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Abstract: Currently, Low-Rate Denial of Service (LDoS) attacks are one of the main threats faced
by Software-Defined Wireless Sensor Networks (SDWSNs). This type of attack uses a lot of low-
rate requests to occupy network resources and hard to detect. An efficient detection method has
been proposed for LDoS attacks with the features of small signals. The non-smooth small signals
generated by LDoS attacks are analyzed employing the time–frequency analysis method based on
Hilbert–Huang Transform (HHT). In this paper, redundant and similar Intrinsic Mode Functions
(IMFs) are removed from standard HHT to save computational resources and to eliminate modal
mixing. The compressed HHT transformed one-dimensional dataflow features into two-dimensional
temporal–spectral features, which are further input into a Convolutional Neural Network (CNN) to
detect LDoS attacks. To evaluate the detection performance of the method, various LDoS attacks are
simulated in the Network Simulator-3 (NS-3) experimental environment. The experimental results
show that the method has 99.8% detection accuracy for complex and diverse LDoS attacks.

Keywords: Low-Rate Denial of Service; Software-Defined Wireless Sensor Networks; Hilbert–Huang
Transform; Convolutional Neural Networks

1. Introduction

Software-Defined Wireless Sensor Networks (SDWSNs) introduce software-defined
network architecture into wireless sensor networks, which equips sensor nodes and sink
nodes with programmable functions in the control plane, realizing flexible control in sensor
networks [1]. However, with the rapid development of SDWSNs, its security issues have
also attracted increasing attention [2]. Due to the fact that the sensor nodes are low power
and the wireless connections between the nodes are intermittent, based on this property of
SDWSN, the Low-Rate Denial of Service (LDoS) attacks are able to launch elaborate attacks
to make nodes unavailable.

Compared to Denial of Service (DoS) attacks, LDoS attacks are more harmful and
more difficult to detect. Traditional DoS attacks involve a large number of data packets,
which may cause anomalies in the statistical characteristics of network traffic to detect DoS
traffic [3–5]. In contrast, LDoS attacks reduce the average network traffic, and attackers do
not need to maintain a high attack rate. Instead, they periodically send the victim short
burst traffics [6,7]. Therefore, a large-scale and long-term network paralysis can be caused
by only a few attack packets, greatly reducing the throughput of victims. Additionally, a
single LDoS attack flow disguised as a legally-formed pulse flow exhibits the same basic
characteristics as normal traffic. Its average packet rate is low, 10–20% of normal data traffic,
and it often submerges in normal traffic, making it difficult to be detected [8,9].

Currently, research mainly applies machine learning (ML) to extract attack traffic
features in the network to detect and defend against attacks. For example, Deep Neural
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Network (DNN) models are highly effective in detecting attacks [10]. DNN models are
trained using labeled traffic data and further used to classify traffic samples in the network.
Thus, the ML approach is an appropriate choice to identify the network intrusions by
acquiring traffic characteristics [11]. Due to the characteristics of LDoS attacks, traditional
DNN models find it difficult to detect them [12–14]. However, detection methods based on
the time–frequency domain can effectively identify LDoS attack features. Due to the role
of Empirical Mode Decomposition (EMD), the Hilbert–Huang Transform (HHT) method
in time–frequency transformations can extract the features of small-scale signals. EMD
can adaptively perform time–frequency localized analysis, decompose data signals into a
set of Intrinsic Mode Function (IMF) components, and extract meaningful instantaneous
amplitude and frequency information [15]. However, in the process of decomposing the
signal, if the signal has similar local features, which will generate similar IMF components
in different decompositions, it may result in mode mixing, i.e., there may exist an overlap
and a similarity between a set of IMF components [16].

Cutting-edge feature-based detection methods require significant computational re-
sources and time for feature selection and model training, while time–frequency domain
detection methods suffer from the detection of features in a small scale [17–19]. To fill the
gap in detecting LDoS attacks using HHT-based spectral features, we propose the HCN
method, which combines the Hilbert–Huang Transform and Convolutional Neural Net-
work (CNN) methods to detect LDoS traffic. HCN optimizes the HHT with modal mixing
to generate two-dimensional temporal–spectral features as the input feature vector and
design a CNN model to classify attack traffic and normal traffic. The advantage of combin-
ing CNN with HHT lies in the ability of HHT on effectively capturing the time–frequency
domain characteristics of LDoS traffic in the spectrum. By utilizing the advantages of
deep neural networks in extracting features from two-dimensional spectrograms, CNN can
extract covariant features related to data traffic from these spectrograms and classify the
traffic data.

