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Abstract: This paper proposes a new method for predicting rotation error based on improved grey
wolf–optimized support vector regression (IGWO-SVR), because the existing rotation error research
methods cannot meet the production beat and product quality requirements of enterprises, because of
the disadvantages of its being time-consuming and having poor calculation accuracy. First, the grey
wolf algorithm is improved based on the optimal Latin hypercube sampling initialization, nonlinear
convergence factor, and dynamic weights to improve its accuracy in optimizing the parameters of
the support vector regression (SVR) model. Then, the IGWO-SVR prediction model between the
manufacturing error of critical parts and the rotation error is established with the RV-40E reducer as a
case. The results show that the improved grey wolf algorithm shows better parameter optimization
performance, and the IGWO-SVR method shows better prediction performance than the existing back
propagation (BP) neural network and BP neural network optimized by the sparrow search algorithm
rotation error prediction methods, as well as the SVR models optimized by particle swarm algorithm
and grey wolf algorithm. The mean squared error of IGWO-SVR model is 0.026, the running time is
7.843 s, and the maximum relative error is 13.5%, which can meet the requirements of production
beat and product quality. Therefore, the IGWO-SVR method can be well applied to the rotate vector
(RV) reducer parts-matching model to improve product quality and reduce rework rate and cost.

Keywords: RV reducer; support vector regression; grey wolf optimization

1. Introduction

With the continuous progress of digitalization, artificial intelligence, and smart pro-
duction, rotate vector (RV) reducers, which are the critical constituents of industrial robots,
have been mass-produced and widely used. However, limited to equipment precision
and manufacturing capability, many RV reducer companies want to improve assembly
precision and reduce scrap through parts matching. Thus, many scholars are devoted to
researching various fast and accurate RV reducer assembly prediction methods and related
contents to meet the enterprise production beat and product quality requirements. The key
indicators to evaluate the quality of RV reducer are transmission power, torsional moment,
transmission accuracy, service life, etc. [1], among which the indicator with a great impact
on the transmission accuracy of RV-40E reducers is mainly the rotation error, the size of
which is determined by the quality of each component in the RV-40E reducer drive chain
and the quality of the assembly work [2].

Regarding the calculation of the rotation error, many studies have been conducted
by domestic and foreign scholars; for example, Blanche [3] proposed a purely geometric
method to determine the transmission error of the single cycloid of the planetary reducer.
Takeshi Ishida [4] proposed a spring equivalence model to qualitatively analyze the RV
rotation error by numerical analysis to establish accurate modeling for the RV reducer
rotation error. Yinghui Zhang [5] carried out the simulation calculation of dynamic rotation
error by establishing a virtual prototype model of RV reducers. Xiaotao Tong [6] proposed
a back propagation (BP) neural network-based dynamic rotation error prediction method

Sensors 2023, 23, 366. https://doi.org/10.3390/s23010366 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5120-6402
https://doi.org/10.3390/s23010366
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010366?type=check_update&version=1


Sensors 2023, 23, 366 2 of 22

for RV reducers to achieve the prediction of the rotation error of RV reducers by including
five critical factors of manufacturing errors in the second-stage cycloid pin-wheel trans-
mission mechanism. Houzhen Sun [7] established a BP neural network transmission-error
prediction model based on the sparrow search algorithm for back propagation (SSA-BP)
and selected key dimensional parameters of assembled parts as influencing factors to
achieve the prediction of key quality characteristics before assembly. These research results
can calculate the RV reducer rotation error to a certain extent, but there are some defects,
such as poor calculation accuracy and long operation time, that come up when used for
actual assembly. For example, the calculation process of the pure geometric method is
relatively cumbersome, and it does not take into account the actual part machining error
and assembly error. Additionally, the mathematical analysis method of the equivalent
model has a large gap between the final modeling results and the actual situation owing to
massively simplified processing in the modeling process. Further, the model construction
of the virtual prototype analysis method is complicated and time-consuming. Although
the BP neural network prediction method can achieve the fast prediction of rotation errors,
it needs massive sample data to obtain better prediction accuracy because of the complex
internal structure. The existing research methods of rotation error are difficult to be used in
practical assembly because of the disadvantages, such as being time-consuming and having
poor calculation accuracy. Therefore, to address the abovementioned disadvantages of the
existing research methods for rotation errors, this paper will establish a new prediction
method for rotation errors to achieve fast and accurate predictions.

1.1. Literature Review

The problem of rotation error prediction is characterized by multifactor coupling,
high-dimensional nonlinearity, and a limited number of samples, which makes the support
vector regression (SVR) in machine learning have certain application advantages relative
to the already-existing BP and SSA-BP neural network rotation error prediction methods.
The SVR method in machine learning is characterized by strong generalizability and
simple structure in solving small-sample high-dimensional nonlinear problems [8], and it
is used in many fields. For example, Balogun [9] solved the spatial prediction problem of
landslide sensitivity by using the SVR model combined with grey wolf optimization (GWO)
algorithm, bat algorithm, and cuckoo optimization algorithm. Zichen Zhang [10] solved the
power load forecasting problem by using the SVR model combined with GWO algorithm.
Peng [11] solved the pipeline corrosion rate prediction problem by combining the SVR
model with principal component analysis and the chaotic particle swarm optimization
algorithm. Therefore, to address the shortcomings of existing rotation error research
methods and the performance of the SVR method in solving high-dimensional nonlinear,
small-sample problems, this paper will use the SVR method to establish a prediction model
for rotation errors.

