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Abstract: Keeping natural ecosystems and their functions in the proper condition is necessary. One of
the best contactless monitoring methods is remote sensing, especially optical remote sensing, which is
used for vegetation applications. In addition to satellite data, data from ground sensors are necessary
for validation or training in ecosystem-function quantification. This article focuses on the ecosystem
functions associated with aboveground-biomass production and storage. The study contains an
overview of the remote-sensing methods used for ecosystem-function monitoring, especially methods
for detecting primary variables linked to ecosystem functions. The related studies are summarized
in multiple tables. Most studies use freely available Sentinel-2 or Landsat imagery, with Sentinel-2
mostly producing better results at larger scales and in areas with vegetation. The spatial resolution is
a key factor that plays a significant role in the accuracy with which ecosystem functions are quantified.
However, factors such as spectral bands, algorithm selection, and validation data are also important.
In general, optical data are usable even without supplementary data.
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1. Introduction
1.1. Ecosystem Services and Functions

Natural ecosystems are very complex systems with abiotic and biotic elements. Ecosys-
tem functions are the basic interactions between the components of ecosystems or across
ecosystems, and, further, they describe the processes (energy and material transfer) of
ecosystems [1]. In the second case, the function is defined by three points [2]:

• The rate of biological energy or water flow through the ecosystem;
• The rate of material or nutrient cycling (biogeochemical cycles);
• Biological or ecological regulation, including both the regulation of organisms by the

environment and the regulation of the environment by organisms.

Ecosystem functions are attributes related to the performance of an ecosystem, which
are the consequences of one or multiple ecosystem processes [3]. According to another defi-
nition, ecosystem functions offer direct and indirect benefits to various species, including
humans. In this definition, examples of ecosystem functions include nutrient regulation,
food production, or water supply [4]. The essential factors in all ecosystem functions are
energy, water, and carbon. These elements are closely interconnected. If a plant does not
have sufficient water, the energy flux changes, and the plant changes its evaporation and
increases its heat, thus slowing down basic processes such as carbon sequestration [5]. The
elements must remain in balance, as they influence each other.

Ecosystem services benefit human well-being, which human populations derive di-
rectly or indirectly from ecosystem functions [6]. Services can be described simply as
benefits that people receive from ecosystems [7]. Another way to define services is as the
specific outcomes of ecosystem functions that directly sustain and enhance human life [8].
The difference between services and functions is defined by the statement that functions
can have both inherent and potential anthropocentric values, while services are defined
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only in terms of their benefits to people [9]. Even though there are known delineations
between functions and services, there will always be overlaps across classifications because
humans are part of the Earth’s ecosystem. These overlaps are based on basic definitions,
since services are based on functions or become services (from functions) if a human eval-
uates them as beneficial. A typical example is the category “Food and Materials,” which
can be considered as both a function and a service. As a function, it provides food and
materials for all living and non-living organisms, while as a service, it offers direct benefits
to humans, such as the production of firewood, paper made from wood, fruits and berries,
or building materials. The results of these services can be monetized. The Economics of
Ecosystems and Biodiversity (TEEB) [10] considers ecosystem services from an economic
point of view, as the dividends that society receives from natural capital. Maintaining
stocks of natural capital thus enables the continued provision of ecosystem-service flows
that ensure human well-being [9]. Services create benefits and each service has a different
value for each person [11]. However, as already noted, ecosystem services and functions
are not strictly separated, and they overlap in some cases (Figure 1).
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Figure 1. Relationship between functions and services (edited by [4]).

The awareness of the importance of ecosystem services and functions is beginning
to enter the strategic plans of states and international organizations. Some key indicators
of ecosystem services or functions are included in the list of Essential Climate Variables
(ECVs). The list contains 54 variables, which are divided into 11 groups. There are eight
variables in the biosphere group: aboveground biomass, land cover, albedo, fire, land-
surface temperature, leaf-area index (LAI), fraction of absorbed photosynthetically active
radiation (FAPAR), and soil carbon [12]. In general, this is a group of physical, chemical,
and biological variables that critically contribute to the Earth’s climate characteristics and
future evolution [4]. The ecosystem structure is also considered one of the classes of EBVs
(essential biodiversity variables). This class is formed of the following three variables: live
cover fraction, ecosystem distribution, and ecosystem vertical profile [13]. The variables
are monitored at the level of individual ecosystems, but their interactions are not.

