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Abstract: Autonomous vehicles require efficient self-localisation mechanisms and cameras are the
most common sensors due to their low cost and rich input. However, the computational intensity
of visual localisation varies depending on the environment and requires real-time processing and
energy-efficient decision-making. FPGAs provide a solution for prototyping and estimating such
energy savings. We propose a distributed solution for implementing a large bio-inspired visual
localisation model. The workflow includes (1) an image processing IP that provides pixel information
for each visual landmark detected in each captured image, (2) an implementation of N-LOC, a
bio-inspired neural architecture, on an FPGA board and (3) a distributed version of N-LOC with
evaluation on a single FPGA and a design for use on a multi-FPGA platform. Comparisons with
a pure software solution demonstrate that our hardware-based IP implementation yields up to 9×
lower latency and 7× higher throughput (frames/second) while maintaining energy efficiency. Our
system has a power footprint as low as 2.741 W for the whole system, which is up to 5.5–6× less than
what Nvidia Jetson TX2 consumes on average. Our proposed solution offers a promising approach
for implementing energy-efficient visual localisation models on FPGA platforms.

Keywords: FPGA; bio-inspired algorithms; Wizarde custom platform; Nvidia Jetson TX2; neural
networks; N-LOC; hardware acceleration; GTX transceivers

1. Introduction

Autonomous vehicles have been at the center of attention of robotics and embedded
systems fields in the last decade. Indeed, according to a recent technical report by the
National Highway Traffic Safety Administration, 94% of road accidents are caused by
human errors [1]. Automated Driving solutions (ADSs) are considered to be reliable
solutions and are being implemented with the promise of reducing the accident rates, with
an ease-of-use of driving vehicles [2].

Current solutions tend to combine multi-modal sensors, e.g., light detection and
ranging (LiDAR) cameras, radars, etc., to perform an end-to-end environmental locali-
sation task, coupled with convolutional neural networks (CNNs) as the core process to
take decisions [3]. For example, Gao et al. incorporate CNNs and vision algorithms
with LIDARs [4]. However, leveraging LiDAR cameras for localisation is expensive and
energy consuming [5].

Hence, alternative bio-inspired architectures have been proposed to resolve the
navigation task for self-driving vehicles. In particular, the architecture proposed by
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Espada et al. [6] solves the localisation part by adapting a model based on the hip-
pocampal system in the mammal’s brain to the vehicle localisation problem. However,
a large number of neurons must be instantiated to fully implement the model. Yet,
even though the resulting model is large, it uses low complexity operations (gradient,
Gaussian, etc.). Therefore, this model is amenable to efficient implementation in hardware
using Field-Programmable Gate Arrays (FPGAs). However, while the number of neurons
used in the model is quite large, it requires fewer layers compared to a CNN. This reduces
both computation and operation complexity. Espada’s initial implementation was carried
out purely in software and was running on a high-end general-purpose processor. This
shows the potential of such an approach in unknown environments, but as is, this software
implementation cannot scale to perform the localisation task in real-time at reasonably
high speeds.

FPGA-based implementations of CNNs show they may yield better results than other
heterogeneous systems such as CPU + GPU + software combinations, in terms of both
performance and energy consumption [7]. With respect to vehicle localisation, the image
acquisition and processing part of the algorithm has already been performed using FPGAs
by Fiack et al. The results show a drastic increase in performance once specialised hardware
is used [8].

In this context, this paper introduces a new computational co-design approach: “N-
LOC,” to solve the scalability problem of the software implementation of the bio-inspired
neural network for autonomous vehicle. This approach allows one to accelerate the pro-
cessing with a significant speedup compared to traditional methods and a low footprint
implementation. Experiments first conducted on a ZC706 board demonstrated the potential
of the proposed solution and perspectives on a scalable FPGA platform are presented.

In this work, we describe a methodology to implement in hardware a bio-inspired
algorithm as an FPGA Intellectual Property (IP), in order to speedup the execution of
the LPMP model and make it usable in a real-time context for autonomous vehicles.
This paper significantly extends the work we described elsewhere [9] and proposes the
following contributions:

1. A design to port the LPMP model to the hardware using FPGAs.
2. N-LOC, a hardware implementation of the LPMP bio-inspired model for naviga-

tion, including a set of benchmarks to compare the performance of N-LOC with the
reference software implementation of LPMP.

• In particular and compared to our previous published work, we perform a
comparison with the original (optimised) implementation running on a low-
power, high-end embedded platform (Nvidia’s Jetson TX2).

3. A design for a distributed hardware implementation in order to deal with larger neural
networks.

The remainder of this paper is as follows: Section 2 discusses the bio-inspired al-
gorithms that exist in the state of the art and the one we chose for our hardware imple-
mentation. In Section 3, we outline the computational supports needed for our hardware
implementation. Section 4 presents our bio-inspired neural architecture, N-LOC, a new
custom accelerator for the localisation task of an autonomous vehicle. Section 5 presents the
Wizarde heterogeneous platform for the implementation of the model. Section 6 extends
the duplication of our main application on one FPGA tile, then demonstrates its capability
over Wizarde custom platform. Section 7 describes the related work. Finally, we conclude
in Section 8.

2. Background

To achieve the task of navigation, a self-driving vehicle must successfully handle a
large number of problems simultaneously [10]. For example, the system must locate its
position, identify practicable pathways, determine potential routes, prevent sources of
accidents, etc.
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To deal with such a variety of issues, proposed car architectures are generally composed
of a wide variety of modules, specialised in solving a reduced number of problems [11]. The
information extracted by these modules is successively merged to go from the raw sensor to
the action on the vehicle. The pipeline is often very classical and follows a logical order: first
the information from the sensors is processed (perception system); then this information is
used to localise the vehicle in its environment (localisation system); thereafter a trajectory is
computed from the location of the vehicle (path planning system); finally, the trajectory is
read and carried out via motor control mechanisms (motor control system) [12].

In such an architecture, the responses obtained via the localisation modules have a
great impact on the performance of the system. Indeed, the planning block relies heavily on
the location provided by the system and requires a high degree of reliability [13]. To reach
the highest possible level of performance, location blocks are generally based on the use of
very powerful and accurate sensors such as LiDAR or RTK GPS [14]. The vehicles that have
achieved the greatest navigation trajectories are mostly based on these technologies [15].
For example, the autonomous car proposed by the VisLab team in the VIAC project (VisLab
Intercontinental Autonomous Challenge (the objective of the VIAC project was to test
the capability of an autonomous vehicle at very high intensity by taking it on a track of
16,000 km from Italy to China)) used information from GNSS and LiDAR to locate the
vehicle [16].

However, these sensors remain costly, energy consumptive and heavily impacted by
the environment. For example, GNSS is heavily impacted by the nature of the environment
and may not function properly around large buildings or in overcast areas. In the context
of electric (i.e., battery-powered) autonomous vehicles, this yields a significant impact. This
has led to the development of new alternatives, such as Visual Place Recognition (VPR)
methods [17]. These methods propose localizing a vehicle relying only on visual infor-
mation, since cameras are passive and inexpensive sensors that provide access to a rich
information space.

The remainder of this section goes over the various concepts and implementations
related to Visual Place Recognition (VPR), used in many autonomous vehicles to perform
the localisation task: Section 2.1 presents the concept of VPR; Section 2.2 describes the
traditional ways VPR is implemented in hardware; Section 2.3 describes the Log-Polar
Max-Pi model (LPMP), a bio-inspired version of VPR.

2.1. Visual Place Recognition

Visual Place Recognition (VPR) is a field of research that addresses the issue of locating
a place from visual information. The general idea is to determine the position at which an
image was taken by comparing it with a geo-referenced database of images. The proposed
methods have been used in many fields such as robotics [18,19], big data [20] and machine
vision [21,22]. Each case has very specific constraints, notably in terms of computational
time, accuracy and computational cost, which do not necessarily lend themselves to every
use case [23,24].

From an architectural point of view, VPR models often follow the following workflow:
first, an image is analysed to find its characteristic information; second, the detected in-
formation is transformed into a compact and meaningful location code; finally, the code
is sent to a memory which has to store the location code (for the learning phase) or send
information back (for the using phase), if the image belongs to an already known loca-
tion [19,23]. Thus, it becomes possible to create a complete representation of an environment
by memorising images at regular intervals.

In general, the performance of a VPR system is evaluated according to three criteria:
first, the accuracy of the model, i.e., the average distance between the coordinates of an
image to localise and the coordinates of the image that the model best recognises; second,
the computation frequency of the model as a function of the number of images learned;
and third the use of computing resources.
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Currently, the best performing state-of-the-art models are deep models such as NetVlad,
HybridNet or RegionVlad [25]. However, these models are very expensive in terms of
computational resources (these models use a very large number of neurons to encode an
image and often require the use of a graphics card) with higher complexity than tradi-
tional, non-Machine Learning approaches. For example, the CoHog model [22] gives a
performance comparable to deep models while being much less greedy in computational
resources. Nevertheless, this model is a VPR model of the “Global Handcrafted Feature”
family and does not need to be trained before being used.

2.2. Hardware Implementation of a VPR Model

Although significant improvements have been made to VPR models, they are still
not widely used as a main source of localisation for navigation. Performing a navigation
task on an autonomous vehicle requires a fairly high localisation frequency that most VPR
models cannot achieve. For instance, a vehicle must provide a location very fast when it
is travelling in a motorway, so that it does not lose the navigation route. However, these
constraints could be overcome by moving to a high performance implementation.