Although the modeling process is simple, the values of the penalty factor and the
kernel function parameter in the SVR model have a significant impact on the model’s
prediction performance [12,13]. Therefore, in order to use the SVR model to achieve better
predictions for rotation errors, the problem of parameter optimization in the SVR model
first needs to be solved. Currently, population intelligence algorithms and their improved
versions are becoming increasingly popular in solving different optimization problems
and are widely used in many fields [14]. For example, for the dynamic economic emis-
sion dispatch problems, Zhifeng Liu [15] proposed a novel solving approach based on
the enhanced moth-flame optimization algorithm, which effectively reduced fuel costs as
well as the pollutant emissions of power generation systems; Lingling Li [16] proposed
an improved tunicate swarm algorithm for optimizing fuel costs and pollutant emissions,
which optimized the optimal dynamic scheduling scheme. For feature-selection problems,
Tubishat [17] proposed a dynamic salp swarm algorithm (DSSA), and the improvements
significantly enhanced its performance in solving feature-selection problems; Hongliang
Zhang [18] used chaotic initialization and differential evolution to improve the sparrow
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search algorithm (SSA) as a way to increase the convergence speed of the algorithm, which
achieved good optimization results in the feature-selection problem. In the field of mechan-
ical engineering optimization problems, population intelligence algorithms solve a wide
variety of optimization problems [19]. Abderazek [20] proposed a queuing search algorithm
to optimize the main parameters of the spur gear. Yaliang Wang [21] proposed a cellular
differential evolutionary algorithm with double-stage external population leading to solve
the optimal design of cycloid reducer parameters. Because of the powerful optimization
capability of population intelligence algorithms, domestic and foreign scholars usually also
use intelligent algorithms such as particle swarm optimization (PSO) and GWO algorithms
to optimize the parameters in the SVR model [22,23].

The GWO algorithm is a novel heuristic algorithm proposed by Mirjalili et al. in 2014,
which has the advantages of fast convergence speed and high solution accuracy compared
with other intelligent algorithms [24]. However, the algorithm itself has the drawbacks of
poor initial population diversity, slow convergence speed at the later stage, and easy-to-
fall-into local optimum. Additionally, for these drawbacks, various improvement methods
have been proposed and successfully applied by domestic and foreign scholars [25,26].
Although the GWO algorithm has stronger convergence performance than other traditional
intelligent algorithms, it does not have a great advantage in the parameter optimization
problem, so in order to further improve the performance of the algorithm in optimizing
parameters, this paper proposes an improved grey wolf optimization (IGWO) algorithm
based on the initialization of the optimal Latin hypercube sampling (OLHS) method, the
nonlinear convergence factor, and the dynamic weight. In this study, the optimization
capability of the proposed IGWO algorithm is compared with the GWO algorithm, the PSO
algorithm, and the advanced SSA algorithm on six test functions, and the performance of
the IGWO algorithm in solving the SVR model parameters optimization problem is verified
by an actual case.

1.2. Major Contributions

In order to solve the problem that the current research method of rotation error is
difficult to apply to the actual assembly process of RV reducer owing to its shortcomings,
such as its being time-consuming and having poor calculation accuracy, and given the
high-dimensional, nonlinear, and small-sample-size characteristics of the rotation error
prediction problem, this paper proposes a method of rotation error prediction based on
improved grey wolf–optimized support vector regression (IGWO-SVR). In addition, in
order to improve the prediction accuracy of the SVR model, this paper improves the
initialization population, the convergence factor, and the head wolves’ weights of the
GWO algorithm to improve its accuracy for SVR model parameter optimization, and its
optimization performance is verified by test functions. Finally, the parameter optimization
ability of the IGWO algorithm and the prediction performance of the IGWO-SVR method
are verified by using a practical case. The main contributions of this study are as follows:

• An improved grey wolf optimization algorithm is proposed, with three improvements:

1. Improving their initialized populations through the optimal Latin hypercube
sampling idea as a way to increase initial population diversity.

2. Improving the convergence factor by the cosine nonlinear function, which im-
proves the global search ability in the early stage and the convergence speed in
the later stage of the algorithm.

3. Improving the speed of convergence of this algorithm to the optimal solution
through the improvement of the dynamic weighting strategy.

• Establish a new rotation error prediction method based on the IGWO algorithm and
the SVR model to achieve fast and accurate predictions of rotation errors.

• The IGWO-SVR method shows better prediction performance relative to other rota-
tion error prediction methods, and the IGWO algorithm also shows good parameter
optimization performance, as verified by the RV reducer example.
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2. Structural Principle and Rotation Error of RV Reducer
2.1. Structural Principle Analysis of RV Reducer

There are various models of RV reducers, and this article is mainly about the RV-40E
reducer. The RV-40E reducer is constituted primarily of a planetary wheel, a crankshaft,
a cycloid wheel, a flange, a needle gear, etc. Figure 1a shows a schematic diagram of
its structure. Rotation error, which is the critical quality characteristic of the RV reducer,
can be affected by the processing error of each component of the transmission chain,
the modification amount of contact gear tooth profile, assembly clearance, elastic-plastic
deformation, etc. [27]. Additionally, its size refers to the difference between the theoretical
output angle and the actual output angle.
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Figure 1. Structural schematic diagram of RV reducer. 1. Input shaft; 2. Planetary wheel;
3. Crankshaft; 4. Cycloid wheel; 5. Needle tooth shell; 6. Flange; 7. Planet carrier; 8. Needle gear.