The classification of ecosystem functions and services has been addressed by several
authors [14–17]. De Groot identified a total of twenty-three ecosystem functions, which
were divided into four basic categories: regulation, habitat, production, and informa-
tion [15]. The issue of the division of ecosystem functions and services has become more
widely known thanks to the Millennium Ecosystem Assessment [7]. A similar classification
was developed by the TEEB [10]; however, it was primarily concerned with ecosystem
services from an economic perspective. Another important development in the field of
ecosystem-service classification was the creation of the CICES (Common International
Classification of Ecosystem Services) database. Version 4.3 of the database was released in
2013 and replaced by version 5.1 in 2018. The database is divided into three main categories:
provisioning, regulating, and cultural. These categories are subdivided further according
to biotic and abiotic ecosystems. However, the exact delineation between the classification
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of ecosystem functions and services is vague. This vagueness lies in the fact that some
ecosystem services are classified as classes of ecosystem functions and vice versa. Many
authors have failed to accurately delineate the boundary between the classifications of
functions and services [6,17,18]. The interdependence between ecosystem functions and
human well-being is shown in the ecosystem cascade [19]. In this context, biophysical
processes and ecosystem functions are considered as supporting and intermediate services
and ecosystem services as final services. Final services are those that can be harvested or
gained from the ecosystem. Because the concepts already overlap, we do not refer to pro-
cesses and functions as supporting and intermediate services. Ecosystem function appears
in the second stage of the cascade (Figure 2) and determines the functions of biophysical
processes and structures. The result of the whole cascade is the value that every service
represents for human well-being.
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1.2. Data

Due to the advent of new sensor technologies, an increasing number of satellites and
better remote-sensing-data availability are now possible for ecosystem-function or service
quantification. This includes direct quantification (defined by physical units) or indirect
quantification (defined by dimensionless vegetation indices).

Some satellite-mission operators or companions are already producing prepared
datasets of ecosystem-function indicators. Typical examples are land-cover or forest-cover
datasets, which can reveal the extent of a given habitat. However, some datasets suffer from
low spatial resolution. Another problem may be the non-harmonization of classification
schemes. Regional and global classification schemes are different due to the requirements
of end users and, mainly, the resolution of the applied data. Global datasets are intended
for use worldwide, whereas regional datasets are designed only for a given country or
selected climatic region. In these cases, the advantage of high- and very-high-resolution
satellite data is the possibility they offer of revealing landcover variability even at larger
scales. Accuracy, resolution, and coverage have increased through the use of remote sensing
rather than mapping with terrestrial methods. The disadvantage of these datasets is the
fixed update period. If an up-to-date land cover of an area is needed, it is necessary to
use the current imagery data to perform identifications. Global or continental landcover
datasets are provided by many organizations. The European Space Agency (ESA) produces
a global landcover dataset annually, with a resolution of 10 m. It is primarily derived from
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Senitnel-2 data. Its accuracy is 77.9 ±1% in Europe and 76.7 ±.5% overall [20]. Examples of
freely available land-cover databases are given in Table 1.

Table 1. Land-cover databases.