To evaluate the performance of the proposed HCN method, we used Mininet to build
a network topology environment, and then carried out simulation experiments of SDWSN
in NS-3. The traffic data came from the public dataset MAWI [20].

Specifically, we have made the following contributions:

• Redundant and similar IMFs in HHT were compressed to reduce the computation
complexity and solve the modal mixing problem.

• Designed and implemented HCN, in which the compressed HHT was combined
with CNN. HCN converted one-dimensional dataflow feature sequences into two-
dimensional spectrogram features and then classified dataflows with CNN to improve
the detection performance.

• Our simulated network environment was driven by real data traffic. The experimental
results showed that the HCN was able to achieve an accuracy of 99.8%.

The remainder of this paper is organized as follows. Section 2 presents a review of
related works. Section 3 introduces the proposed HCN method and the network structure
of CNN. Section 4 describes the experimental setup and shows the results. Finally, this
paper is summarized in Section 5.

2. Related Work

Kuzmanovic and Knighty first found LDoS attacks, and they proposed a new type of
Low-Rate TCP-directed DoS attack in 2003 [21]. Since then, many researchers have begun
studying the detection of LDoS attacks.

Currently, the detection of LDoS attacks can be divided into feature-based detection
and time–frequency domain detection. Yan et al. [22] extracted the mean, variance, and
entropy features of TCP traffic and employed them as features to train an enhanced logistic
regression model for the purpose of detecting LDoS attacks. However, the feature extraction
method used in this approach was relatively weak. Liu et al. [23] proposed a method for
LDoS detection that utilized multiple feature fusions. Specifically, this approach extracted
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features from network traffic and, subsequently, conducted further processing on these
features to fit a KNN classifier. However, this approach primarily relied on the KNN
classifier for the detection of attacks, which is sensitive to noise data and can be easily
affected by outliers. Zhang et al. [24] employed a combination of Principal Component
Analysis (PCA) and Support Vector Machine (SVM) models for attack detection. This
method filtered out noise interference, extracted the principal components of TCP flow
characteristics, and trained the SVM model using the extracted training set principal
components. However, this approach demonstrated limited efficacy in detecting complex
attack behavior, despite its simplicity and efficiency.

Dan Tang et al. [17] introduced a LDoS attack detection method that employed a multi-
feature fusion approach in conjunction with CNN. This method combined 17 distinct traffic
features to generate a feature map that represented the network state. This feature map
was then utilized as input to train the CNN model for effective attack detection. Expanding
on this approach, they also advanced a LDoS attack detection scheme utilizing a Mean
Shift clustering algorithm with a weighted Euclidean distance (WEDMS). The weighting
factor was determined by the significance of the features [18]. Nevertheless, it required
more intricate computations and more extensive model training.

The time–frequency domain detection approach is an effective method for detecting
LDoS attacks. This method involves performing time–frequency analysis on network
traffic data to extract essential features such as frequency, phase, and amplitude. These
features are then meticulously analyzed and processed to identify the presence of LDoS
attacks [25]. Agrawal et al. [13] proposed a method that employed power spectral density
analysis to identify LDoS attacks in cloud environments. This method utilized Fourier
Transform (FT) to transform time-domain data to a frequency–domain spectrum and
calculated the values of the power spectral density. If the power spectral density values
were concentrated in the low-frequency band, the traffic will be identified as an attack.
The method proposed by Yue et al. [19] was a novel approach that combined Wavelet
Transform (WT) and neural networks to accurately distinguish between normal traffic and
LDoS attack traffic. This method extracted wavelet energy spectral coefficients at different
time scales to analyze the multiple features of traffic and used a neural network to identify
LDoS attacks. Fouladi et al. [26] proposed a scheme that combined Continuous Wavelet
Transform (CWT) and CNN to detect network intrusions and defenses. This approach
utilized features obtained from CWT as inputs of the CNN classifier, which distinguished
attack samples from normal samples. Experimental results demonstrated that this scheme
had a high identification rate for DNS amplification, NTP, and TCP-SYN flood attacks.

To clearly express the characteristics of each method, we listed the above methods in a
table. Table 1 is a comparative analysis of the detection methods. Feature-based methods
for detecting LDoS can identify the differences between normal traffic and attack traffic
through machine learning and data mining. However, the selection of features and the
training of models necessitate considerable computational resources and time. Thus, it
requires less complex methods or models to detect various types of LDoS attacks. The
shortcomings of the detection method based on the time–frequency domain are associated
with the time–frequency transform method. Fourier transforms can only be applied to
periodic signals. Therefore, it cannot effectively process non-periodic signals or signals
with time constraints. Moreover, the selection of an appropriate wavelet basis function
is critical for improving the accuracy of detection, and this varies depending on the type
of signal.