The transmission of the RV reducer is divided into two stages: the first-stage involute
planetary gear transmission and the second-stage cycloid transmission. Figure 1b shows the
principle of the RV reducer transmission. Because the first-stage transmission system is far
from the output end and because the transmission ratio of the second-stage transmission
is 3~25 times that of the first-stage transmission, the impact of the first-stage involute
gear planetary transmission system on the overall rotation error of the assembly will be
greatly reduced. Second, because the influence of the second-stage cycloid pin-wheel
transmission on the transmission error is directly reflected on the output shaft, the effect on
the transmission accuracy of the RV reducer depends mainly on the second-stage rotation
error [28]. In conclusion, this paper considers only the second-stage cycloid pin-wheel
transmission system to establish the rotation error prediction model and ignores the first-
stage transmission.

2.2. Analysis of Influencing Factors of Rotation Error

There are many manufacturing errors that affect the rotation error in the second-stage
transmission system, and it is difficult to study the manufacturing errors of the parts one by
one. Therefore, this paper uses the Taylor series expansion principle to conduct a sensitivity
analysis of manufacturing errors to identify the primary influencing elements from the
manufacturing errors in the second-stage cycloidal pin-wheel transmission. Additionally,
parameters for each influencing factor are noted as θ = [θ1, θ2, · · · , θn]. According to the
principle of sensitivity analysis, the rotation error model is defined in Equation (1):

ϕ = ϕ(θ1, θ2, · · · , θn) (1)
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Using the Taylor series expansion principle, the sensitivity index of each error can be
defined in the Equation (2):

Si =
∂ϕ/∂θi

∂ϕ/∂θ0
i = 1, 2, 3 · · · n (2)

where ∂ϕ/∂θ0 is the reference factor and the crank-bearing clearance is chosen as the
reference in this paper.

Table 1 shows the sensitivity analysis results of eight key manufacturing errors in the
second-stage cycloidal pin-wheel transmission. According to Table 1, this paper selects
five factors, including the cycloid gear isometric modification error (θ1), the radius error of
needle tooth center circle (θ2), the cycloid gear shift modification error (θ3), the needle tooth
radius error (θ4), and the crankshaft eccentricity error (θ5), to establish the rotation error
prediction model. Although the sensitivity index of the crankshaft eccentricity error is very
small, the crank-bearing clearance error that can be caused by the crankshaft eccentricity
error has a great influence on rotation error; therefore, the crankshaft eccentricity error is
also considered to establish the prediction model.

Table 1. Sensitivity index of manufacturing errors of key components.

Manufacturing Errors of Key Components Index of Sensitivity Weight %

Cycloid gear isometric modification error (θ1) 1.6131 23.040
Radius error of needle tooth center circle (θ2) 1.102 15.746

Cycloid gear shift modification error (θ3) −1.1024 15.746
Needle tooth radius error (θ4) −0.8065 11.519

Crankshaft eccentricity error (θ5) 0.00007 0.001
Accumulated pitch error of cycloidal gear (θ6) −0.589 8.410
Needle hole circumferential position error (θ7) 0.587 8.341

Cycloid ring gear radial runout error (θ8) 0.201 2.871
Crank-bearing clearance (θ9) 1.000 14.283

3. The Improvement of the GWO Algorithm
3.1. GWO Algorithm

The GWO was proposed in 2014 by Mirjalili [24] as a novel heuristic group intelligence
method, which is based on the principle of simulating the hierarchical mechanism and hunt-
ing mode of the grey wolf pack. The grey wolf pack is generally divided into four classes,
and the top-three wolves with the best adaptability in the pack are divided into wolfα, wolfβ,
and wolfγ, and the rest are ω wolves. Its hunting process is mainly that wolfα, wolfβ, and
wolfγ lead other ω wolves to continuously search, surround, and attack prey. Additionally,
update the wolfα, wolfβ, and wolfγ of each iteration during the hunting process.

Step 1: surrounding the prey. The wolf pack ω is constantly updated according to the
prey’s position and its distance from the prey, thus gradually approaching the prey. The
mathematical formula is as follows:

D =
∣∣C·Xp(t)− X(t)

∣∣ (3)

X(t + 1) = Xp(t)–A·D (4)

where D denotes the distance between ω wolf and prey, t denotes the present iterations,
Xp(t) denotes the location of prey at tth iterations, X(t) denotes the location vector of
grey wolf in tth iterations, and X(t + 1) denotes the updated position of theωwolves in
(t + 1)th iteration. Finally, C and A are the random coefficients, which can be formulated as
follows:

A = 2α·r1 − α (5)

C = 2r2 (6)
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α = 2− 2
t

tmax
(7)

where r1, r2 denote the random vectors of [0, 1] interval, t denotes the present iterations,
tmax denotes the maximum iterations, and α denotes a converging factor.

Step 2: hunting. The hunting behavior is completed under the leadership of the wolfα,
wolfβ, and wolfγ. The leading of ω wolves by leaders depends mainly on the constant A
and the distance D between ω wolf and prey. Figure 2 shows a schematic diagram of a ω
wolf position update, which can be formulated as follows:

Dα = |C·Xα − X(t)|
Dβ =

∣∣C·Xβ − X(t)
∣∣

Dγ = |C·Xγ − X(t)|
(8)


X1 = Xα − A1·Dα

X2 = Xβ − A2·Dβ

X3 = Xγ − A3·Dγ

(9)

X(t + 1) =
X1 + X2 + X3

3
(10)

where Dα, Dβ and Dγ indicate the distance between the grey wolf and the prey; Xα, Xβ,
and Xγ indicate the position of the wolfα, wolfβ, and wolfγ, respectively; and X(t + 1)
indicates the updated location of the wolf packω in the (t + 1)th iteration. The iterations
are performed by the above method, and the optimal solution is obtained when the iteration
times satisfy the termination condition.
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3.2. Improved GWO Algorithm