In this work, we propose to leverage a VPR algorithm by moving to a hardware
implementation. We are particularly interested in the VPR models using neural networks.
Neural architectures have the advantage of being particularly well suited to hardware
implementation, in particular by massively parallelising the computations performed by
neural networks.

We thus propose to leverage the Log-Polar Max-Pi model (LPMP) [23,24], a bio-
inspired VPR model based on the use of a single conventional camera and neural networks
based on a firing rate model. It has several interesting features for hardware implementa-
tion. First, LPMP is competitive with the state of the art, with high performance at small
sampling scales. Second, it is a relatively simple model with a much smaller number of
neurons than deep models. Third, although also based on a feedforward architecture,
the model is not based on a succession of regular layers as in CNNs, but is rather com-
posed of a succession of neuronal populations with different characteristics. In addition,
Colomer et al.’s reference implementation is purely software-based (using Python). Without
any optimisation, it cannot scale to satisfy an autonomous vehicle’s real-time constraints
for localisation. It thus lends itself quite well to an FPGA implementation.

2.3. LPMP, A Bio-Inspired Model of Localisation

Among the various existing models, the Log-Polar Max-Pi model [6,24] (LPMP) de-
picted in Figure 1 represents our main research context for a hardware implementation of a
visual localisation model (for further details, see Section 5). Inspired by the functioning of
animal cognition, the model allows one to build a neuronal representation of an environ-
ment from visual information. In particular, it mimics a family of spatial neurons called
place cells that can be observed in the hippocampal formation of mammals [26].

The model is used in two stages: The first is the learning stage, where a representation
of the environment is learned in one-shot learning. During this stage, the model learns a
number of images that are representative of a particular position. Depending of its version,
the system learns the images, unsupervised and online, at regular intervals of distance or
via a novelty detector (LPMP + vig). The second stage is the query stage. During this stage,
the system analyses a batch of N images and returns their localisation within the learned
representation. In the case of an autonomous vehicle application, the image analysed by
the system is the one acquired via the camera.

Points of Interest detection

To localize an image, the model follows the classic VPR system pipeline (see
Section 2.1): LPMP analyses an Image I to detect its points of interest (PoI).

Saliency points filtering
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During this step, I is convolved with a Deriche filter, then with a DoG (Difference Of
Gaussians) filter from which the most salient points are selected through a competition
mechanism to retain only the most pertinent ones.

Points of Interest encoding

Then, LPMP encodes points of interest to obtain a compact and meaningful code of a
place. At this point, the LPMP model builds a visuo-spatial pattern by performing a what–
where merging in a Max-Pi layer, by using the visual identity of each PoI (via Log-Polar
encoding) with their absolute orientation angle (obtained through azimuth computation
and encoding). To encode the visual identity of a landmark, the LPMP model proceeds to a
Log-Polar transform on the thumbnail around the PoI.

Memory querying

Finally, LPMP queries its memory to return the location that best matches I. To
do so, the visuo-spatial pattern is passed to a neural memory: WTA (Winner-Takes-All).
This memory contains the patterns of all previously learned locations (one location per
neuron). At the time of a request, it returns by neuron a level of activity correlated to the
proximity level of the current pattern and of all those learned. More details are provided
by Colomer et al. [23].

Figure 1. Overview of LPMP model. This figure illustrates how the LPMP model builds a neural
representation of an environment from visual information. To do so, the system must go through
several stages: points of interest detection (“Visual System”, on the left); saliency points filtering
(Deriche filter and DoG); points of interest encoding (Log-Polar encoding); and finally, memory
querying (access through signature layer, Spatial Working Memory and place cells). At this stage,
the neural activity of Place memory provides the best recognised location based on what it has
previously learned.

Some Advantages and Limitations of LPMP

LPMP offers a lot of promises, in particular in terms of simplicity and consistency
when the scene does not vary too much for a given lighting level. However, it is sensitive
to radical light changes, e.g., going from a sunny environment into a very dark tunnel and
vice versa. Yet, should the ambient light levels remain somewhat constant, LPMP is very
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accurate in terms of recognising a location even in the presence of human activity, resulting
in moving objects (pedestrians, cyclists, other cars).

3. Computational Supports for Hardware Acceleration

Heterogeneous computing is a key strategy for meeting the requirements of many
computation-intensive applications. However, current platforms which leverage both CPUs
and FPGAs are commonly underutilised, as scheduling is often constrained to a run-to-
completion model or to the acceleration of a single application at a time. With specifically
designed hardware, reconfigurable fabrics represent the next possible solution to surpass
GPUs in speed and energy efficiency. Various FPGA-based accelerator designs have been
proposed with software and hardware optimisation techniques to achieve high speed and
energy efficiency.

In contrast, GPUs offer up to 10 TOPs (i.e., tera-operations ≈ 10× 1012 operations per
second) peak performance and are good choices for high performance neural network
applications. Development frameworks like Caffe [27] and Tensorflow [28] also offer
easy-to-use interfaces which makes GPU the first choice for neural network acceleration.
Alongside CPUs and GPUs, FPGAs are becoming a platform candidate to achieve energy
efficient neural network processing. FPGAs can implement high parallelism and make use
of the properties of neural network computation to remove additional logic. Algorithm
studies also show that a Neural Network (NN) model can be simplified in a hardware-
friendly fashion without hurting the model accuracy [29]. Therefore, FPGAs offer the
potential to achieve higher energy efficiency compared to CPUs and GPUs. However,
FPGAs are also infamous for being hard to design and program energy-efficient and highly
performant neural networks, especially from a software developer’s perspective, compared
to a CPU and/or GPU centric approach. Nevertheless, FPGAs are the best-suited devices if
one requires end-to-end control, as they allow the systems engineer to design a tailored
platform, provided the necessary field expertise is there to exploit them and yield a low
power and energy footprint.

Several FPGA vendors propose AI-based or neural architecture-oriented solutions
using FPGAs, including Xilinx products such as Alveo U55C [30], which is geared toward
HPC and Big Data workloads, Versal ACAPs, a cloud-oriented platform, etc. However,
such solutions rapidly become of limited use when considering “out-of-the-box” solutions,
e.g., to implement bio-inspired algorithms in hardware, as resource utilisation can quickly
lead to resource exhaustion when evaluating new algorithms. This leads the systems
designer to explore other venues, such as multi-FPGA designs and solve additional issues,
e.g., how to correctly synchronise FPGA systems connected through gigabit serial links and
find the best communication schedule for a given (set of) design(s).

Hence, the reasons to resort to using a multi-FPGA board with an embedded high-
speed interconnect are the following:

• Necessity of prototyping complex algorithms that need to be scaled.
• Leveraging Dynamic partial reconfiguration with the aim of reducing energy, power

consumption and space locality task placement.
• Facilitating the incorporation of such middle-ware for partitioning: if there is a need to

schedule work on multiple devices, how much workload should be executed on each
device? For instance, scheduling 25% of the threads on CPU and 75% of the threads
on FPGA.

• Leveraging high-speed transceiver protocols as an intrinsic property of FPGAs to
communicate over multiple ones.

3.1. Gigabit Transceivers Interface

To bring out the high speed signals from inside the FPGA and interface with the real
world, a needed demand for the use of transceivers is put in context. Compared to an
approach using ordinary IO Pins for FPGA interconnection, it has several advantages: the
provided bandwidth is very high while only few wires are required [31]. Thus, to leverage



Sensors 2023, 23, 4631 7 of 30

this FPGA’s feature aspect, a pre-developed hardcore IP has been incorporated within our
FPGA ecosystem development.

In our work, we use the LogiCORE IP 7 Series FPGAs Transceivers Wizard, which is
able to automate the task of creating HDL wrappers to configure on-chip FPGA transceivers.
Wizarde’s customisation GUI allows users to configure one or more high-speed serial
transceivers using either pre-defined templates supporting popular industry standards or
building a protocol from scratch [32].

An interconnect framework for FPGAs based on multi gigabit transceivers (MGTs), typ-
ically available in modern reconfigurable devices, is proposed by Dreschmannetal et al. [31].
The framework provides higher bandwidth while using fewer pins, compared to existing
approaches based on ordinary FPGA IO pins. Unlike other implementations using MGTs
for device interconnection, special care has been taken to achieve high throughput and data
integrity while keeping latency, resource usage and protocol overhead very low. Depending
on the available MGTs, the bandwidth per connection reaches from 3.125 to 28 GBit/s,
allowing large amounts of data to be moved quickly between multiple FPGAs [31].

Yangfane et al. present in their work a network on chip (NoC) emulation at the
physical level [33], with two levels of interconnects that are adopted to mimic NoC on-chip
communications: high bandwidth and low latency parallel on-board wires and high-speed
serial multi-gigabit transceivers, which is particularly important, as it helps the proposed
NoC emulation platform to scale well as the NoC size increases.

Aloisio et al. show that high-speed serial links are a key component of data acquisi-
tion systems for high energy physics [34]. They carry physics event data and often also
clock, trigger and fast control signals. The authors demonstrated that the jitter on the
clock recovered from the serial stream is a critical parameter, since it directly affects the
timing performance of data acquisition and trigger systems. While FPGAs include multi-
gigabit serial transceivers, which are configurable with various options and support many
sorts of data encoding.