HHT is an adaptive analysis method [27] that takes the multi-resolution analysis
advantages of wavelet transforms while overcoming the difficulty in selecting wavelet
basis functions. It can highlight non-stationary small signal characteristics produced by
LDoS attacks and differentiate them from normal traffic. Therefore, we used HHT for
time–frequency domain feature extraction to identify LDoS attacks. In HHT, similar IMF
components are removed to effectively solve the mode mixing problem.
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Table 1. Summary of research status about detection methods.

Category Proposal Detection Method Limitations

Detection methods
based on features Yan et al. (2019) Enhanced logistic

regression [22]
The feature extraction method
was relatively weak.

Liu et al. (2020) KNN [23]
This method was sensitive to
noise data and could be easily
affected by outliers.

Zhang et al. (2019) PCA-SVM [24]
This approach demonstrated
limited efficacy in detecting
complex attack behaviors.

Tang et al. (2020)

Multi-feature
fusion [17]

They required intricate
computations and extensive
model training.

WEDMS [18]

Detection methods
based on
time–frequency domain

Agrawal et al. (2018) FT [13]
FT could not effectively process
non-periodic signals or signals
with time constraints.

Yue et al. (2018) WT [19]

WT could not achieve high time
and frequency precision
simultaneously, and WT
required the selection of an
appropriate wavelet basis
function.

Fouladi et al. (2022) CWT [26]

3. HCN Detection Method

In this section, we introduce the HCN detection method. The flowchart of the proposed
HCN method is shown in Figure 1, and the definitions of all the symbols are shown in
Table 2.

Figure 1. The flowchart of the HCN detection method shows that four features are extracted from the
network nodes, and then HHT is performed on these features before inputting them to the CNN.
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Table 2. List of Notations.

Notation Description

Q Feature set
t Sampling time interval
xt Feature Value
D Euclidean distance
M Euclidean distance threshold
X Feature
w Sliding window size

X(t) The feature sequence after sliding window
P The total number of packets
C Total network connections

emax(t) Local maximum points
emin(t) Local minimum points

ml The mean value between emax(t) and emin(t)
C(t) IMF component
rn Residual signal

H(ω, t) The Hilbert spectra of IMF components
ai(t) Amplitude
ωi(t) Instantaneous frequency

SQ Spectrogram after compressed HHT of Q
Nepochs Training rounds
Ntrain Training data set
Ntest Testing data set

3.1. Traffic Feature Information Extraction

For the purpose of detecting attack traffic, time series features were extracted from
network nodes. We collected feature by extracting the total number of unique source IP
addresses (USIP), the normalized number of total unique destination IP addresses (NUDIP),
the differential packet transform rate (DPTR), and the differential network connection con-
version rate (DCCR). The feature extraction followed the algorithm shown in Algorithm 1.
The definitions of each feature are described in detail below:

The total number of unique source IP addresses (USIP): When the attacks are launched,
the attacker sends a large number of packets with false IP addresses to attack other network
nodes; thus, the value of USIP increases significantly. Therefore, USIP is adopted as the
first feature to detect the attack.

The normalized number of total unique destination IP addresses (NUDIP): During
the attack, the source IP addresses of the packets generated are random, but the destination
IP addresses are set to the IP address of the victim node. Although the value of UDIP
theoretically decreases, the change of UDIP is not obvious because other destination IP
addresses also exist in the flow table. However, when normalized by the total number of
packets, the value of UDIP changes significantly due to the dramatic increase in the total
number of packets in the flow table. Therefore, normalized UDIP is adopted as the second
feature to detect the attack.

The differential packet transform rate (DPTR): During the attack, the data packets
within the network increase explosively. Thus, DPTR is applied as the third feature to
detect the attack.

The differential network connection conversion rate (DCCR): Sometimes, there
are elephant flows in normal traffic.The difference is that a normal elephant flow will
not interrupt the connection request multiple times, whereas attack traffic will interrupt
requests continuously. Therefore, DCCR is applied as the fourth feature.

The transformed two-dimensional spectrogram of these feature values can reflect the
characteristic differences between normal traffic and attack traffic, which can be used to
identify attack traffic.
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Algorithm 1 Traffic feature information extraction.