Database Provider Spatial
Resolution Classes Latest

Version Update Coverage Source

GLC2000
European

Environment
Agency

250 m 22 2000 Latest
version World [21]

GLC-SHARE
Food and

Agriculture
Organization

1000 m 11 2012 Latest
version World [22]

Corine Land
Cover Copernicus 100 m 44 2018 4 years Europe [23]

National
Land Cover

Database

United States
Geological

Service
30 m 16 2019 3 years USA [24]

Globeland30

National
Geomatics
Center of

China

30 m 10 2020 10 years World [25]

ESRI LULC ESRI 10 m 10 2022 1 year World [26]

ESA World
Cover

European
Space

Agency
10 m 11 2021 1 year World [27]

In addition to databases on comprehensive land cover, partial habitats are also avail-
able. For forest habitats, databases are available for forest height in 2019 at a resolution of
30 m globally [28], forest-cover change over the years globally [29], and for the forest den-
sity, dominant forest type, and forest type in Europe at a resolution of 10 m [30]. Another
example is the estimation of aboveground biomass or primary production. The first global
aboveground-biomass database was GlobBiomass, which was set up in 2010. Most of the
validation points are located in Europe (42,003 points), and the database’s resolution is
100 m at the equator. In Europe, the root mean square error is 31.3 t·ha−1, which is 40.3% in
relative terms [31]. The next global aboveground-biomass database was the ESA Biomass
Climate Change Initiative. The current version is version 3, which was released in 2018.
However, versions from 2010 and 2017 are also available. The dataset has a resolution
of 100 m. The primary data for the creation of the dataset were Sentinel-1 and ALOS-2
PALSAR-2 radar data. The 2018 dataset has a root-mean-square deviation of 167 t·ha−1,
which is a relative mean deviation of 73% [32]. Furthermore, the MODIS Gross Primary
Production (GPP)/Net Primary Production (NPP) dataset is also available. The dataset has
a resolution of 1 kilometer [33]. However, it no longer produces new data, as the MODIS
sensor has been decommissioned.

In some cases, the custom modeling of the desired identifier is more suitable. Identifier
modeling can be customized to achieve higher accuracy with a sufficient amount of ground-
truth training and validation data compared with previously created datasets. The number
of ground points depends on the predicted variable and the number of predictors. Optical
remote-sensing data and derived secondary variables, such as vegetation indices or texture,
can be used as inputs. Optical sensors produce data on a vast scale. The main benefit
of remote sensing in the process of ecosystem-function analysis is the collection of up-to-
date, repeatable, and non-destructive data. Processed data enable discrete and continuous
monitoring. These data are always spatially localized and allow the capture of spatial
variability as they cover a large area at one moment. The main pitfall of this method is
atmospheric influence. It is necessary to use atmospheric corrections on the images derived.
Multispectral sensors are mainly used for satellite remote sensing. They scan not only
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visible areas but also in the near- or middle-infrared electromagnetic spectrum. In some
cases, they even scan in the thermal-infrared or panchromatic band. The panchromatic
band is characterized by high or very high spatial resolution and a single band. The
band is formed of the total light energy in the visible spectrum. Multispectral data have a
higher spectral resolution, consisting of multiple spectral bands with broader bandwidth,
instead the lower spatial resolution compared to panchromatic data. The panchromatic
band is used to improve spatial resolution for multispectral bands. Another option is
to use hyperspectral images. Hyperspectral images have the highest spectral resolution
(high number and narrow spectral bands) and can best cover the variability in reflectivity.
According to Liang [34], data are divided by spatial resolution into four groups:

• Low resolution (>1000 m):

a. Sentinel-5P, Meteosat MSG, DSCOVER, NOAA-AVHRR;

• Medium resolution (100–1000 m):

a. Sentinel-3, NOAA-VIIRS, TERRA-MODIS;

• High resolution (5–100 m):

a. Sentinel-2, Landsat-8, Landsat-9, SPOT 5;

• Very high resolution (<5 m):

a. Pléiades Neo-3, Pléiades-1, WorldView-4, QuickBird, Ikonos.

As mentioned above, optical sensors produce large amounts of data. If we focus on
freely available optical data, the list becomes much smaller. Currently, the best option is to
use Landsat or Sentinel satellites. In addition to current images, one can also download
image archives. The table below (Table 2) contains the parameters of freely available data.
Landsat 7 is not listed in the table, as newer versions are used for current imagery.

Table 2. Freely available optical remote-sensing data.