3.2. Difference of Gaussian IP for Feature Extraction

The Intellectual Property (IP) implemented by Fiack et al. [8] resorts to several types
of operations, including gradients, as well as several differences of Gaussians (DoGs)
operations. It provides pixels data of each landmark identified on the captured image, based
on a sequence of difference of Gaussians. DoGs are used in multi-resolution methods to
avoid expensive computations due to filtering operations. The algorithm used to construct
the processing phases of each level of resolution is detailed and evaluated by Fiack et al. [8]
on FPGAs. Their IP is based on successive image filtering operations with 2D Gaussian
kernels. It detects features in an image stream and then passes them to central core as
post-processing.

4. Modelling the Bio-Inspired Algorithm for FPGAs

N-LOC implements a bio-inspired neural architecture, which performs visual local-
isation by mimicking the functioning of the mammalian brain [6]. To localise an image,
the architecture encodes landmarks (given by the image-processing IP) in a unique visuo-
spatial pattern via several neural structures. Our resulting IP is composed of three stages:
(1) computation of the landmark visual signature via a winner-takes-all network (WTA),
stored in the signature layer (SL), along with the computation of their angular position in the
azimuth layer (AL); (2) merging of SL with AL via a Spatial Working Memory (SWM); (3) com-
putation of “place cell” (PC) activity via winner-takes-all for an appropriate localisation.

4.1. Visual Signature Computation

The computation of the visual signature landmarks relies on a winner-takes-all group
of neurons (WTA). It consists of a neural network, carrying out input signal discrimination
through competition. This WTA models cognitive properties, e.g., decision-making, visual
and auditory attention and selective amplification. A WTA consists of a weighted average-
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based computation, with a post tree-reduction selection, in order to only keep the highest
activity among activated neurons in that group of neurons, as shown in Equation (1):

Si = 1−
Npixels

∑
j=1

(|Ej −Wij|)/Npixels, (1)

where i is the index of the neuron being considered, j is the index of the pixel being
processed, Wij is the weight of the i-th neuron processing the j-th pixel of the Log-Polar
thumbnail (centered on a selected point of interest) coding a visual landmark and Npixels is
the total number of pixels per landmark thumbnail.

4.2. Angular Position Computation

The computation of the landmark angular position θnorth
l (or azimuth) is described

in Equation (2), where l is the lth neuron in the Azimuth-Layer (AL) vector and relies on
the interpolation between the landmark angular position θ

ego
poi and the vehicle orientation

θnorth
Vehicle (each neuron encodes 2◦; we need a population of 180 neurons for 360◦ of total

camera angle). Equation (2) yields:

θnorth
l = θ

ego
poi + θnorth

Vehicle (mod 2π) , (2)

where θnorth
l is in radians. This information is encoded in the form of a population of

neurons, a bio-inspired neural structure which encodes the current azimuth value in the
form of an activity bubble.

4.3. Spatial Working Memory

The Spatial Working Memory (SWM) is an NS × NA pixel matrix. NS is the number
of neurons in the SL vector, and NA is the number of angles considered in the model. NA
is in effect a subsample taken from the Azimuth Layer AL. This is illustrated in Figure 2,
NA = 4, where each angle is equal to 45◦. In our actual experiments (see Section 5), we set
NA = 3. We denote NSWM the total number of values which compose the SWM. A is the
number of subsamples in AL, with A = 4 (i.e., each group holds 60 neurons). Equation (3)
provides the potential of the ilth neuron and Equation (4) yields its final activity, where f is
the activation function of sigmoid, which is applied to normalise the final results:

Iil(t) = (si(t) · wi,il(t)) · (max
j∈Na l

(aj(t) · wj,il(t))), and (3)

xil(t) = f (xil(t− 1) + Iil(t)− xil(t− 1) · In(t)). (4)

The connection weights between AL and SL are assigned to 1 in the SWM. The
execution workflow of the second WTA is described in Figure 2.

4.4. The Place Cell Neuron Group

The activity of the SWM matrix characterises the current location. It is memorised in a
place cell vector (PC) of NP neurons, which is then fed to another WTA process to select the
most active neuron. It then models “place cell neurons” found in the hippocampus that
have a close activity [35]. NP refers to the maximal number of images that the N-LOC IP
can memorise. Equation (5) gives the activity of the neuron i at time t. Each neuron in PC
holds connections related to learned images: the activity of one neuron gives the similarity
between a learned place and an image. Thus, it can provide the appropriate information
about the current location to the localisation system:

Pi(t) = 1−
NSWM

∑
j=1

(|WSWM
ij − xj(t)|)/NSWM. (5)
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4.5. Modes of Operation

The N-LOC architecture has two modes of operation. The first is the learning mode,
where the connection weights of its different components can be updated to memorise new
images. It is triggered when the autonomous car starts the localisation process or when the
car enters a new location. The second is the using mode, where the connection weights are
fixed. This is where the actual evaluation of the localisation performance per each captured
image throughout the camera occurs.

Figure 2. Overview of our bio-inspired neural architecture. On the left-hand side, the image-
processing IP identifies and sends keypoint information to the bio-inspired neural IP, pictured on
the right-hand side of the figure. Data are sent pixel by pixel, for each landmark of each image. The
Learning Mode processes 10 images for each time period. If a consensus is found (i.e., the measured
error is acceptable), the system then switches to using mode.

5. Hardware Implementation on the Wizarde Platform

This section intends to motivate and demonstrate why FPGAs were used as accelera-
tors to implement LPMP in this work: they tend to offer more throughput with a lower
footprint than (embedded) GPU-based systems, but also there are platforms geared toward
prototyping which can help with our future designs for distributed localisation tasks.

5.1. Accelerating the Localisation Task: FPGA vs. GPU

The (LPMP) localisation task requires autonomous vehicles to process visual infor-
mation in hard real time to feed the Spatial Working Memory and ultimately efficiently
compute the vehicle’s location. Quite simply put, the higher the speed of the vehicle, the
higher the processed frame-rate must be in order to allow the decision-making system
to perform safely and efficiently. Hence, decision-making relies on a very low-latency
localisation task, especially at high speeds.

Table 1 compares a relatively high-end CPU+FPGA System-on-Chip (SoC), a Xilinx
zc706 board, with two different GPU-based SoC embedded platforms: Nvidia Jetson TX2
and Jetson Xavier. The table displays the host-accelerator latency overhead for data transfer
roundtrips of very small data packets (a single 32-bit word at a time, which is representative
of what our system must deal with, with an objective of very low latency). As can be seen
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from Table 1, while the Jetson Xavier system yields a much lower latency than the Jetson
TX2, a 32-bit host-GPU roundtrip is still ≈100 times higher latency-wise than its SoC-
FPGA equivalent. This confirms that data transfers between host and accelerator tend to
favour FPGA-based systems: several studies, e.g., Qasaimehe et al. [36], observe between
100× and 10, 000× shorter latency or higher bandwidth when comparing CPU + FPGA
and CPU+GPU (depending on which kind of Nvidia platform is used). Likewise, power
consumption is largely in favour of reconfigurable systems when compared to GPUs, as
shown in Section 6, which is in line with what Qasaimeh et al. detail in their work [36] (see
Section 7 for more information).

In addition, as we explain in Section 5, the power consumed by N-LOC is around ≈3 W
for the whole system, whereas in the case of Jetson systems it is situated in the 7.5–15 W range,
i.e., a Jetson system would consume between two and five times more power than our
resulting hardware implementation of LPMP. Thus, this justifies our choice of using FPGAs as
a platform to prototype and implement the bio-inspired neural architecture.

Table 1. FPGA vs. GPU comparison: Host-Accelerator data transfer overhead, in milliseconds. The
latency was computed using 1000 roundtrips, each exchanging a 32-bit value.

Zynq-7045 Nvidia Jetson TX2 Nvidia Jetson Xavier AGX

Overhead (ms) 7.02× 10−3 5.70× 10−1 1.28× 10−1

5.2. Hardware Implementation on a Multi-FPGA Platform

Wizarde is a unique, custom-designed multi-FPGA board, set up as a 3× 3 mesh of
system-on-chip (SoC) tiles. Each tile features a Zynq xc7z045ffg900-2 SoC (based on the
Zynq-7045 chip, as with the zc706 board), which embeds a dual-core Cortex A9 processor
and a Kintex-7 FPGA (Table 2 describes a single tile) [37]. Wizarde enables us to envision
various scenarios, e.g., a multi-camera processing phase, where each tile is tied to a sin-
gle camera and computes its own image processing phase to feed a shared bio-inspired
neural architecture.

Table 2. Contents of a Wizarde tile, based on the Zynq xc7z045ffg900-2.

Zynq SoC A9 + Kintex-7

LUTs 218,600
FlipFlops 437,200

Block RAMs 545
SMA connector 1 port
DDR3 SDRAM 1 GB (connected to PS)

DDR3 SODIMM 1 GB (connected to PL)
Gbit Transceivers 16
USB 2.0/UART 1 port
Gbit Ethernet 1 port

An important feature of Wizarde is the gigabit transceiver interface set between two
neighbouring tiles. This will allow hardware tasks, i.e., their bitstream representation, to
be mapped to different modules of the target FPGA(s) depending on the run-time context.
For example, due to specific resource contention, a given reconfigurable region may not be
available to a task which used to run on it. As a result, such a task may be run on a different
available slot somewhere else in Wizarde.