Require: Network traffic data f low_t
Ensure: Feature set Q

1: for ∀(Srcip, Desip, Pt, Ct) ∈ f low_t do
2: for each time interval t do
3: if Srcip → ∃ then
4: (Srcip, count)← count + 1
5: else
6: (Srcip, count)← 1
7: end if
8: if Desip → ∃ then
9: (Desip, count)← count + 1

10: else
11: (Desip, count)← 1
12: end if
13:

Pt+1−Pt
Pt

← DPTR

14:
Ct+1−Ct

Ct
← DCCR

15: (Srcip, count)← USIP

16:
(Desip,count)

Pt
← NUDIP

17: end for
18: end for

3.2. Compressed HHT

During the process of decomposing the signal into IMF components using the HHT
method, each IMF component was considered as a local feature of the signal. In applica-
tions, different signals may have similar local features, which could result in similar IMF
components after the HHT decomposition. Although similar IMF components may not
necessarily be caused by mode mixing; the local similarity of the data can also lead to this
situation. However, it is undesirable regardless of the situation. Therefore, we calculate
the Euclidean distance between adjacent IMF components to determine their similarity, as
shown in Figure 2. To prevent feature duplication and save computational resources, IMF
components with high similarity are directly removed, and the calculation of the next IMF
component is stopped.

Figure 2. Compressed HHT. Green indicates retention, red indicates deletion, and the displayed
three-dimensional plot shows the concatenated spectrogram.

3.3. Frequency–Domain Feature Extraction

During a LDoS attack, the attacker injects a large amount of data traffic into the
victim network in a short period of time until the network becomes congested. The attack
traffic typically appears similar to normal traffic in the time domain, but exhibits low-
frequency small signals in the frequency domain. HHT can extract the frequency–domain
characteristics of such non-stationary small signals, enabling attack recognition.
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To detect the small signal features of LDoS in the frequency domain, a feature sequence
X is extracted from feature set Q in each time interval, as illustrated in Algorithm 2. A
subsequence X(t) = {xt, · · · , xt+w} is obtained from sequence X = {x1, · · · , xw, · · · , xN}
by a sliding window of length w. As attack traffic is bursty, each subsequence X(t) is
non-stationary; as a result, it is difficult to find signal features in X(t). To resolve this issue,
we use EMD to decompose the non-stationary time series into a set of linearly independent
IMFs. Each IMF component represents the oscillations at different frequency bands of X.
Then, we apply the Hilbert transform to each IMF component to obtain the instantaneous
frequency and Hilbert spectrum, which include time, frequency, and amplitude component.

Algorithm 2 Frequency–Domain Feature Extraction

Require: [X1, X2, · · · , Xn] ∈ Q
Ensure: SQ

1: count← 0
2: for Xi in Q do
3: for each time interval t do
4: Statistics(xt)
5: if count ≤ w then
6: X(t)||xt; where || stands for concatenation.
7: count ++
8: else
9: X(t)← xw

2 ||xt
10: end if
11: SX(t) ← HHT(X(t)); where SX(t) ∈ Rw×w

12: end for
13: S(X(t))t=1,··· ,n

∈ SQ; where SQ ∈ Rw×w×n

14: end for

A cubic spline function is used to fit the maximum envelope line for all local maximum
points emax(t) on the subsequence X(t). Similarly, the minimum points emin(t) are identi-
fied, and their mean values, denoted as ml, are calculated as the average of the maximum
and minimum envelope lines. Subtracting ml from the subsequence X(t) creates a new
sequence C(t):

C(t) = X(t)−ml (1)

If C(t) satisfies the following conditions, it is the component of the first IMF [28].

1. In a local interval of the data, the number of extreme points of a function is equal to or
differs from the number of zeros by, at most, one, and these extreme points and zeros
appear alternately;

2. The average value of a function over the entire data range is zero;
3. The frequency of a function in a local interval varies monotonically with time.

X(t) =
n

∑
i=1

Ci(t) + rn (2)

Ci(t) represents the i-th decomposed IMF component of X(t), while rn represents
the i-th residual signal. To prevent mode mixing during the decomposition process, the
Euclidean distance between adjacent IMF components is calculated to determine their
similarity. The Euclidean distance D between the consecutive IMF components is calculated.
If D is below a certain threshold, the newly decomposed IMF component is discarded and
the calculation is stopped. If it is above the threshold, the process is repeated until all the
IMF components are extracted. Figure 2 illustrates the process of decomposing X(t) into
IMFs employing compressed HHT.
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D =

√
[Ci(t)− Ci+1(t)]

2 (3)

Subsequently, the retained IMF components are processed with Hilbert transform to
generate the Hilbert spectrum of X(t). Then, the Hilbert spectra of IMF components are
concatenated together to obtain H(ω, t).