Satellite Landsat 8 Landsat 9 Sentinel-2 TERRA NOAA-21
(JPSS-2)

Operator NASA, USGS NASA, USGS ESA NASA NOAA

Launch date 11.02.2013 27.09.2021 S2A = 23. 6. 2015;
S2B = 7. 3. 2017 18.12.1999 10.11.2022

Orbit Sun-synchronous
at 705 km

Sun-synchronous
at 705 km

Sun-synchronous
at 786 km

Sun-synchronous
at 705 km

Sun-synchronous
at 833 km

Orbit
Inclination 98.2◦ 98.2◦ 98.62◦ 98.2098◦ 98.75◦

Revisit time
16 days (8 days in
combination with

Landsat 9)

16 days (8 days in
combination with

Landsat 8)

10 days for S2A,
S2B (5 days

together)
1–2 days 16 days

Instruments OLI; TIRS OLI-2; TIRS-2 MSI ASTER VIIRS

Spatial
resolution

15 m and 30 m
(OLI); 100 m (TIRS)

15 m and 30 m
(OLI-2); 100 m

(TIRS-2)

10 m, 20 m and
60 m

15 m, 30 m and
90 m 375 m and 750 m

Radiometric
resolution

12-bit (4096
potential values)

14-bit
(16,384 potential

values)

12-bit (4096
potential values)

8-bit (256) for
VNIR, SWIR; 12-bit

(4096) for TIR

12-bit (4096
potential values)

Spectral bands 11 bands 11 bands 13 bands 14 bands 22 bands
Source [35] [35] [36] [37] [38]

2. Remote Sensing of Ecosystem Functions in Research
2.1. Studies Related to Ecosystem Unctions

This section explores the potential usage of remote sensing for ecosystem functions.
The identification or mapping of ecosystem functions from remote-sensing data has been
achieved more widely in the last decade. From Web of Science, 42 records were found by
using the following combination of keywords: remote sensing and ecosystem function.
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However, 207 were found by using remote sensing and ecosystem service as keywords
(Figure 3). Ecosystem services are included in Figure 3 due to the frequent confusion
between services and functions by authors. These search results are up to date as of 1
July 2022. Only a few studies were published before the year of 2014. After this year, the
number of published studies increased.
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One of the most important studies in this scientific area is the study by Petorelli [4].
According to this study, ecosystem functions have rarely been studied in large areas.
Biodiversity has been monitored by assessing structural and compositional characteristics
but not functional characteristics. Attempts to monitor ecosystem functions have been
conducted in small areas. Most ecosystem assessments do not consider functions due to the
insufficient relevant spatial data. In some cases, ecosystems may respond more rapidly to
environmental change than structural or compositional attributes and could be among the
most sensitive change indicators in global ecosystem monitoring. Another study discussed
emerging concepts in coordinated ecosystem monitoring [18], but practical implementation
is still lacking. The study summarized information on the distribution of ecosystem
functions, relevant indicators that can identify ecosystem functions, and the sensors that
can detect these indicators. The sensor overview was divided into two groups: the studies
already conducted using these sensors and the potential uses of the sensors in the future.
For example, Sentinel-2 is suitable for the estimation of the NDVI (normalized difference
vegetation index), LAI (leaf-area index), FAPAR (fraction of absorbed photosynthetically
active radiation), or land cover. These identifiers are related to ecosystem functions such as
primary productivity, biomass stock, and carbon sequestration. Landsat satellites have the
potential to quantify ecosystem functions linked to surface temperature. Sentinel-1 and
other radars with similar wavelengths have the potential to quantify functions linked to
aboveground biomass and surface moisture [39]. According to Wagner [40], soil moisture is
affected by roughness and the presence of vegetation. This influence negatively affects the
reflectance values. The soil moisture retrieved from bare soil and maize is feasible with an
RMSE of 7%, while other land-cover types were found to have much higher deviations [41].
It is possible to determine soil moisture at small scales, where radar noise is reduced. The
Copernicus Global Land Service generates a SSM (surface-soil moisture) product with a
1-km resolution.
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In another study that addressed similar issues, the authors focused mainly on remote
sensing in agriculture [42]. The study defined variables that are obtainable from remote
sensing. According to Nock [43], variables are defined as properties that vary from the indi-
vidual (plant) to the group (crop) to the community (region). The given characteristics can
be typological (crop type), physical (soil-moisture or plant-surface temperature), chemical
(leaf nitrogen content), biological (plant phenology), structural (leaf structure), or geometric
(plant density). Nock pointed out that none of these properties are directly measurable
by remote sensing. The relationship between radiance and properties must be thoroughly
modeled. The relationships between the different remote-sensing methods and selected
agronomic characteristics were thus investigated. For example, LIDAR data (method) can
be used to determine crop height (feature), optical data can be used to determine the Green
Area Index or crop yield, and radar data can be used to determine soil moisture. The Green
Area Index and crop height can be considered primary variables (directly related to the
process of radiance), whereas crop yield is a secondary variable (indirectly available from
remote sensing). Primary variables, such as NDVI, LAI, land cover, surface temperature,
and vegetation height, are still used to monitor ecosystem functions or services [44,45].
If a secondary variable is investigated, more factors influence the relationship between
the radiance and the variable. Another crucial variable in photosynthesis, hydrological
processes, and canopy radiation transfer but not listed on the ECV is the clumping index
(CI) [46]. The CI is related to LAI and is defined as the ratio of the effective leaf area index
(LAIe) to the leaf-area index (LAI) [47].