The traditional GWO algorithm has some disadvantages: poor initial population
diversity, slow convergence in the later stage, and easy-to-fall-into local optimization [25].
Additionally, the inaccuracy of the parameter optimization results of the GWO algorithm
may result in poor forecast precision from the SVR model for the rotation error, thus failing
to meet the requirements of the RV reducer assembly line. Hence, this article proposes an
IGWO algorithm, based on the initialization of the OLHS method, the cosine nonlinear
convergence factor, and dynamic weights to improve the accuracy of the algorithm’s
parameter search.
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3.2.1. Wolf Pack Initialization by the OLHS Method

In intelligent optimization algorithms, the distribution of the initial population location
influences the global search speed and the convergence accuracy of algorithms, and the
uniform and diverse population distribution facilitates the optimization properties of the
algorithm [29]. The traditional GWO algorithm uses a random method to generate the
initial population, so it lacks diversity. In addition, the uneven distribution of the initial
population may cause it to run into a topical optimization solution; that is, the initial range
does not cover the location of the optimal solution, so the algorithm cannot find the global
optimal solution.

The OLHS method is an improvement on the Latin hypercube sampling (LHS) method.
The traditional LHS rule can ensure only that the projection is uniformly distributed on
each coordinate axis, but the distribution in space is not uniform. Therefore, in the case
of improving its space-filling property, in 1990 Johnson [30] proposed the minimax rule
to improve the space-filling degree, which is one of the most widely used methods to
evaluate sampling uniformity. However, the calculation scale of this method is very large,
so Morris [31] proposed the OLHS method in 1995 on the basis of the scalar discriminant
function, which not only guaranteed the characteristics of space-filling but also reduced
the calculation scale. Its scalar discriminant function formula is as follows:

ϕq(X) =

(
m

∑
i=1

Jid
−q
i

) 1
q

(11)

where di, i = 1, 2, 3 . . . . . . m indicates the distance between all possible combinations of
two points in the sampling matrix, X, ji, i = 1, 2, 3 . . . . . . m indicates the number of pairs
of points with distance di in the sampling matrix X, and q indicates the mode norm of the
space, which is a positive integer.

In this paper, the OLHS method with good space-filling property is used to initialize
the distribution position of grey wolves. Figure 3 shows the different distributions of the
initializations of the random method and the OLHS method when generating 100 grey
wolf individuals between [0, 1] in two dimensions. According to Figure 3, it is obvious
that the initialization of the OLHS method can result in a more uniform distribution of the
initial population in the sample space, and the more uniform initial population can provide
more information on the global optimal solution, which can improve the algorithm’s global
search capability and convergence speed.
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3.2.2. Nonlinear Convergence Factor

The key problem of the traditional GWO algorithm is how to make a trade-off between
the ability of global optimization and local optimization. Additionally, the global optimiza-
tion capacity affects the stability and accuracy of the algorithm optimization, and the local
optimization capacity affects the rate of the algorithm convergence. The traditional GWO
algorithm balances the ability of global and local searches by the change in A, which is
controlled by the linear variation of α. When |A| ≤ 1, the algorithm tends to develop the
capacity of local searches; when |A | > 1, the algorithm tends to develop the capacity of
global searches.

The convergence factor parameter α that is shown in Equation (5) is a linear, de-
creasing transformation that represents the convergence process from 2 to 0. However,
the convergence of the algorithm is often a nonlinear process, so the linear decrement
of α is difficult to use to control the convergence process of the algorithm, causing the
algorithm to easily run into a local optimum [32]. The research of Yuxiang Hou [33] shows
that the nonlinear transformation of parameter α can enhance the optimization capacity of
the algorithm and avoid running into a local optimum. Therefore, this paper uses cosine
nonlinear convergence parameter α to control the convergence process of the algorithm,
and its formula is given by Equation (12):

α = cos
(

t
tmax

π

)
+ 1 (12)

where t indicates the iterations, tmax indicates the maximum iterations, and α indicates the
convergence factor. The convergence processes of α for the IGWO algorithm and traditional
GWO algorithm are shown in Figure 4.
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According to Figure 4, the α of the GWO algorithm linearly decreases, which does
not apply to the nonlinear convergence process of the algorithm. The α of the IGWO
algorithm is nonlinear and normally decreases, and during the first half of the iteration, the
convergence factor decreases more slowly compared with the traditional GWO algorithm,
thus improving the global search ability of the algorithm and avoiding the algorithm’s
falling into the local optimum in the early stage. During the second half of the iteration, the
decreasing speed of the convergence factor is accelerated, thus improving the convergence
speed and accuracy of the local search of the algorithm. In summary, the cosine nonlinear
improvement of the convergence factor can better equilibrate the capabilities of the global
optimization and the local optimization of the algorithm.