Wizarde offers the following advantages from a research viewpoint:

• Unique, custom platform;
• Intent: help prototype complex applications, possibly requiring multiple SoCs/FPGAs;
• 3× 3 2D tile mesh.
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In addition, each tile is independent (equipped with USB, Ethernet, micro-SD, DRAM,
etc.), but all tiles are connected to their neighbours through gigabit transceivers, as
shown in Figure 3.

Figure 3. The Wizarde Platform. Each tile is connected to the others through gigabit transceivers
(see Table 2).

The system is meant to retrieve landmark data resulting from the image processing
carried out via the VITA-2000 camera module [38]. The organisation of the architecture
is depicted in Figure 4. It is composed of pipelined blocks of custom IPs, which take
their input from a camera through a streaming interface. The image processing IP can be
configured in software by the CPU part via a memory-mapped interface, i.e., a Xilinx AXI
bus, which bridges the Processing System (PS) and the Programmable Logic (PL) of the
SoC. The results can then be processed in software as follows:

• A differences of Gaussian (DoG) or processed intermediate image, selectable thanks to
a dedicated register.

• The list of pixel data extracted and sorted by the IP at the different frequency bands
and the list of Log-Polar features associated with each keypoint, i.e., a set of computed
pixels. They are gathered into landmarks. Each landmark contains 12× 12 = 144 pixels.
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Figure 4. Overview of the scaling-based image-processing IP.

The detected features are identified by their coordinates. The pipeline follows a pixel
dataflow model of computation. The coordinates of the pixels are mandatory for each IP
and are read in order to ensure that the memory mapping of buffers is adequate and to
avoid side-effects.

Moreover, the learning phase of the visual cells for localisation needs to know the
coordinates of the pixels that each landmark contains. The pixel coordinates must then be
transferred from the image processing IP to the bio-inspired IP. The pipeline allows these
data to be either delayed or regenerated by each processing IP depending on its latency.

The total power consumption (i.e., the total on-chip power of the design), measured
via Vivado, yields 2.981 W. Table 3 shows the resource usage on the Wizarde platform.

Table 3. Resource usage as a function of the number of landmarks used per image processed in
Fiack et al.’s design. Results obtained on a port carried out on Wizarde with Vivado 2016.4.

Max. # Landmarks/Img 8 16 32 48

LUTs (%) 8.89 13.56 25.3 39.91
Registers (%) 4.46 6.8 13.68 23.58
BRAMs (%) 38.07 46.88 64.5 82.11

DSPs (%) 21.56 32.22 53.56 74.89

The software memory footprint is rather low: each neuron carries an 8-bit value. If
we consider 4000 neurons in total and include the Python interpreter code size to run the
program, the resulting memory footprint remains below 1MiB. Running such a program
on a high-end microprocessor (e.g., Intel Core i5, i7, . . . or AMD Ryzen family) will easily
have both the code and data fit in its L2 or L3 cache. Such a low memory footprint makes it
rather inadequate to run on a GPU, as the PCIe bus latency would likely kill most of the
performance gained.

5.3. Fixed-Point Arithmetic

As is traditional when targeting reconfigurable hardware, fixed-point values are used
to represent decimal values. Our implementation uses 8-bit values, with 2 bits for the
integer part and 6 bits for the fractional one. This is because all neurons’ weights and
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values are between 0 and 1. We have experimented with different resolutions, i.e., 8, 10, 12
and 16-bit fixed-point numbers. Our experiments showed no significant improvement in
accuracy for place cell activation.

5.4. Towards Using GTX Transceivers for a Data-Transmission over Wizarde Platform

As seen in Figure 3, the Wizarde platform targeted for our experiments features gigabit
transceivers (GTX). They will be an essential tool to deploy our N-LOC IPs across multiple
tiles and have them communicate with each other.

The data in the frame generator (stored in BRAM) are sampled with a reference clock
ref_clk of 50 Mhz before being sent to the north-west tile (NW) via GTX. The burst sending
is expected with frequency of 3.125 Ghz, as shown in Figure 5.

The different signals to be considered in our GTX transmission protocol are as follows:

• Error_count: it should be NULL based on chosen frequency.
• Dynamic reconfiguration port (DRP) clock.
• Rx_reset_done: should be set to 1 when data are correctly received.

Figure 5. A simplex mode implemented on GTX transceivers as first-stage protocol to communicate
between two adjacent Wizarde tiles.

5.5. Experimental Results

This section presents the results of our implementation: resource utilisation, latency
and throughput performance, using a single N-LOC IP block over one FPGA tile. This first
study represents the starting point for the scalability of the approach.

5.5.1. Experimental Setup and Implementation Parameters

The target hardware platform is based on the Zynq-7045 system-on-chip, which
features a dual-core ARM Cortex A9 processor, coupled with a Kintex-7 FPGA (see Table 2
for additional details). The Processing System (PS, featuring the dual-core Cortex A9)
runs a bare-metal executable which streams pixels to the programmable logic (PL). N-LOC
was designed using Vivado HLS, i.e., using the OpenCL language with FPGA-specific
pragmas to specify bus sizes, etc. The PL implements our N-LOC IP, which was synthesised
and implemented on the FPGA part of the Zynq SoC. Hence the performance results
shown below are obtained using an actual implementation of our design (not a simulation).
Moreover, we used Vivado 2016.4 to synthesize the IP on our FPGA. The Wizarde board
was validated with this toolchain and we have not yet qualified and validated Wizarde with
a more recent Vivado version (in our future work, we will generate a device tree for a Linux
distribution which is compatible with a more recent version of Vivado). Resource-wise, we
compared the synthesis reports of Vivado 2016.4 and 2019.3. The difference is below 4%.
While the synthesis process of a more recent version of Vivado may yield better resource
usage in general, we believe the nature of our IPs would see only marginal gains compared
to Vivado 2016.4 in our specific case. Moreover, the number of DSPs would remain the
same, even in parts of the IP which can take advantage of them (e.g., the WTA part).
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Ideally, we would like to plug the image-processing IP (which performs the pyramidal
decomposition of the acquired images) directly to N-LOC. However, in order to correctly
isolate the N-LOC part of the processing chain, we opted to use a small bare-metal exe-
cutable which will stream images taken from the Oxford dataset [39]. This will also prove
useful when we evaluate the distributed N-LOC architecture, as it also requires a minimal
runtime system to orchestrate data synchronisation between multiple N-LOC instances
(see Section 6).

Hence, a set of parameters is given to obtain around 90% accuracy when comparing
the value of computed place cells after the second WTA and the value in pre-learned
images. As explained in Section 5.3, accuracy does not change significantly when increasing
the fixed-point number format to a higher number of bits. The initial training/learning
phase uses as many images as there are place cell neurons. Our bio-inspired IP uses the
following parameters:

• On the target Zynq-7045 chip, the signature layer (SL) can fit at most 1600 neurons; the
SWM 4800 neurons; the place cells vector 100 neurons, with 16 landmarks per image.

• The azimuth layer (which represents the angle orientation of each captured image)
contains 180 neurons.

• The values of azimuth neurons are fixed for this experimentation; varying azimuths
will be added in the future.

• We parameterised N-LOC with three configurations: 30, 60 and 90 place cell neurons.
They represent the number of images that need to be learned in the localisation process.

• We used 100 images to “feed” N-LOC.

We compare our bio-inspired neural IP with Colomer’s Python-based application [23]
to build the place cells vector. As will be detailed in Section 5.5.2, we considered two
versions of the software implementation: the baseline and its optimised version. Both make
use of Cython, numpy and OpenCV to speed up computations. However, the optimised
version of the software implementation is also parallelised and makes better use of Cython
to help guide it toward more efficient code generation. As detailed in Section 2, image
pre-processing is performed either using OpenCV in the Python script or in the image
processing IP. A previous version of this model was validated on large datasets, as shown
by Espada et al. [40]. Iterations over LPMP led to an optimised code, which was tested
in a mobile robot in a real-life environment (closed tracks) to evaluate the performance
of a software LPMP implementation. As Colomer et al. show [23,24], the algorithm is
accurate and correctly identifies landmarks. However, this implementation does not go fast
enough to scale at higher speeds. In addition, only the learning and using phases leading to
building the place cell vectors are evaluated; i.e., we do not time the video pre-processing
which does the gray-scaling and applies difference of Gaussians and Log-Polar conversion
performed by the previous component in the pipeline. As we described above, the reference
code is written in Cython, with uses of NumPy and OpenCV where appropriate. Our
application directly embeds all (grayscaled) images to exploit and as a result we subtracted
the time taken by the Python application to perform all the processing prior to the actual
learning/using phases, i.e., I/O operations to read image files, putting colour images to
gray scale, dividing images into landmarks, etc. These operations represent roughly 20% of
the total execution time in the baseline and optimised software implementations. We used
different learning configurations: the system had to learn using 30, 60 and 90 gray-scale
images taken from the Oxford dataset [39] to train the system (learning mode), then used
100 images in total in the using mode. Each image has a resolution of 640× 400 pixels.
Python results were obtained with Nvidia Jetson TX2 and followed the same principles for
the learning/using ratio.

