images corresponding to the hue spectrum normalized to the range [0, 1]
shown in the second row: (a) original image in range [0, 1]; (b) RGB image corresponding to the
range [0, 0.02]; (c) RGB image corresponding to the range [0.98, 1].

3.2. Backbone

Despite its simple structure, VGGNet can extract all low- and high-level features
required for the image recognition process. Because of these advantages, it is actively used
in SOD. We adopted the modified VGG-16 structure for MCSNet as the backbone network
for extracting features from saliency cues. Our modified structure comprises only five levels
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that remove the fully connected (FC) layer located behind the conv layer of the existing
VGG-16 network. Detailed parameter settings such as the size of the image input to the
network and the channel of each conv layer are shown in Table 1. The backbone networks
function parallell to the extract features from the original RGB color space as well as the
SVL channel generated through CSC as shown in Figure 1. Both the backbone networks
have the same structure and parameter settings. Finally, the features created as a result of
the last conv layer at each level of the backbone network are fed into the ASPP module.

Table 1. Parameter settings of the modified VGG-based backbone.

Level Layer
Size Channel

Kernel Size Stride
Input Output Input Output

L1

Conv1-1 128× 128 128× 128 3 64 3× 3 1
Conv1-2 128× 128 128× 128 64 64 3× 3 1

MaxPool 128× 128 64× 64 2× 2 2

L2

Conv2-1 64× 64 64× 64 64 128 3× 3 1
Conv2-2 64× 64 64× 64 128 128 3× 3 1

MaxPool 64× 64 32× 32 2× 2 2

L3

Conv3-1 32× 32 32× 32 128 256 3× 3 1
Conv3-2 32× 32 32× 32 256 256 3× 3 1
Conv3-3 32× 32 32× 32 256 256 3× 3 1

MaxPool 32× 32 16× 16 2× 2 2

L4

Conv4-1 16× 16 16× 16 256 256 3× 3 1
Conv4-2 16× 16 16× 16 256 256 3× 3 1
Conv4-3 16× 16 16× 16 256 256 3× 3 1

MaxPool 16× 16 8× 8 2× 2 2

L5
Conv5-1 8× 8 8× 8 256 512 3× 3 1
Conv5-2 8× 8 8× 8 512 512 3× 3 1
Conv5-3 8× 8 8× 8 512 512 3× 3 1

Note: All convolutional layers used in the modified VGG are activated by leaky rectified linear unit (LReLU)
function after batch normalization (BN).

3.3. ASPP Module

FCN acquires global semantic information of images by reducing the size of features
through pooling. However, local information is lost owing to the reduced feature resolution.
Therefore, the ASPP module is applied to provide more contextual and local information
that might be lost in each level.

The ASPP module applied to MCSNet comprises one 1 × 1 conv and three 3 × 3
dilated convs with rates of 3, 5, and 7, respectively, as shown in Figure 4. The width,
height, and channels of a feature are denoted by W, H, and C, respectively, and the four
convs are performed in parallel to extract N features each. Subsequently, the features
activated through BN and LReLU are concatenated. Thus, it is possible to even obtain
secure features. This is enabled by the contextual correlation derived from the pixel-wise
spatial information of the features that are extracted from each level of the backbone and a
wider receptive field.
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Figure 4. Structure and details of the ASPP module. BN and LReLU represent batch normalization
and leaky rectified linear units, respectively. “C” denotes the concatenation module.

3.4. Two Types of Attention Modules

The output generated by the CNNs comprises multiple feature channels, and the factor
that affects the saliency map generation differs with the input image. Moreover, the local
information differs according to the depth of the network or feature channels. Therefore,
we used two types of attention modules to highlight the characteristics of features that
improve SOD performance.

The first type is the SAM shown in Figure 5 that is applied to the output of the
ASPP module. In SAM, the channel attention [60] and directional spatial attention mod-
ules [30,61] that extract the global correlation, while considering the directionality, are
sequentially performed.