3.2.3. Weight-Based Grey Wolf Position Update

In the GWO algorithm, the leading weights of wolfα, wolfβ, and wolfγ are the same,
which leads to a slow convergence of the algorithm. In addition, many scholars have
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verified that a better new grey wolf pack can be generated by weighted fitness or weighted
distance, thus accelerating the convergence speed of the algorithm. In this paper, the weight
is dynamically adjusted according to the fitness and distance, and the position update
formula in Equation (10) is transformed into Equation (14). The mathematical expressions
of weight and position update formula are as follows:

W1
α =

fα+ fβ+ fγ

fα
, W1

β =
fα+ fβ+ fγ

fβ
, W1

γ =
fα+ fβ+ fγ

fγ

W2
α = |X1|

|X1+X2+X3|
, W2

β = |X2|
|X1+X2+X3|

, W2
γ = |X3|

|X1+X2+X3|

W1 =

√
W1

α∗W2
α√

W1
α∗W2

α+
√

W1
β∗W

2
β+
√

W1
γ∗W2

γ

W2 =

√
W1

β∗W
2
β√

W1
α∗W2

α+
√

W1
β∗W

2
β+
√

W1
γ∗W2

γ

W3 =

√
W1

γ∗W2
γ√

W1
α∗W2

α+
√

W1
β∗W

2
β+
√

W1
γ∗W2

γ

(13)

X(t + 1) = W1X1 + W2X2 + W3X3 (14)

where t indicates the current iteration number; fα, fβ, and fγ are the current fitness values
of wolfα, wolfβ, and wolfγ, respectively; and X(t + 1) represents the position of the (t + 1)th
iteration ω wolf.

3.2.4. Validation of IGWO Algorithm

In the literature, an article [34] chose six functions to test the properties of the IGWO
algorithm, among which f1 and f2 are single-peaked functionns, f3 and f4 are multipeaked
functions, and f5 and f6 are fixed-dimension multipeaked functions, as shown in Table 2
and Figure 5. Additionally, it compared the IGWO algorithm with the PSO algorithm, the
SSA algorithm, and the traditional GWO algorithm to better demonstrate the first’s seeking
performance. To ensure fairness and effectiveness, the maximum iteration number and
the initial population size of algorithms were uniformly set to 500 and 30, c1 = 2, c2 = 2,
ω = 0.75 for the PSO algorithm, q = 10 for the IGWO algorithm, and R2 = 0.8, ST = 0.8,
percent = 0.2 for the SSA algorithm.

Table 2. Test functions.

Test Functions Dimension Range Min

f1 =
n
∑

i=1
x2

i
30 [−100, 100] 0

f2 =
n
∑

i=1
|xi|+ Πn

i=1|xi| 30 [−10, 10] 0

f3 =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

f4 = 1
4000

n
∑

i=1
x2

i −Πn
i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600] 0

f5 = 4x2
1 − 2.1x4

1 +
x6

1
3 + x1x2 − 4x2

2 + 4x4
2

2 [−5, 5] −1.0316

f6 =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.3979



Sensors 2023, 23, 366 10 of 22

Sensors 2023, 23, x FOR PEER REVIEW 10 of 23 
 

 

30, 𝑐1=2，𝑐2=2，ω=0.75 for the PSO algorithm, 𝑞 = 10 for the IGWO algorithm, and 𝑅2 = 

0.8, 𝑆𝑇 = 0.8, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 0.2 for the SSA algorithm. 

 

Figure 5. Three-dimensional graphs of functions. 

Table 2. Test functions. 

Test Functions Dimension Range Min 

𝑓1 =∑𝑥𝑖
2

𝑛

𝑖=1

 30 [−100, 100] 0 

𝑓2 =∑|𝑥𝑖| + П𝑖=1
𝑛 |𝑥𝑖|

𝑛

𝑖=1

 30 [−10, 10] 0 

𝑓3 =∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 30 [−5.12, 5.12] 0 

𝑓4 =
1

4000
∑𝑥𝑖

2 − П𝑖=1
𝑛 cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

 30 [−600, 600] 0 

𝑓5 = 4𝑥1
2 − 2.1𝑥1

4 +
𝑥1
6

3
+ 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4 2 [−5, 5] −1.0316 

𝑓6 = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2 + 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠𝑥1

+ 10 
2 [−5, 5] 0.3979 

The average and the standard deviation of the 20 optimization results are used as the 

criteria to reflect the optimization performance of the algorithms. Table 3 and Figure 6 

show the optimization results and convergence curves. The results show that for single-

peak functions 𝑓1 and 𝑓2, the mean of the IGWO algorithm is more similar to the real 

optimal solution and that the algorithm converges faster compared with the PSO, GWO, 

and SSA algorithms. For multipeaked functions 𝑓3 and 𝑓4, the IGWO algorithm shows 

good optimization performance, and there is no error between its optimization results and 

the real results, whereas all other algorithms have some errors. For the fixed-dimensional 

multipeaked functions 𝑓5  and 𝑓6 , the convergence results of all four algorithms are 

accurate. Therefore, the IGWO algorithm has better function optimization performance 

and better convergence speed and accuracy than the PSO, GWO, and SSA algorithms, 

which indicates that the enhancement of the algorithm in this article is efficient. 

Figure 5. Three-dimensional graphs of functions.

The average and the standard deviation of the 20 optimization results are used as the
criteria to reflect the optimization performance of the algorithms. Table 3 and Figure 6
show the optimization results and convergence curves. The results show that for single-
peak functions f1 and f2, the mean of the IGWO algorithm is more similar to the real
optimal solution and that the algorithm converges faster compared with the PSO, GWO,
and SSA algorithms. For multipeaked functions f3 and f4, the IGWO algorithm shows
good optimization performance, and there is no error between its optimization results and
the real results, whereas all other algorithms have some errors. For the fixed-dimensional
multipeaked functions f5 and f6, the convergence results of all four algorithms are accurate.
Therefore, the IGWO algorithm has better function optimization performance and better
convergence speed and accuracy than the PSO, GWO, and SSA algorithms, which indicates
that the enhancement of the algorithm in this article is efficient.

Table 3. Algorithm optimization results.