Colomer et al. already showed how the LPMP model behaves with large datasets [23].
In particular, real-life environment data obtained on close tracks using a mobile robot
running the software version of LPMP were gathered and validated the LPMP model’s
accuracy and precision [41]. The (optimised) reference code correctly identifies the right
landmarks in a real-life context. Moreover, our hardware implementation also selected the
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same landmarks in our experiments as the software reference implementations. Hence, to
compare our hardware implementation to the software implementation used by Colomer,
we consider it is sufficient to resort to the Oxford dataset and run it on both software and
hardware implementations to compare the two and check how faithful N-LOC is to the
original software implementation.

5.5.2. Resource Consumption and Performance Gains

This implementation requires ≈26% of available LUTs and ≈50% of BRAM blocks.
The amount of BRAM used is consistent with the format used for the SWM, which is
essentially a dense 1600× 3 matrix of neurons yielding 8-bit values. Table 4 provides details
for specific resources required to implement our neural IP to process 8 or 16 landmarks,
respectively. We cannot consume more resources to increase the number of neurons because
space must be made to also fit the image processing IP.

Result numbers were obtained using Vivado’s HLS framework v2016.4, coupled with
a custom workbench. The design was implemented on a ZC706 board, which features
the same Zynq-7045 SoC that Wizarde uses. This board allowed us to obtain perfor-
mance measurements, resource consumption and power consumption estimates. We
used the parameters described in Section 4. Further, we also used those parameters to
implement N-LOC.

Table 4. Resource consumption estimation for 8, 16 and 32 landmarks, depending on the number
of neurons in the place cell layer. Only 50 and 80 neurons are shown for 32 landmarks: resources
saturate beyond that number.

# Neurons 50 80 90 100 150 170 180

8 Landmarks

LUTs (%) 11.68 15.56 18.08 19.79 29.12 31.99 27.41
BRAMs (%) 16.70 31.38 49.72 53.39 86.42 93.76 132.29

FLIP FLOP (%) 2.69 1.67 2.85 2.89 3.16 3.27 2.03
DSPs (%) 1.33 0.33 1.33 1.33 1.33 1.33 1.44

16 landmarks

LUTs (%) 16.73 24.51 28.37 31.41 41.75 46.67 52.32
BRAMs (%) 35.05 60.73 97.43 104.77 110.28 124.95 150.41

FLIP FLOP (%) 3.21 2.55 3.45 3.50 2.13 4.16 4.76
DSPs (%) 1.33 0.33 1.33 1.33 1.67 2.37 2.89

32 landmarks

LUTs (%) 33.62 48.21 55.45 60.90 88.19 99.08 104.53
BRAMs (%) 24.04 94.50 94.50 94.50 376.33 376.33 376.33

FLIP FLOP (%) 2.68 1.33 2.71 2.71 2.75 2.75 2.76
DSPs (%) 1.89 2.44 1.89 1.89 1.89 1.89 1.89

We conducted our experimentation using three different learning configurations, to
compare both software and hardware approaches. We set the number of place cell neurons
at 30, 60 and 90, respectively, and then test and evaluate the using phase on 100 images.
Our FPGA-based implementation outperforms the baseline Python-based reference im-
plementation [23], with an average throughput of 52 images vs. 7 images. Moreover, the
LPMP algorithm performs 50961 operations per image for 16 landmarks of one processed
image. Thus, by multiplying those values, we obtain 0.032 GFLOPS/s for the Python im-
plementation and 2.3 GFLOP/s for our FPGA-based solution. The learning phase latency
is 6× shorter and for the using phase, the latency is 9× shorter, with a total throughput
≈7× larger. See Table 5 for more details about the performance comparison.



Sensors 2023, 23, 4631 16 of 30

Table 5. N-LOC: Performance and efficiency. The system is configured with different numbers
of place cell neurons, corresponding to the number of neurons to be learned. The system is then
evaluated and tested with 100 images for different place cell configurations. Results are generated
using Nvidia Jetson TX2 platform for software reference (using all 6 CPU cores when possible for
the optimised version) and an FPGA ZC706 board for N-LOC Hardware implementation. The used
frequency in FPGA in both 30 and 60 PC neurons is 100 MHZ. For 90 neurons, the frequency is set it
70 MHZ to satisfy timing constraints.

Number of Neurons in Place Cells 30 60 90

N-LOC

Learning: Latency (ms) 2.6 2.6 2.6
Using: Latency (ms) 11.4 20.3 29.2
Total Throughput (img/s) 82 45 31

Total Power consumption ≈2.8 ≈2.8 ≈2.8static + dynamic (W)

Baseline reference

Learning: Latency (ms) 17.76 17.86 18.99
Using: Latency (ms) 100.32 123.93 146.66
Total Throughput (img/s) 9 7 6

Optimised reference

Learning: Latency (ms) 17.16 17.10 17.48
Using: Latency (ms) 61.11 66.05 72.60
Total Throughput (img/s) 13 12 11

Total Power consumption ≈7.5–15 ≈7.5–15 ≈7.5–15static + dynamic (W)

A traditional Python implementation is around 10 times slower than sequential im-
plementation with close-to-the-metal languages such as C. The first implementation of
Colomer et al. is not pure Python: it resorts to Cython, which translates Python code
into C and compiles it natively and also makes use of numpy and OpenCV, which are
written in C and C++. In their second implementation, processing neurons in SL, SWM
and PC structures are parallelised in the using mode. As a result, it is much faster than the
sequential reference implementation we use as our baseline. In terms of learning latency, the
optimised LPMP reference improves significantly its processing performance compared to
the baseline. N-LOC still yields better throughput and latency compared to the optimised
version (≈9× lower). The optimised version stores all of the image pixels in one shot,
whereas we stream them one by one. However, while the optimised version does perform
twice as well as the baseline for the using latency, NLOC still outperforms this optimised
version, as its latency is≈2–3× lower (≈9× compared to the baseline). The learning phase is
dominated by data (pixel) transfers, whereas the using phase is significantly more intensive
computationally speaking. Thus, as the number of image comparisons grows in the learning
phase, the using phase takes progressively longer in time [23]. Our implementation of the
using phase’s latency is ≈9× lower than the baseline and ≈2–3× lower than the optimised
version. Consequently, the throughput of the optimised LPMP version is ≈1.5–2× faster
than the baseline when considering total throughput, but N-LOC’s total throughput is
itself ≈3–4× higher than the optimised LPMP version (and ≈7× higher than the base-
line). All the details of our experiments are shown in Table 5. Each image is composed of
16 landmarks, of resolution 12× 12 pixels.

Figure 6 illustrates the increase in the number of resources used in the FPGA for each
experimentation in which we varied the number of neurons in place cells for each N-LOC
IP during the design implementation using Vivado. Our analysis revealed that the LUT
and BRAM were the primary resources consumed. This can be attributed to the N-LOC
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architecture’s reliance on both storing pixel values on neuron weights and performing
simple mathematical operations on LUTs rather than using DSP.

Table 4 illustrates the various metrics we considered. Multiple experiments allowed
us to assess the accuracy of our visual recognition process compared to pre-learned images
following Colomer’s model. It is predicated on the number of landmarks per image. Table 6
shows resource utilisation of the overall application implementation. Hence, a resource
consumption trade-off must be considered to make the design fit the board.

Table 7 details the power footprint of the whole hardware-based application (image
processing and neural IPs). The overall footprint (image processing IP and N-LOC IP)
consumes 2.75W. This is to be compared to the nominal power consumption of Nvidia
Jetson TX2 used for our experiments (with a power consumption of 7.5 W–15 W).

Table 6. Resource utilisation for each integrated IP, implemented on one tile of Wizarde, for 100 neu-
rons of place cell neuron group and 16 landmarks per each image. The raw values are provided,
along with the percentage they represent between parentheses.

IP Block Slice LUTs BRAM Tile FLIP FLOPs DSPs

Image
processing 29,647 (13.6%) 255 (46.8%) 30,553 (7.0%) 298 (33.1%)

Single N-LOC 62,377 (28.5%) 164 (30.0%) 7879 (1.8%) 4 (0.4%)

Table 7. Total power consumption (static + dynamic) generated by all integrated IPs. Results obtained
with 100 place cell neurons (maximum of neurons to be trained) and 16 landmarks per image.

(IP) Block Description Power (W)

Image processing Image acquisition and landmark
identification 0.783

Bio-inspired neural accelerator Neuron activation ; place cell
recognition 0.141

Processing system Hardcore processor (ARM Cortex A9) 1.567

Total power on chip (static + dynamic) 2.749

Figure 6. Resource consumption in term of LUT, BRAM, registers and DSP, for configurations with
different numbers of place cells.

6. A Distributed N-LOC Architecture

Depending on the requirements of the target localisation application, it may be neces-
sary to implement a larger neural network, which does not fit onto a single FPGA board.
For example, the original bio-inspired algorithm proposed by Espada et al. [6] requires
≈10,000 neurons in total, whereas our experiments on a single FPGA board can fit at
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most ≈4600 neurons on the target zc706 board. As a result, it is necessary to explore
the possibility of producing a distributed version of N-LOC, which could scale as needed.
By expanding the neural architecture of the localisation task, the autonomous vehicle’s
capacity to localise itself mechanically increases. For instance, a larger neural network
implies a larger pre-learning environment as well—and a larger on-line learning capacity
in general (see Section 4 for details about how the bio-inspired algorithm implemented in
N-LOC works). Hence, a large neural architecture results in a wider and more efficient
place-recognition task, as shown in Figure 7.