Figure 5. Structure and details of the serial attention module (SAM).
⊗

and
⊕

denote the element-
wise multiplication and summation module, respectively.

The result generated by the ASPP module is a concatenation of the information
extracted for each of the four kernel sizes. The channel attention module determines which
channel is to be prioritized among the channels containing different regional information
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according to the depth of the backbone network. First, the input features generate a
vector of channel size C that represents each channel of the feature through global average
pooling (GAP). Subsequently, the vector is converted into a latent vector, in which useful
information is compressed through an FC layer. This reduces the channel size to C/SC
using the squeeze parameter SC. A latent vector activated with LReLU becomes a scaling
vector using an FC layer with a channel size of C and a Sigmoid. Finally, the input feature
is multiplied by the scaling vector to output the feature with the channel emphasized
according to the degree of contribution to the SOD.

The directional spatial attention module activated after the channel attention module
considers the directionality. Therefore, it considers the boundary between the salient object
and the background and assigns weights according to wider regional correlations. First, as a
receptive field considering directionality, the horizontal and vertical 1× k conv and k× 1
conv are parallelly applied to the input features. The size of the output channel is reduced
to C/SDS using the squeeze parameter SDS. Subsequently, k× 1 conv and 1× k conv of
vertical and horizontal shapes are applied to the resulting features to output features with
one channel each. BN and LReLU are applied after every conv layer. The two channels
are summed element-wise and activated using a Sigmoid to capture directional spatial
concerns. Finally, spatial information is emphasized by element-wise multiplication of
input features.

The second type is a PAM. The features from the shallower levels of the backbone
network contain local and detailed information of the image owing to the small receptive
field compared with the image size. In contrast, the feature in the deeper levels are smaller
in size due to pooling; thus, the receptive field can handle a wider area of correlation in
the deeper levels than in the shallow levels. Therefore, the features contain semantic and
global information of the image. To complement this imbalanced information provided by
the features, PAM is performed for all cases that can be paired with the five SAM result
features generated at each level of the backbone network as shown in Figure 1.

The structure of PAM is shown in Figure 6. When l ∈ {1, 2, 3, 4}, h ∈ {2, 3, 4, 5}, l < k,
the l-th low-level SAM feature and the h-th high-level SAM feature are input to the PAM.
To concatenate the two features, the width, Wh, and height, Hh, of the high-level feature
are upsampled by 2h−l times to match the width, Wl , and height, Hl , of the low-level
feature. Both features have an identical number of channels as C; thus, the concatenated
feature has the shape Wl ×Hl × 2C. Subsequently, the channel attention module and spatial
attention module are performed in parallel on the concatenated feature. Channel attention
modules have the same structure as that of the SAM. To highlight and scale pixel-wise local
information, the spatial attention module multiplies the spatial information collected by
1× 1 conv to input features, similar to the structure proposed by SCA-CNN [62]. The results
of the two attention modules are summed element-wise, and the concatenated features are
multiplied element-wise to finally obtain a channel-wise and spatially emphasized feature.

3.5. RRM

The various features extracted and scaled from low- to high-level from the saliency
cues of the image must be integrated to predict the salient object. To achieve effective inte-
gration, we used the feature fusion network structure and RRM proposed by CAGNet [63].
RRM is a residual block in which spatial attention modules are added to two 3× 3 conv
layers, as shown in Figure 7. Subsequently, the input features are skip-connected to the
result. The primary difference from the general residual block [64] is that BN and LReLU
are performed before two 3× 3 conv layers, which are initially performed according to
the full preactivation structure as demonstrated in [63,65]. The RRM learns the residuals
between input features, and the output passes through the conv layer to emphasize the
salient region of the output feature and suppress the coarse region.
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Figure 6. Structure and details of the parallel attention module (PAM).