Function Algorithm Average St.dev

f1

PSO 3.73 × 10−12 5.45 × 10−12

GWO 3.88 × 10−48 6.79 × 10−48

SSA 2.76 × 10−7 6.27 × 10−7

IGWO 1.69 × 10−77 1.97 × 10−78

f2

PSO 1.59 × 10−3 1.84 × 10−2

GWO 8.65 × 10−45 5.89 × 10−44

SSA 5.54 × 10−6 1.59 × 10−5

IGWO 4.07 × 10−56 1.43 × 10−58

f3

PSO 3.67 × 10−2 5.32 × 10−2

GWO 5.44 × 10−15 1.09 × 10−16

SSA 7.98 × 10−6 2.06 × 10−5

IGWO 0 0

f4

PSO 0.0098 0.0105

GWO 0.0025 0.0189

SSA 3.75 × 10−8 9.42 × 10−8

IGWO 0 0
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Table 3. Cont.

Function Algorithm Average St.dev

f5

PSO −1.0316 4.66 × 10−8

GWO −1.0316 7.77 × 10−8

SSA −1.0316 7.54 × 10−5

IGWO −1.0316 3.57 × 10−8

f6

PSO 0.3979 5.29 × 10−7

GWO 0.3979 1.82 × 10−8

SSA 0.3979 1.97 × 10−4

IGWO 0.3979 1.83 × 10−8Sensors 2023, 23, x FOR PEER REVIEW 11 of 23 
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4. Rotation Error Prediction Model Based on IGWO-SVR
4.1. SVR Model

Support vector regression is generalized from support vector machines and applied
to solve regression prediction problems [35]. For the problem of predicting the rotation
error of the RV reducer, cycloid gear isometric modification error (θ1), needle tooth center
circle radius error (θ2), cycloid gear shift modification error (θ3), needle tooth radius error
(θ4), and crankshaft eccentricity error (θ5) are composed of input variables, and the rotation
error is taken as the output variable. Thus, the sample can be formulated as follows:

xi = [θ1, θ2, θ3, θ4, θ5] (15)

X = [x1, x2, x3, x4, . . . , xn]
T (16)

Y = [Y1, Y2, Y3, Y4, . . . ,Yn]
T (17)

where n denotes the number of samples, xi represents the input variables, X represents an
array of input factor variables, and Y denotes an actual value array of sample data rotation
errors.

According to the sample data, if there is a functional relationship between the ro-
tation error and the five key manufacturing errors above. The SVR model is shown in
Equation (18):

f (x) = ωT ϕ(x) + b (18)

where x is the input vector, f (x) denotes the predicted value of rotation error, ϕ(x) is the
mapping relationship function, and b and ω are the deviation term and the weight vector,
respectively.

By introducing an insensitive loss function and minimizing structural risk, Equation (18)
can be transformed as follows:

min
1
2
||ω||2 + C

n

∑
i=1

(
ξ −i + ξ +

i
)

(19)

s.t.


Yi −

(
ωT ϕ(xi) + b

)
≤ ε + ξ +

i(
ωT ϕ(xi) + b

)
−Yi ≤ ε + ξ −i

ξ −i , ξ +
i ≥ 0, i = 1, 2, ···, n

(20)

where ||ω||2 is the regular term, ε is the parameter of the insensitive penalty function, ξ −i
and ξ +

i are slack variables, xi is the input variable, Yi is the actual value of the rotation
error, and C is a penalty factor.

By introducing Lagrange multipliers α +
i , α −i and kernel functions, (19) and (20) can

be transformed into their dual form problem, as shown in Equations (21) and (22):

max

[
1
2

n

∑
i=1

n

∑
j=1

(
α+i − α−i

)(
α+j − α−j

)
K(x, xi)− ε

n

∑
i=1

(
α+i + α−i

)
+

n

∑
i=1

(
α+i − α−i

)
yi

]
(21)

s.t.


n
∑

i=1

(
α +

i − α
−
i
)
= 0

0 ≤ α +
i ,α −i ≤ C

(22)

where α +
i ,α −i are Lagrange multipliers and K(x, xi) is a Gauss radial basis kernel function.

The formula is given by Equation (23):

K(x, xi) = exp

(
−||x− xi||2

2σ2

)
= exp

(
−g||x− xi||2

)
(23)

where σ denotes the width of the function and g represents the parameter of the kernel.
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Finally, through the Karush–Kuhn–Tucker condition, the mathematical expression of
the final SVR model is shown in Equation (24):

f (x) =
n

∑
i=1

(
α +

i − α
−
i
)
K(x, xi) + b (24)

4.2. Process of Building Rotation Error Prediction Model

The prediction of the rotation error is a typical high-dimensional nonlinear problem.
By the SVR method, the kernel function throws the sample data from the low dimensional
space to the relatively higher dimensional space to solve the problem.

The prediction accuracy of rotation errors based on SVR is significantly affected by
C and g, as shown in Equations (23) and (24). First, the penalty factor C represents the
penalty on the sample points and beyond the ±ε pipe, and the magnitude of this value
has an impact on the stability as well as the complexity of the SVR prediction model. In
addition, the kernel function g represents the correlation between the sample points and
beyond the ±ε tube. The larger the g value is, the stronger the correlation between these
points is, but the accuracy of the rotation error prediction model is difficult to guarantee.
On the contrary, the smaller the g value is, the looser the correlation between these points
is, resulting in a more complex SVR model and the poorer universalization capacity of the
model. Therefore, taking the appropriate C and g can enhance the precision of the SVR
model for predicting rotation errors. To enhance the prediction precision of the SVR model
for RV reducer rotation errors, this article uses the abovementioned IGWO algorithm to
find the suitable values of C and g. Figure 7 is the prediction process of rotation errors
based on IGWO-SVR, and the specific steps are as follows:

Step 1: Import five key manufacturing error factors X and rotation error Y into the
prediction model as input and output data, perform normalization, and separate sample
data into training and test sets.