(a) Learning Mode (b) Using Mode

Figure 7. Expanding bio-inspired neural network architecture N-LOC over Wizarde multi-tiles. In
the learning phase, the data-copy of each current landmark will be held on one bloc IP. If the number
of learned neurons in N-LOC1 is overloaded (superior to a fixed threshold T), we will switch into
next available bloc IP which is the second one. Then, it will be the same rule for all different bloc IPs.
In process phase, all bloc IPs works simultaneously, the best score among the three represents the
accurate and appropriate localisation of a given image.

6.1. Distributed N-LOC: Principles
6.1.1. Distributed Learning and Using Phases

Learning phase

In a distributed N-LOC environment, the learning phase workflow is as follows:

• N-LOC IPs are duplicated and distributed on different tiles.
• The pixel stream is connected to the appropriate N-LOC block if its neurons’ weights

are not saturated.
• If an N-LOC block is saturated during the learning phase (i.e., the maximum number

of neurons to initialize has been reached), we switch to the next available N-LOC
block, to carry on the ongoing or further learning of different captured images.

• The master controller is in charge of communicating with all N-LOCs, using a bidirec-
tional communication protocol.

Using phase

Likewise, the using phase workflow works as follows:

• The pixel stream is connected through all N-LOC blocks simultaneously.
• All N-LOC blocks simultaneously perform different computations based on different

pre-learned information.
• A threshold-based comparison is set by the master controller, to select the highest

activated neurons among the N-LOC blocks.

A proof of concept of this distributed architecture was implemented on a single Zynq-
7045’s programmable logic, with 3 N-LOC block instances. We next discuss the possibility
of using gigabit transceivers to enable fast communications between GTX users.
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6.1.2. Experiments with Distributed N-LOC on a Single FPGA

Experimental setup

We tested our distributed N-LOC model by instantiating three N-LOC blocks on a
single Zynq-7045 SoC. The controller is implemented in software on a bare-metal ARM
Cortex A9 microprocessor. The FPGA and Cortex A9 are linked through an AXI lite bus.

Our distributed N-LOC system is composed of 3 × N-LOC instances of 30 place cell
neurons each, for a total of 90 neurons. Hence the total number of neurons in these three
place cells is 90, which is 10% smaller than the initial single-block N-LOC instance studied
in Section 5.

As described earlier, we compare our results with a Python program which makes use
of NumPy, OpenCV and is compiled with Cython. The experimental conditions are the
same as described in Section 5.5.

Experimental results

Table 8 shows the latency and throughput calculated from both the learning phase
(where a single N-LOC is active at a time) and the using phase (where all N-LOCs compute
in parallel) are assessed at the same time. The latency performing one learning phase is
roughly the same, whether the N-LOC system is distributed or not. The using phase fares
slightly better with a distributed N-LOC system when processing a single image. In both
cases the global throughput to both learn images and use this knowledge to localise the
vehicle is an order of magnitude better than with the reference application.

Table 8. Timings for 90 place cell neurons: Python reference code (“Baseline Ref”), optimised
multicore version (“Optimised Ref”), a single large N-LOC instance, and a distributed 3 × N-LOC
architecture (3× 30 neurons), implemented on a single Zynq-7045 SoC’s FPGA part. The controller is
implemented on the Cortex A9 as bare-metal software.

Baseline Ref Optimised Ref 1 × 90
N-LOC

3 × 30
N-LOC

Learning Latency (ms) 18.99 17.6 2.6 3.57

Using Latency (ms) 146.66 72.60 29.2 9.81

Total Throughput (img/s) 6 11 31 70

Moreover, while the learning phase only copies pixel values as weight into neurons,
the using phase performs much more computationally intensive operations, as there is
a winner-takes-all (WTA) stage to update the signature layer (SL), then an update of the
Spatial Working Memory (SWM) and once the image has been fully processing, i.e., in our
case, once all sixteen landmarks which compose an image have been processed, yet another
WTA operation takes place to select the most active place cell neuron and decide if the
measured score is high enough (i.e., has reached the preset value threshold). Hence, the
using phase latency is bound to be much higher than the learning one.

Table 9 provides speedups of a monolithic and a distributed N-LOC system vs. the
optimised software implementation. Compared to the optimised reference application,
N-LOC is 4–6× faster, but compared to the individually measured learning and using
latency, this performance is rather low. It is important to note that in the reference code, as
the number of place cell neurons increases, the processing time also increases dramatically:
the learning latency reported in Table 5 is 60% higher than the 1× 90 configuration shown
in Table 8; the using latency is 16% higher; and the total image throughput is 7% lower.
While we must make use of additional FPGA units to extend the size of our network,
the intrinsic parallelism used in the various phases ensures that image processing latency
remains relatively constant; the only true bottleneck is the communication between the
processing system (PS) and the programmable logic (PL).
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Table 9. Single and distributed N-LOC: speedups. Baseline: the optimised reference Python applica-
tion compiled with Cython.

Speedups 1 × 90 N-LOC 3 × 30 N-LOC

Learning Latency 8 4

Using Latency 3 7

Total Throughput 4 6

In general, the main bottleneck in the N-LOC hardware implementation is the naïve
implementation we carried out, where we isolated the N-LOC instances as much as possible,
but which results in multiple AXI-Lite roundtrips between the processing system (PS) and
the programmable logic (PL). A more involved architecture would have the PS only send
messages once for broadcasting, with a hardware-based broadcasting designed internally to
carry the data frames to each N-LOC instance. However, this approach also has drawbacks:
it makes the overall architecture more “rigid”, which in turn may hamper the capacity of
the system to scale with several N-LOC instances, e.g., up to eight or even nine, if we target
the Wizarde platform. Further, one of the inherent difficulties dealing with FPGAs stems
from inherent issues related to (reconfigurable) hardware and the use of HLS: as we grow
from 60 to 90 place cell configuration, in order to maintain acceptable timings and clock
distribution within the system, we must reduce the clock frequency from 100 MHz to about
70 MHz. This is a limitation tied to a relatively naïve approach in our own design and we
plan on exploring ways to increase the clock frequency to improve performance.

Power-wise, both the PS and PL parts of the target Zynq SoC see a slight power
consumption increase, as shown in Table 10. This is not unexpected: on top of sending
pixels to the FPGA, the Cortex A9 core is now also tasked with selecting N-LOC instances
during the learning phase, but also sending the pixel stream to all instances during the
using phase. Likewise, each N-LOC instance requires proportionally more FPGA resources
compared to their single N-LOC counterpart. The resulting total power consumption
(static + dynamic) is around 2.8W, with ≈0.2 W for the hardware part. Compared to the
Nvidia Jetson TX2 board used to run the reference program; this is a 5.5–6× improvement.

Table 11 shows the resource utilisation of the overall application implementation.
The 1× 90 N-LOC instance requires fewer resources than its 3× 30 N-LOC counterpart:
it requires 20% fewer LUTs, 63% fewer flip-flops and 65% fewer DSPs. However, the
relatively large dense memory matrix required by a monolithic 90 place cell neuron network
requires a complex BRAM usage via synthesizer and BRAM usage is twice as large as with
3× 30 neurons. For the DSP part, this is a limitation tied to the need for computations of
a single IP: with a single 1× 30 N-LOC block, we reach almost the same amount of DSPs
used as with 1× 90.

Table 10. N-LOC: Power consumption (static + dynamic) (in Watts) for 90 place cell neurons. The last
column computes the power consumption ratio between a 1× 90 and a 3× 30 configuration.

IP Block 1 × 90 N-LOC 3 × 30 N-LOC 3 × 30 vs. 1 × 90

N-LOC 0.472 0.993 2.10

Processing System 1.629 1.639 1.00

TOTAL 2.101 2.638 1.25

Tables 9 and 10 summarize all the synthesis results generated and presented within our
works, along with some ratio comparisons in term of latency, throughput and
power consumption.
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Table 11. N-LOC: resource usage. The percentage of a given resource usage on the Zynq-7045 is
given between parentheses. Each processed image contains 16 landmarks.