Figure 7. Structure and details of the RRM.
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3.6. Bidirectional Loss Function

The ground truth images of almost all datasets used for SOD were binary images in
which salient objects and backgrounds were denoted using 1 and 0, respectively. Thus,
the cross-entropy loss function was adopted to supervise the training of the network for
SOD. Assuming that the ground truth corresponding to the input image and the predicted
saliency map generated by the network are G and S, respectively, the cross-entropy loss Lce
is defined as follows:

Lce(G, S) = − ∑
(x,y)

[
ωpG(x, y)logS(x, y) + {1− G(x, y)}log{1− S(x, y)}

]
, (3)

where (x, y) is the position of the pixel, and ωp is a weighting parameter that adjusts the
cost of positive errors relative to negative errors.

To detect salient objects in the image more accurately, a small loss must occur in both
the salient and background parts. However, the cross-entropy loss is sensitive only to
the saliency class and not to the background class. Therefore, we adopted a modified
loss function, where both the salient and background parts have the same loss function
sensitivity. The proposed bidirectional loss function L is formulated as follows:

L = α1Lce(GF, SF) + α2Lce(GB, SB), (4)

where α1 and α2 are the loss weights used to balance the foreground and background loss
terms, respectively. To give equal weight to the foreground and background losses, we
set α1 and α2 to 0.5. GF and SF are the ground truth of the foreground and saliency map
output from the networks, respectively, and they are the same as G and S. GB and SB are
the ground truth and saliency maps of the background that are obtained by inverting GF
and SF as follows:

GB = 1− GF

SB = 1− SF.
(5)

4. Experiments
4.1. Datasets

The proposed method was evaluated on five public SOD datasets. The characteristics
of each dataset are as follows:

DUT-OMRON [66] contained 5168 images with one or more salient objects and a
relatively complex background. DUTS [67] contained 15,572 images of which 10,553 images
were used for training, and 5019 images were used for testing. All the training images
were collected from ImageNet DET training/validation sets [68], while test images were
collected from the ImageNet DET test set [68] and the SUN [69] dataset. ECSSD [70]
comprised 1000 images obtained from the Internet, typically containing natural images. The
selected images included semantically meaningful but structurally complex backgrounds.
HKU-IS [71] contained 4447 challenging images, most of which had either low contrast
or multiple salient objects. PASCAL-S [72] was built on the validation set of the PASCAL
VOC 2010 segmentation challenge. It contained 850 natural images with multiple objects in
a scene [73,74].

4.2. Evaluation Metrics

For objective performance evaluation, we adopted three popular metrics, including
Precision-recall (PR) curve, F-measure, and mean absolute error (MAE).

The PR curve plots precision on the y-axis and recall on the x-axis for different proba-
bility thresholds. Precision (also known as the positive predicted value) is the ratio of the
correctly predicted salient regions to all predicted salient regions. Recall (also known as the
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true positive rate or sensitivity) is the ratio of the correctly predicted salient region to the
actual salient region. Precision and recall were calculated using the following equations:

precision =
TP

TP + FP
, (6)

recall =
TP

TP + FN
, (7)

where TP, FP, and FN are the true-positive, false-positive, and false-negative rates,
respectively.

The F-measure is the weighted harmonic mean of precision and recall. It was adopted
to measure the overall performance of the saliency detection model and was calculated
as follows:

Fβ =
(1 + β2)precision× recall

β2 × precision + recall
, (8)

where the weighting parameter β2 was set to 0.3 for our implementation.
MAE is a measure of errors between paired observations expressing the same phe-

nomenon. In our study, we calculated the average difference between the predicted saliency
map S and ground truth image G. Subsequently, MAE was calculated as follows:

MAE =
1

W × H

H

∑
y=1

W

∑
x=1
|S(x, y)− G(x, y)|, (9)

where W and H are the width and height of the image, respectively, and (x, y) is a
pixel coordinate.