H(ω, t) =
n

∑
i=1

ai(t)ej
∫

ωi(t)dt (4)

where ai(t) and ωi(t), respectively, denote the amplitude and instantaneous frequency.
Figure 3 illustrates the transformation of the feature set Q into four sets of two-

dimensional spectra SQ by compressed HHT. These four different combinations of spectral
features provide a comprehensive presentation of the features and enhance the recognition
ability of different features. Finally, the two-dimensional spectra are employed to train a
CNN model and achieving the detection of attack traffic.

Figure 3. Compressed HHT-based feature transformation. The feature sequence X is passed through
by a sliding window with a step size of 1. For each extracted subsequence, a Compressed HHT is
applied, resulting in four sets of spectrograms. These spectrograms are then input to a CNN model.

3.4. The HCN Model

In this paper, a CNN is constructed by using a two-layer convolutional neural network
and a single max-pooling layer, which is applied twice to the input of a two-dimensional
spectrum, as depicted in Figure 4. The MaxPooling layer is utilized to further reduce the
dimensionality of the information extracted by the convolutional layer, thereby improving
the computational efficiency and enhancing the invariance of the image features. A Dropout
layer is added to the Flatten layer to prevent overfitting during training of the model. The
network uses 3 × 3 kernels in each layer, and the activation function used in all layers
is ReLu. In the Dropout layer, each neuron has a 0.2 probability of being deactivated.
Algorithm 3 describes the process of classification decision making by the HCN model.
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Figure 4. The HCN Model.

Algorithm 3 The HCN model for classification

Require: SQ, two-dimensional spectrum.
Ensure: ACC, accuracy of HCN classification.

1: for i = 1, 2, · · · , Nepochs do
2: for t = 1, 2, · · · , n do
3: HCN← (SQ)

Ntrain
t , training HCN models.

4: Save training parameters.
5: end for
6: for t = 1, 2, · · · , n do
7: HCN← (SQ)

Ntest
t , input testing dataset to the trained HCN model.

8: ACC← HCN, calculating the accuracy of model judgments.
9: end for

10: Take the average of the accuracy rate of each epoch.
11: end for

4. Experiment

This section evaluates the performance of the HCN model in the SDWSN network.
The experimental environment and the performance metrics are introduced, and the exper-
imental results are analyzed.

4.1. The Network Topology

To evaluate the performance of the HCN model, this paper employs the Mininet
simulator to establish the network topology, which is then imported into NS-3 as the
simulation environment for SDWSN. The experimental topology is shown in Figure 5.

Figure 5. Network Topology.

4.2. Dataset

Since 2002, the MAWI laboratory has been committed to collecting and analyzing
internet traffic data and has had a significant impact in this field [20]. We regenerated
the network traffic from the MAWI dataset using the TcpReplay tool and rewrote the IP
addresses based on the network node IPs in our experimental topology. The regenerated
traffic was then injected into the network topology. Additionally, we generated attack traffic



Sensors 2023, 23, 4745 10 of 14

using the Hping3 and slowhttptest tools and sent it into the network from the attacker
node in the topology.

The attack traffic in this paper can be classified into three types:

1. HTTP slow DoS attack: exhausts the resources of the target server by continuously
sending incomplete or intentionally slow connection requests in order to achieve the
attack purpose;

2. ARP attack: deceives other nodes in the network by changing the destination IP
address of the traffic in the network to the victim’s IP address;

3. Flood attack: overloads the network and lowers its availability by sending a large
amount of data traffic or control messages to the network.

The source IP addresses of all the attack data packets are fabricated or fake. From the
victim’s perspective, the attack data packets appear to be coming from different sources.
These attacks are able to push the victim into a congested state repeatedly.