Step 2: Set an optimization range of parameters about the SVR model, establish the
rotation error prediction model based on SVR, and train the model using the training set
data.

Step 3: Initialize the IGWO algorithm parameters, and generate the initial grey wolf
population within the parameter range by following the OLHS method.

Step 4: Calculate the fitness (fitness value is mean square error) of each grey wolf by
the SVR model, and save the top-three wolves of the best fitness as wolfα, wolfβ, and wolfγ.

Step 5: Update the IGWO algorithm parameters and ω wolves, and then calculate the
fitness.

Step 6: Compare the fitness of each ω wolf with the corresponding fitness values of
wolfα, wolfβ, and wolfγ in turn, and if it is better, replace the corresponding leading wolf’s
position with the ω wolf’s position.

Step 7: Judge whether the current iteration count is equal to the maximum iteration
count. If yes, output the bestC and bestg; otherwise, return to step 6.

Step 8: Replace C and g with bestC and bestg to establish an IGWO-SVR model of
rotation errors.

Step 9: Test the rotation error prediction model with the test set data.
Step 10: Judge whether the rotation error prediction model’s forecast accuracy meets

the assembly line requirement. If it meets the accuracy requirement, output the prediction
results and save the prediction model; otherwise, go back to Step 3.
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5. Result and Discussion

The prediction model in this paper was implemented by using Python 3.8 program-
ming in Windows 10 system. This paper selects mean square error (MSE), mean relative
error (MRE), and mean absolute error (MAE) as the evaluation metrics to assess the predic-
tion performance of the IGWO-SVR model.

MSE =
1
n

n

∑
i=1

(Yi −Y∗i )
2 (25)

MAE =
1
n

n

∑
i=1
|Yi −Y∗i | (26)

MRE =
∑n

i=1
|Yi−Y∗i |
Yi

n
(27)

where Yi denotes a real value of rotation error, Y∗i denotes a predicted value of rotation
error, and n is the number of test samples.
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5.1. Preprocessing of Data

In this paper, 100 sets of data from the actual production process of an RV reducer
manufacturing company are selected as samples. Because different factors have different
magnitudes, the sample data are normalized to eliminate the influence of magnitudes
among factors. Then the sample data are divided into test samples and training samples at
a rate of 2:8. A normalized mathematical expression is shown in Equation (28):

xnewi =
xi − xmin

xmax − xmin
(28)

where xnewi denotes the normalized value, xi denotes the raw value, and xmax and xmin
denote the maximum value and the minimum value, respectively. Some of the normalized
data are shown in Table 4.

Table 4. Partially normalized sample data.

Sample θ1 θ2 θ3 θ4 θ5 Rotation Error (Y /’)

1 0.156 0.500 0.903 0.850 0.800 1.133
2 0.250 0.350 0.288 0.350 0.400 1.231
3 0.750 0.650 0.711 0.350 0.600 1.938
4 0.750 0.500 0.288 0.50 0.400 1.452
5 0.500 0.650 0.288 0.650 0.400 1.564
6 0.843 0.150 0.903 0.850 0.500 1.272
7 0.500 0.150 0.903 0.500 0.800 1.464
8 0.843 0.850 0.500 0.150 0.800 1.473
9 0.312 0.500 0.807 0.750 0.700 1.190

10 0.5 0.250 0.500 0.500 0.700 1.240

5.2. Optimization Results of Parameters

In this paper, the parameters C and g in the SVR model need to be optimized. Therefore,
the dimension of the optimized parameter in the IGWO algorithm is set to 2, and the value
range of super parameters C and g is set as 0.01 to 100. Table 5 shows the values of the
parameters of the algorithm.

Table 5. Parameter values of the IGWO algorithm.

Number of
Optimizations

Scope of
Optimizations

Number of
Wolves

Maximum
Iterations

Mode Norm of
Space

2 [0.01, 100] 20 100 10

The MSE is chosen as the fitness function, then the fitness of each individual is
computed during the iterative process, and the results of the optimal parameters bestC
and bestg are finally obtained. Finally, the bestC and bestg in SVR are 10.897 and 0.1918,
respectively, by the IGWO algorithm, and the corresponding optimal fitness value at this
point is 0.0258. The optimal fitness curve and average fitness curve in the iteration process
are shown in Figure 8. As can be seen from Figure 8, the optimal fitness curve basically
coincides with the average fitness curve after 20 iterations.
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5.3. Analysis of Predictive Effect of the IGWO-SVR Model

In this paper, MSE, MAE, MRE, and calculation time are used as criteria to evaluate
the prediction effectiveness of the IGWO-SVR model, and as they get closer to 0, the better
the prediction effectiveness of the model is. Figure 9 shows the prediction result of the
model compared with the actual value, and Figure 10 shows the relative error for each
sample point.
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Figure 9 shows that the MSE, MRE, MAE, and calculation time of the IGWO-SVR
model are 0.026, 0.0784, 0.1195, and 7.873s after 20 test set samples, respectively, indicating
that the trained IGWO-SVR model achieves a high prediction accuracy and can also meet
the requirement of enterprise production line beat in calculation time. Figure 10 shows that
the maximum relative error of the forecasting model is 13.5%, which meets the enterprise’s
requirement for the error to be within 20%. In summary, although the model has some
errors, the overall prediction effect is good, it can more accurately express the nonlinear
relationship between the rotation error and the dimensional errors of key parts, and
its prediction accuracy and calculation time can meet the requirements of RV reducer
enterprises.