4.3. Implementation Details

The proposed MCSNet was implemented on the Keras (https://keras.io/ accessed
on 5 May 2022) framework using TensorFlow (https://www.tensorflow.org/ accessed on
5 May 2022) backend. We conducted our experiments on an Intel Core i7-7700 3.60 GHU
using an NVIDIA GeForce RTX 3080Ti GPU (12 G). We randomly selected 80% of all images
in the dataset introduced in Section 4.1 for the training set and the remaining 20% as the
validation set. All training and ground truth images were resized to 128× 128 pixels. Our
model was trained for 100 epochs using the Adam optimizer [75]. The initial learning rate
was set to 0.001, which decreased by 50% when the validation accuracy plateaued. The
batch size and negative slope coefficient for the LReLU were set to 8 and 0.05, respectively.

4.4. Comparison with State-of-the-Art Methods

MCSNet was compared with 13 state-of-the-art methods, including Amulet [20],
DGRL [49], PAGR [50], PiCANet [21], R3Net [43], RADF [44], RANet [45], BASNet [51],
CPD-ResNet50 [47], CPD-VGG16 [47], PoolNet [22], PFANet [30], and GCPANet [52]. To
ensure fair comparison, the saliency map published by the author who proposed each
saliency detection method was used. In the absence of published data, the results were
output through the network trained using the parameters set by each author.

4.4.1. Visual Comparison

A visual comparison of the results is presented in Figure 8. It considers images
illustrating scenarios of varying complexity: from simple situations to challenging highly
difficult ones. The first and second rows show the results in a situation in which the
foreground and background of the image are distinct. In the first row, most state-of-the-
art methods detected all signs and poles that were clearly distinct from the background,
whereas MCSNet excluded the poles. In the second row, it detected not only the red and
blue dolls, but also the green doll located on the right. Conversely, the third peak at a
row corresponds to a case where the distinction between foreground and background was

https://keras.io/
https://www.tensorflow.org/
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ambiguous. Here, MCSNet effectively distinguished objects that occupied a significant
portion from the center to the bottom of the video. The fourth row shows results for
images including objects with complex details. In the images shown in the fifth row,
the background was suppressed, and salient objects were emphasized in consideration of
the global context in a situation where multiple objects exist. The last three rows show the
results of MCSNet surpassing existing methods in images of complex scenarios in which
various contents with similar or competitive characteristics to salient objects exist in the
background. Thus, we can conclude that MCSNet performs well in difficult situations.

4.4.2. Quantitative Comparison

Quantitative comparison results in terms of MAE and F-measure between MCSNet
and 13 state-of-the-art methods are listed in Table 2. MCSNet performed best on the DUT-
OMRON dataset with one or more salient objects and a relatively cluttered background.
The ECSSD and PASCAL-S datasets exhibited the highest performance after GCPANet. In
the case of the DUTS and HKU-IS datasets, the MAE of MCSNet had the fourth best results,
whereas its F-measure was among the top three results.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Figure 8. Visual comparison between our MCSNet and 13 state-of-the-art methods: (a) original input
image; (b) ground truth; (c) our MCSNet; (d) GCPANet [52]; (e) PoolNet [22]; (f) PFANet [30]; (g) CPD-
VGG16 [47]; (h) CPD-ResNet50 [47]; (i) BASNet [51]; (j) RANet [45]; (k) RADF [44]; (l) R3Net [43];
(m) PiCANet [21]; (n) PAGR [50]; (o) DGRL [49]; and (p) Amulet [20].
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Table 2. Quantitative comparison using five representative datasets in terms of the MAE and F-
measure. The maxF designation denotes max F-measure for the best performance that a method can
achieve. ↓ denotes that smaller is better, and ↑ denotes that larger is better. The best three results are
labeled Red, Blue, and Green, in that order.