This experiment generated 4 h traffic, including 1 h normal traffic and 3 h attack traffic.
We used the Wireshark software to capture the network traffic in the experimental topology.
The feature set Q = [X1, X2, X3, X4] was collected and extracted for each time interval of t = 1 s
in the network. A subsequence set Q(t)13,800

t=1 = [X1(t)
13,800
t=1 , X2(t)

13,800
t=1 , X3(t)

13,800
t=1 , X4(t)

13,800
t=1 ]

was obtained for each Xi sequence in Q by a sliding window of length w = 100. Subse-
quently, compressed HHT was performed on each subsequence Xi(t) to obtain a three-
dimensional feature spectrum. To facilitate deep learning in subsequent stages, the three-
dimensional feature spectrum was projected and transformed into a two-dimensional
frequency spectrum SQ, resulting in 13,800 traffic samples, each containing four two-
dimensional frequency spectrum. The training dataset consisted of 8000 labeled samples,
including 2000 normal traffic samples, 2000 HTTP slow DoS attack traffic samples, 2000
ARP attack traffic samples, and 2000 Flood attack traffic samples. The testing dataset
included a total of 5800 samples, which consisted of normal traffic and three types of attack
traffic, as shown in Figure 6. The experimental parameters are shown in Table 3.

Normal HTTP ARP Flood
0

700

1400

2100

The types of attack traffic

Am
ou
nt

 Train
 Test

Figure 6. Number of training and testing sets for four types of traffic.
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Table 3. Parameter list.

Parameter Value

Frequency 100 HZ
Spectral resolution 64 × 64
Packets per second 200

Euclidean distance threshold M 1
Sliding window size w 100

4.3. Experiment Results

Figure 7 shows the three-dimensional spectrogram of selected traffic, while Figure 8
shows two-dimensional spectrogram of three types of attack traffic and normal traffic.
The time and frequency axes are normalized in the Figure. As shown in the Figures, the
two-dimensional spectrum of each traffic type exhibits a distinct pattern. The spectrograms
of different flows show different characteristics in frequency distribution and amplitude
distribution. At low traffic rates, the frequency distribution of the spectrogram will be con-
centrated in the lower frequency range. However, for high traffic, the frequency distribution
will expand to a higher frequency range, and the amplitude will also increase accordingly.
Therefore, the HCN model employed four types of spectrograms as classification criteria to
distinguish between normal traffic and attack traffic.

Figure 7. Three-dimensional spectrogram of selected traffic: (a) USIP. (b) NUDIP. (c) DPTR. (d) DCCR.
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Figure 8. Two-dimensional spectrogram of three types of attack traffic and normal traffic: (a) Normal.
(b) HTTP slow DoS attack. (c) ARP attack. (d) Flood attack.

To evaluate the detection performance of HCN, experiments were conducted using
FNr, FPr, and Accuracy as performance metrics, and compared with Multifractal [12], BP
neural network [29], PSD [13], and MF-Adaboost [30]. PSD is a time–frequency domain de-
tection method that provided 3.7% FPr and 4.9% FNr. Multifractal, BP neural network, and
MF-Adaboost are ML-based detection methods. MF-Adaboost had the best detection per-
formance, achieving 97.06% accuracy. HCN differed from these methods in that it combined
time–frequency transforms with deep learning. HCN transformed the one-dimensional
feature sequences into two-dimensional spectrogram features, thereby leveraging the ad-
vantages of deep neural networks in recognizing patterns in high-dimensional data spaces.
According to the results presented in Table 4, the HCN method achieved low FNr and FPr
rates while maintaining high accuracy. Principally, the FNr value of HCN was improved
by an order of magnitude compared to the best algorithm mentioned above.

Table 4. Comparative result.

Method FNr FPr Accuracy

Multifractal 9% 10% 91%
BP neural network 3.32% 3.89% 96.68%

PSD 4.9% 3.7% 95.1%
MF-Adaboost 2.94% 0.33% 97.06%

HCN 0.2% 0.4% 99.8%
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5. Conclusions

This paper proposed a LDoS attack detection method called HCN based on HHT
and CNN. The proposed method involved the extraction of the features of multiple one-
dimensional data sources from the network, and these were then transformed into two-
dimensional frequency spectrum features by compressed HHT. This approach enabled a
more comprehensive representation of network traffic characteristics. The resulting two-
dimensional frequency spectrum features were input into a CNN for LDoS attack detection.
Experiments were conducted in an SDWSN environment, and the results demonstrated
that the HCN method achieved high accuracy while maintaining low false positive and
false negative rates. Therefore, the method proposed in this paper was able to effectively
detect LDoS attacks.
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LDoS Low-Rate Denial of Service
SDWSN Software-Defined Wireless Sensor Network
HHT Hilbert–Huang Transform
IMF Intrinsic Mode Function
EMD Empirical Mode Decomposition
USIP The total number of unique source IP addresses
NUDIP The normalized number of total unique destination IP addresses
DPTR The differential packet transform rate
DCCR The differential network connection conversion rate
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