5.4. Performance Evaluation of Model

In order to better evaluate the performance of the IGWO-SVR model, it is compared
with the SVR models optimized by the PSO algorithm and the GWO algorithm, the existing
BP neural network rotation error prediction method [6], and the SSA-BP neural network
rotation error prediction method [7]. The parameters of different rotation error prediction
models are shown in Table 6.

Table 6. Parameter values for different rotation error prediction models.

Model Parameter Value

BP neural network
Learning rate 0.01

optimizer Stochastic gradient descent

SSA-BP neural network
Learning rate 0.01

optimizer Stochastic gradient descent

IGWO-SVR
bestC 10.897
bestg 0.1918

GWO-SVR
bestC 1.275
bestg 6.183

PSO-SVR
bestC 1.059
bestg 7.532
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Figure 11 and Table 7 clearly show the prediction results of different rotation error
prediction methods. From Table 7, the MSE of IGWO is 0026, which is 27.37% lower than
PSO-SVR method, 28.57% lower than GWO-SVR method, 78.53% lower than BP method,
and 28.37% lower than SSA-BP method; the MRE of IGWO is 0.0784, which is 11.21%
lower than PSO-SVR method, 13.94% lower than GWO-SVR method, 59.06% lower than BP
method, and 37.68% lower than SSA-BP method; and the MAE of IGWO is 0.1195, which
is 10.75% lower than PSO-SVR method, 12.65% lower than GWO-SVR method, 57.46%
lower than BP method, and 32.52% lower than SSA-BP method. Therefore, the results of
the data analysis show that the IGWO method is better than the other prediction methods
at prediction accuracy. In addition, for calculations, the IGWO-SVR method outperforms
the PSO-SVR model and significantly outperforms the BP and SSA-BP models. Although
the computing efficiency of the IGWO-SVR method is a little slower compared with the
GWO-SVR model, it can also meet the beat requirement of the RV reducer production line.
Therefore, given the prediction accuracy and computational efficiency, the IGWO-SVR
method has better prediction performance than the other methods.
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Table 7. Prediction results of rotation error for different models.

Prediction Model
Evaluating Indicator Time

Duration/sMSE MRE MAE

IGWO-SVR 0.0260 0.0784 0.1195 7.843
PSO-SVR 0.0358 0.0883 0.1339 8.926

GWO-SVR 0.0364 0.0911 0.1368 6.542
BP neural network 0.1211 0.1915 0.2809 10.508

SSA-BP neural network 0.0363 0.1258 0.1771 11.851

Figures 12 and 13 show the relative error for each sample point and maximum relative
error of different prediction methods. According to Figure 12, the relative error curve of
the IGWO-SVR method is less volatile and more stable than those of the other methods.
In addition, according to Figure 13, the maximum relative error of IGWO-SVR is 13.5%,
which is not only within the 20% range required by companies but also lower than other
forecasting methods. The maximum relative errors of GWO-SVR and PSO-SVR are 19.7%
and 19.5%, respectively, and they are only slightly below 20%, so they are not as reliable.
Additionally, the maximum relative errors of the BP neural network and the SSA-BP neural
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network are 28.1% and 24%, respectively, which can no longer meet the requirements of
the forecasting accuracy of enterprises. Therefore, the prediction results of the IGWO-SVR
method for rotation errors are more reliable than the other methods.
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In summary, the IGWO-SVR method not only has good performance in prediction
accuracy and prediction efficiency but also has low volatility and good stability. Thus, it
can more accurately express the nonlinear relationship between rotation errors and the
dimensional errors of key parts. Additionally, it provides a more accurate quality prediction
input model for the part-matching model of the RV reducer, which will be more conducive
to improving assembly quality.
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6. Conclusions

This study solves the problem that the traditional rotation error research methods
cannot be applied to the parts-matching process, because they are time-consuming and
have poor calculation accuracy. Therefore, this paper proposes to use the SVR method,
combined with the improvement of the grey wolf optimization algorithm, to predict the
rotation error with high accuracy and speed. In addition, this paper takes the RV-40E
reducer as a case to verify the performance of the method. The main contents include the
following parts:

(1) Traditional GWO algorithm is enhanced based on the OLHS method, the cosine
nonlinear convergence factor, and the dynamic weight strategy. Through verification,
the IGWO algorithm has good optimization performance.

(2) The prediction model for the rotation error of the RV reducer based on IGWO-SVR
is established by optimizing the C and g of SVR by using the IGWO algorithm.
Additionally, its MSE is 0.026, running time is 7.843 s, and maximum relative error is
13.5%, which can meet the requirements of production beat and the product quality
of enterprise.

(3) A comparison of the IGWO-SVR method with other methods shows that the for-
mer provides better prediction performance and the IGWO algorithm shows better
parameter optimization performance.

The innovative contributions of this paper are the following three: (1) Improve its
optimization performance by improving the traditional grey wolf optimization algorithm.
(2) A new rotation error research method based on IGWO-SVR model is proposed for the
disadvantages of existing rotation error research methods. (3) This research method can
guide the assembly of RV reducers through the parts-matching process, thus improving its
assembly quality and efficiency.

Although the IGWO-SVR method has good prediction performance for rotation errors,
the method also has some drawbacks. First, the rotation error is affected by many factors,
but the method considers only five key factors in the second-stage cycloidal pin-wheel
transmission. Second, the method is only for the RV-40E model reducer, and the applicabil-
ity to other models is not necessarily very high. Therefore, these issues will be considered
in future work to obtain a more optimal prediction model for rotation errors.
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