# Neurons Slice LUTs BRAM Tile FLIP FLOPs DSPs

1× 90 N-LOC 68,209 (31.2%) 192 (35.2%) 3039 (0.7%) 18 (2.0%)

1× 30 N-LOC 28,869 (13.2%) 32 (5.9%) 2614 (0.6%) 17 (3.4%)

3× 30 N-LOC 84,198 (38.51%) 96 (17.61%) 8199 (3.75%) 51 (10.2%)

Table 12 provides the performance per Watt of several configurations, one with
100 place cell neurons and the other with 90 neurons. The performance ratio with power
consumption when comparing the reference code with N-LOC instances varies from 4× to
7× (for 30, 60 and 90 place cell neurons according to the results shown in Table 5). This
metric is obtained by computing the following: (1) Each image is partitioned into 16 land-
marks, each composed of 12× 12 pixels; i.e., there are 2304 pixels to process in each image.
(2) During the using phase, there are three distinct types of operations: For the first winner-
takes-all, each pixel is broadcast to each element of the vector of neurons. To process all
pixels for a single neuron, there are [(12× 12)× 16]× 3 = 6912 operations to perform. Since
there are 16× 100 = 1600 neurons in the signature layer, the total number of operations
to perform in the neuron vector is 6912 × 1600 = 11,059,200 operations. Once this is done,
there is a MAX computation to be performed between all 1600 neurons, i.e., 1601 additional
operations; to update the Spatial Working Memory, a single neuron is updated according
to all azimuth neurons for the image orientation, resulting in 362 operations for that step,
and there are 101 max operations to execute to perform the second winner-takes-all. (3) We
sum all operations required to perform both WTAs and the SWM update, which yields
≈ 11.1× 106 operations = 11.1 MOPs. To obtain the performance per Watt, we compute the
following, Per f _per_Watt = Nops

Power , using the throughput values reported in Tables 5 and 8,
as well as the power consumption of Tables 7 and 10.

Table 12. N-LOC: Performance (number of operations per second) per Watt.

1 × 100 Ref 769 KOPS

1× 100 N-LOC 239 MOPs

1× 90 Ref 820 KOPS

1× 90 N-LOC 269 MOPs

3× 30 N-LOC 299 MOPs

Hence, the first winner-takes-all step is overwhelmingly more computationally in-
tensive than the other steps. The total number of operations to process a single image is
≈11.1 ×106 operations or 11.1 MOPs. The reference code runs on Nvidia Jetson TX2 with a
thermal design power (TDP) up to 15 W, which we used as the baseline to compute the
performance per Watt of various configurations. As the table shows, there is a 4× to 6×
ratio in favour of our N-LOC design.

6.2. Communication Protocol via GTX Transceivers

To bring out the high-speed signals from inside the FPGA and interface with the real
world, a needed demand for the use of transceivers is put in context. Compared to an
approach using ordinary IO Pins for FPGA interconnection, it has several advantages: the
provided bandwidth is very high while only a few wires are required [31]. Thus, to leverage
this FPGA’s features aspect, a pre-developed hardcore IP was incorporated within our
FPGA ecosystem development. The LogiCORE IP 7 Series FPGAs Transceivers Wizard is a
type of serial communication that will be used and is already incorporated in the Wizarde
board; it provides the ability to automate the task of creating HDL wrappers to configure
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on-chip FPGA transceivers. The Wizard’s customisation GUI allows users to configure
one or more high-speed serial transceivers using either pre-defined templates supporting
popular industry standards or building a protocol from scratch [32].

6.2.1. Highspeed Transceivers on the Wizarde Platform

As seen in Section 2, the eventual platform on which to run N-LOC is Wizarde, a 3× 3
tile board, with a 2D mesh communication network composed of gigabit transceivers (GTX).
Hence, we must define a protocol and a communication scheduling policy to leverage
the GTX. The data transfer policy relies on streaming pixels at each rising edge into our
N-LOC blocks (when the data are sent to the SL layer). Then, all the information required
by each block is sent to it accordingly. We evaluated that 32 bits is the maximum packet size
required to transfer data for both RX and TX sides of the GTX. Our design is illustrated in
the upper-left corner of Figure 8, including the various required word sizes for TX and RX.

Figure 8. Overall architecture for a design leveraging 3 N-LOC instances. The design is imple-
mented throughout multi-N-LOC architecture based on Wizarde (see Section 2). TX/RX pairs can
be implemented following multiple means: gigabit transceivers, GPIOs, Ethernet, etc. An N-LOC
IP (detailed in the upper-left corner) awaits an x Azimuth coordinate (i.e., its row number), an x
landmark coordinate (i.e., also its row number), the current pixel to process and its tile ID within
Wizarde. Conversely, an N-LOC instance sends the score obtained in the local WTA, its line number
in the local Place Cell Memory and its tile ID. The image acquisition and processing IP is implemented
in the central tile and a lightweight resource manager collects local WTA winners and performs the
final WTA, in parallel with scheduling communications.

6.2.2. GTX Micro-Benchmarking in Wizarde

We use Aurora, a LogiCORE IP [42] designed to enable easy implementation of
Xilinx transceivers while providing a light-weight user interface on top of which we can
build our own protocol. This IP offers sufficiently low overhead for our needs and will
allow us to build our own higher level protocols in the future while maintaining a high
scalability potential.
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Specifically, we leverage an 8B/10B encoding, a protocol for a high-speed serial data
transmission. It provides a good clock recovery on reception and balances the number of
zeros and ones to avoid the presence of a direct-current (DC) on the line. It is used in some
versions of Ethernet-based network links.

The Aurora IP exposes an interface with an AXI4-stream bus, which will allow us to
send high speed data, e.g., via its external DDR memory and a DMA, from the processing
system part of the Zynq to its programmable logic part.

We implemented tests to validate that tile-to-tile data transfers are indeed correct
on the Wizarde platform. We specifically targeted communications between the north
and north-west tiles. The benchmarks are carried out at 3.125 Gbps and 6.25 Gbps, as
the maximum admissible frequency for the Aurora 8B/10B IP is 6.6 Gbps. The Aurora
configuration is shown in Table 13 for 6.6 Gbps.

Table 13. Aurora IP configuration. The line transmission rate is set to 6.25 Gbps and the GT reference
clock is set to 125 Mhz on both TX and RX of adjacent tiles (north and north-west).

North FPGA North-W FPGA

Lane Width (Bytes) 2 2
Line Rate (Gbps) 6.25 6.25
GT Refclk (Mhz) 125 125
Init clk (Mhz) 50 50
DRP clk (Mhz) 50 50
DRP clk (Mhz) TX-only RX-only

simplex simplex

We use the IP in simplex mode. The north tile will be in the transmit mode while
the north-west one will be in the receive mode. Our clock reference on Wizarde is set to
125 MHz, to be able to boost the frequency up to 6.25 Gbps. Each tile has a pair of MGT
links connected to its nearest neighbours (e.g., the central module has four pairs of MGTs
to provide a high-speed transmission to each of its immediate neighbours).

Finally, to carry out our tests we used the example design with the dedicated core
IP, which has modules for frame-generation (on the TX side) and frame-verification
(on the RX side). The frames are composed of pseudo-random numbers sent in the
AXI4-stream format.

Our tests show the data we send (TX) are identical to the received data (RX), with a
delay overhead of (≈clk_cycl/10). As shown in Figure 9, we send arbitrary fixed numbers
from side to side and then evaluate the received data (registered in BRAM memory),
according to the transmitted ones on the TX register.

(a) North-tile

Figure 9. Cont.
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(b) North-West-tile

Figure 9. Waveform data acquisition. We trigger the data acquisition on the chipscope from the
pseudo-random value 0x06E3 and we can verify that the reset and activation signals of the GTX are
valid and the received data are in conformity with those sent. We also check the error-accumulator
signal remains at 0. This benchmark is set up with a throughput of 6.25 Gbps.

To ensure a proper activation and reset of the GTXs on both sides of the transmission,
we added some functionalities according to Xilinx [42]; for more documentation on the
chronogram and the VHDL codes used for both sides of TX and RX and for a more efficient
control, see page 55 [42].

Figures 10 and 11 showcase the resource utilisation for post-implementation, using
two different boosting clock frequencies 3.125 Gbps and 6.25 Gbps. The illustrated results
are generated and exposed from both side of tiles on north and north-west.

(a) North-West tile (RX-tile), for 3.125 Gbps (b) North-West tile (RX-tile), for 6.25 Gbps

Figure 10. Vivado report: Resource usage per tile. The usage rates are almost equal; as such, 18 more
logic LUTs and 2 less Flip Flops were recruited for the 6.25 Gbps frequency upgrade.

(a) North-tile (TX-tile) (b) North-tile (TX-tile)

Figure 11. Vivado report: Resource usage per tile. The usage rates are almost equal; as such, 5 more
logic LUTs and 2 less Flip Flops were recruited for the 6.25 Gbps frequency upgrade.

6.3. Toward a Distributed N-LOC Architecture on Wizarde

This section discusses the possibility to implement a distributed N-LOC architecture
using a multi-FPGA platform. We will use Wizarde (See Section 2) as our target. Our
reasons to resort to Wizarde are threefold: (1) Beyond the intrinsic overhead induced by
a distributed architecture and its associated control signals, one of the reasons our first
attempt at implementing distributed N-LOC does not perform as well as a single N-LOC
block is the very small size of each neural network, which can be alleviated if a sizeable



Sensors 2023, 23, 4631 25 of 30

portion of each tile involved in the design can be leveraged (as one tile is roughly able
to store 4600 neurons with 100 place cell neurons); (2) the GTX links coupled with the
AXI Stream protocol should offer a more asynchronous way of transferring data between
the controller (still implemented in software) and its neighbouring tiles, which should
reduce communication overheads (for both throughput and latency); and (3) this is the only
way we can eventually implement a large neural network—large enough to be useful in a
self-driving car. Moreover, such a network could be grown dynamically and on demand,
according to the computational needs of the current context in which the car is situated.