DUT-OMRON DUTS ECSSD HKU-IS PASCAL-S
Methods MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑

Amulet [20] 0.0957 0.7537 0.0816 0.7835 0.0517 0.9254 0.0501 0.8991 0.0923 0.8527
DGRL [49] 0.0651 0.7827 0.0492 0.8324 0.0348 0.9356 0.0343 0.9198 0.0779 0.8649
PAGR [50] 0.0734 0.7790 0.0556 0.8530 0.0569 0.9331 0.0449 0.9230 0.0888 0.8712
PiCANet [21] 0.0655 0.8074 0.0495 0.8635 0.0405 0.9424 0.0419 0.9227 0.0783 0.8788
R3Net [43] 0.0707 0.8079 0.0646 0.8233 0.0466 0.9346 0.0449 0.9143 0.0947 0.8475
RADF [44] 0.0701 0.7918 0.0704 0.8138 0.0603 0.9161 0.0508 0.9060 0.1009 0.8470
RANet [45] 0.0613 0.7904 0.0579 0.8374 0.0499 0.9285 0.0452 0.9154 0.0968 0.8504
BASNet [51] 0.0556 0.8182 0.0197 0.9499 0.0331 0.9467 0.0306 0.9323 0.0795 0.8682
CPD-ResNet50 [47] 0.0636 0.7685 0.0323 0.9195 0.0409 0.9299 0.0437 0.9046 0.0851 0.8403
CPD-VGG16 [47] 0.0575 0.7757 0.0226 0.9387 0.0355 0.9332 0.0363 0.9186 0.0778 0.8609
PFANet [30] 0.0763 0.7801 0.0716 0.8677 0.0766 0.8816 0.0604 0.8853 0.1189 0.8173
PoolNet [22] 0.0549 0.8183 0.0400 0.8783 0.0332 0.9468 0.0298 0.9338 0.0762 0.8772
GCPANet [52] 0.0553 0.8196 0.0370 0.8865 0.0308 0.9521 0.0295 0.9404 0.0638 0.8899

MCSNet 0.0518 0.8294 0.0363 0.9224 0.0322 0.9507 0.0313 0.9394 0.0723 0.8842

Figure 9 shows the PR curves for the five datasets. It can be seen that the curve of
MCSNet is placed on top of most of the other curves. From this PR curve, we can conclude
that the proposed method is generally superior to the other state-of-the-art methods,
especially in DUT-OMRON. Thus, the proposed method can effectively compete with
existing methods, indicating that the method of detecting salient objects by extracting
image features from various saliency cues is effective.

Figure 9. PR curves on five representative datasets.
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5. Conclusions

In this paper, we proposed a network called MCSNet to detect salient objects in
images using various saliency cues. We noted that an observer classifies an object as
salient based on factors other than color. Thus, in addition to the RGB color space of the
original input image, an SVL color space was developed by concatenating the saturation
and value components of HSV and the luminance components of grayscale. Two input
channels were input to two parallel backbone networks based on VGG-16, and the relevant
features were extracted. The ASPP module was applied to improve the local information
of the features extracted from the backbone, and two types of attention modules were
introduced to improve feature expression. Moreover, a final saliency map was generated
by aggregating features while improving semantic information using RRM. Furthermore,
the SOD performance of several methods on five published datasets were experimentally
evaluated. The results showed that the proposed method was superior to most of the
existing state-of-the-art methods in terms of various evaluation metrics. This indicates that
detecting salient objects using features extracted from various saliency cues is effective for
the network design of top-down SOD.

However, this study had a few limitations. The only components other than RGB used
in this study were HSV and luminance; more accurate detection can be achieved if more
saliency cues are included. Moreover, the two parallel backbone networks used possessed
identical structures. However, backbone networks with different structures should be used
to better cater to the characteristics of each cue. Therefore, in our future work, we will focus
on the study of extended SOD network design using multiple cues.
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SOD Salient object detection
FCN Fully convolutional network
MCSNet Multi-color space network
ASPP Atrous spatial pyramid pooling
RRM Residual refinement module
HVS Human visual system
CNN Convolutional neural network
FIT Feature integration theory
HED Holistically-nested edge detection
CSC Color space converter
FC layer Fully connected layer
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GAP Global average pooling



Sensors 2022, 22, 3588 16 of 18

PAM Parallel attention module
PR curve Precision-recall curve
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