6.3.1. Changes to the Original Architecture

We target four tiles in the Wizarde board: for instance, the central tile, as well as the
north, east and west tiles. The latter tiles implement an instance of the N-LOC IP, combined
with a GTX interface (see Figure 8). The central tile implements the image processing
IP (DoG) and orchestrates communications across all tiles via the GTX interface. The
communication scheduler is implemented in software on the central tile, using the ARM
Cortex A9 processor.

More details of N-LOC data exchange of buffer size are given below:

• The compass value (image orientation, i.e., azimuth values) is sent once for each image
to process. Azimuth values are computed locally in each N-LOC block

• For each vignette (12 × 12 pixels), the x coordinate of the keypoint is sent to the
N-LOC block.

• For each pixel, the value of the most active neuron in SL (and its x coordinate, i.e., its
“line number”) is sent to the relevant N-LOC block.

• Once all 16 vignettes have been processed, the value of the most active neuron in the
PC layer of each N-LOC is sent back to the controller (PS).

As a result, each N-LOC block must:

• Receive a new compass value every 16 vignettes. The word size for the azimuth buffer
takes 8 bits for each period of 16× 144 cycles of ref_clk cycle.

• Receive a new x coordinate value for each new vignette. The word size of the Azimuth
landmark’s x coordinate also takes 8 bits for each 144 period of ref_clk cycle (144×
ref_clk period).

• Receive a new signature layer value every time a pixel is sent. The word size of
signature layer pixels (block’s input) takes 8 bits for each ref_clk cycle.

• Send its most active place cell value every time a full image has been processed. The
word size of the place cell (block’s output) takes 8 bits for each (16× 144 + cst) ref_clk
cycle. cst is a constant which varies with each target system.

6.3.2. Extending N-LOC’s Neural Network On Demand: Leveraging Dynamic
Partial Reconfiguration

In order to grant our localisation system better capabilities in term of accuracy-based
wide-range navigation, we need to expand the bio-inspired neural network architecture
implemented as hardware-accelerator-based N-LOC. However, the resource consumption,
and memory footprint of that purpose, is very costly. As we have seen in Table 4, the
percentage of resources is limited over≈180 neuron place cell for each FPGA tile. Therefore,
leveraging dynamic partial reconfiguration (DPR) is essential for implementing scalable
neural networks. As implemented, the localisation task is large enough that it will not
completely fit into the available reconfigurable fabric. Moreover, the computational needs
may change according to the vehicle’s environment, e.g., transitioning from a dense urban
area to a rural one, with a possible shift in available light. Thus, the neurons used to decide
will not be the same and will yield different weights. As a result, relying on a full hardware
solution is neither reasonable nor realistic.

Instead, the system should rely on a light software layer which will provide a schedul-
ing and resource management environment to decide which hardware task and where to
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allocate within an FPGA. Hence, a major step must be achieved, by providing a layer to
provide an API to load and replace hardware tasks.

Future Work. A post-scheduling algorithm’s capabilities must be tested to figure
out the best task allocation strategy to achieve real-time navigation using a bio-inspired
approach. Thus, using a CPU scheduling system, FPGA accelerators can be managed much
more efficiently with more complex strategies, which inevitably optimises and outperforms
the acceleration.

7. Related Work

Overall, a growing autonomous vehicle market needs to implement tasks such as
visual navigation, object detection, etc. Hence, a broad summary with various software
and hardware-based implementations, running on CPU, GPU and/or FPGAs, is detailed
in various surveys [43–47].

One of the major venues to deal with autonomous vehicle navigation is the use of
Machine Learning and Deep Learning. Deploying a Deep Learning model directly to edge
devices comes with many advantages compared to traditional cloud deployments: by
eliminating communications, inter- and intra-processes can reduce latency and reliance
on the network connection. Since the data never leave the device, edge-inference helps
with maintaining user privacy. Moreover, since the amount of cloud resources is drastically
reduced, edge-inference can also reduce ongoing costs [48,49].

The porting of ML applications running on edge devices both drives and is driven by
the development of specialised hardware accelerators such as GPUs, ASICs or FPGAs. FP-
GAs are dominating and attracting people to this research domain, thanks to their steadily
improving performance, internal expanded bandwidth and high throughput [50]. A lot
of works and benchmark instances are proposed to implement CNN, NN circuits with
all required features for, e.g., Xilinx FPGA platforms [51,52], which define a benchmark-
ing approach to co-design, construct and optimise any such algorithm into an inference
accelerator IP [53,54].

Another way to implement the navigation process is to resort to bio-inspired models
and algorithms. In this context, spiking neural networks (SNNs) and visual place recogni-
tion (VPR) models serve different purposes. SNNs, such as the temporal neural encoder
(TNE) proposed by Kheradpisheh et al. [55], are inspired by the spiking neurons in the
brain and can encode sensory information in the form of spike trains. This allows SNNs
to process and recognise temporal patterns and sequences, which are particularly useful
for navigation tasks that require tracking of moving objects or path integration. LPMP,
as currently designed, does not include temporal sequences (yet), but provides a much
simpler model, which in turn makes it easier to follow a hardware–software co-design
approach, like the one we used for this work, as the complexity of the neural network is
lessened compared to SNNs. VPR models are particularly useful for global localisation
tasks in which the robot needs to determine its position relative to a known map of the
environment [56]. Hence, our approach relies on a bio-inspired VPR model, which, by
contrast with ML/DL models, has a “neural circuitry” which is closer to what can be found
in nature, i.e., the way we model individual neurons is not significantly closer to what DL
models do, but the structure of the network itself follows more closely what can be found in
a mammal’s brain: there are no hidden layers, etc. The resulting neural network is simpler
in its structure, but may result in a less memory-efficient way of storing information if
implemented naïvely. Hence, our approach relies on a bio-inspired VPR model, which, by
contrast with ML/DL models, has a “neural circuitry” which is closer to what can be found
in nature, i.e., the way we model individual neurons is not significantly closer to what DL
models do, but the structure of the network itself follows more closely what can be found in
a mammal’s brain: there are no hidden layers, etc. The resulting neural network is simpler
in its structure, but may result in a less memory-efficient way of storing information if
implemented naïvely. The LPMP approach (and its hardware implementation) also differs
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from more “traditional” bio-inspired spiking algorithms in that it relies on recognising
visual similarities.

Cuperlier et al. have shown how it could be beneficial to implement a neural pro-
cessing unit as an IP onto FPGA-based reconfigurable fabrics for an embedded navigation
application [57,58]. This is what led us to propose a hardware-based implementation of
their bio-inspired algorithm.

Beyond the use of an accurate and precise model, there is the question of providing
an implementation that is sufficiently fast to be useful in real life. Hence, the use of
accelerators such as GPUs and FPGAs is an important area of research for navigation
algorithm implementation to be embedded in vehicles, with performance and energy-
efficiency in mind. Qasaimehet et al. in [36] conducted a comprehensive benchmark of the
run-time performance and energy efficiency of a wide range of vision kernels in order to
determine which embedded platform is most suitable for their application. The conducted
study is performed for three commonly used hardware accelerators for embedded vision
applications, ARM57 CPU, Jetson TX2 GPU and ZCU102 FPGA using the vendor-optimised
vision libraries OpenCV, VisionWorks and xfOpenCV. The results show that the GPU
achieves an energy/frame reduction ratio of 1.1×–3.2× compared to the others for simple
kernels. However, for more complex kernels and more complete vision pipelines, the
FPGA outperforms the others with energy/frame reduction ratios of 1.2×–22.3×. They
report also that the FPGA performs increasingly better as a vision application’s pipeline
complexity grows.

A publicly available chart summarising neural network accelerator performance and
power consumption has been made available by the Energy Efficient Computing Group
at Tsinghua University, China [59]. It would be interesting to see where our system fits in
this chart.

8. Conclusions

We proposed a low-footprint and high-performance accelerator for feature and image
recognition in the context of autonomous vehicle navigation. It implements the Spatial
Working Memory aspect of the navigation process, along with winner-takes-all implemen-
tation to select the most important feature within a pixel stream collected from another
IP which was ported for the target FPGA platform and relies on difference of Gaussian
operations and Log-Polar representations. Compared to previous (highly accurate) imple-
mentations, ours provides not only accuracy, but also very low latency (9× shorter than
the baseline reference implementation), low power consumption (up to 5.5× lower) and
high frame rate (7× higher). In addition, our experimental results show that the proposed
accelerator yields a much lower power consumption footprint (0.257 W for the LPMP
implementation; 2.741 W for the whole system) compared to the pure software reference
implementation running on a high-end embedded system. We demonstrated Wizarde’s
multi-FPGA capability to implement the whole initial neural network (≈10,000 neurons)
over multiple tiles, by leveraging its gigabit transceivers. The software processing part
will be deployed on the FPGA center tile to communicate and control all FPGA tiles, by
receiving and assessing the localisation score of each captured image from different NLOC
accelerator modules.

Future work includes implementing LPMP on the Jetson TX2’s GPU, as well as modify-
ing our architecture to increase its clock frequency to improve its performance and compare
it to GPU-based embedded systems in terms of performance and power consumption.
We also aim to embed our bio-inspired neural IP into a mobile robot to test its limits and
perform a runtime assessment of the implemented navigation approach. Furthermore, a
dynamic scheduling scenario based on a pre-existing software platform will be proposed to
efficiently deploy the whole application by delivering a high performance run-time circuit.
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