The values of the CI vary between 0.3 (clumped canopies) and 1 (randomly distributed
foliage elements). The clumping index for different vegetation types is classified in the
following order: grass, crops and shrubs, and forests (forests are more clumped than
grass) [48]. The index can be obtained by direct, allometric, indirect optical, or proxy
methods. The study by Fang [46] comprehensively describes the methods and usage of
CI. The clumping index can be retrieved from remote sensing by normalized difference
hotspot and the darkspot index (NDHD).

In this study, we inferred the primary variables and established which data-collection
method using remote sensing is most appropriate. Optical remote sensing can be seen as
the most appropriate source and can be used for the widest range of variables. However,
the method chosen depends on the needs of the application (Table 3).

Table 3. The most suitable methods for primary variables.

Primary Variables The Most Suitable Data Usage Example

Plant Density multispectral/hyperspectral
data [49]

GAI/LAI multispectral/hyperspectral
data [50]

Green cover fraction multispectral/hyperspectral
data [51]

Leaf biochemical content multispectral/hyperspectral
data [52]

Leaf orientation Photogrammetry/LIDAR [53]
Height Photogrammetry/LIDAR [54]

FAPAR multispectral/hyperspectral
data [55]

Albedo multispectral/hyperspectral
data [56]

Temperature (soil/vegetation) multispectral/hyperspectral
data [57]

Soil moisture multispectral/hyperspectral/radar
data [58]
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2.2. Identification of Ecosystem Functions

This study focuses mainly on the following indicators of ecosystem functions: biomass
stock, biomass production, carbon sequestration, habitat extent, and habitat quality. The
indicators are related to regulation and provisioning (sometimes called production) func-
tions. Regulation functions mitigate fluctuations of natural and anthropogenic origin. Thus,
the amount of biomass regulates the runoff [59], erosion [60,61], disturbance [62], and
carbon dioxide levels (carbon sequestration occurs) [63], and it regulates temperature [64].
Provisioning functions provide food, materials, or shelter for organisms. In the final table,
the provisioning function is used, but the groups of functions are also very closely related.
They are linked by the green component of vegetation, which ensures the functioning of
ecophysiological processes. The green component is easily detectable by optical sensors.
Based on spectral behavior, habitat types and their quality or health can be distinguished
with sufficient spatial resolution. It is simple to detect plants whose fitness is not optimal
and distinguish them from healthy plants and different plant types, and to accurately
determine the spatial boundaries of a habitat. Biomass production represents the quantity
of biomass production, and it is expressed in kg × m−2 × year−1. Carbon sequestration is
expressed as the existing carbon reserve in three carbon reservoirs [65]. These reservoirs
consist of aboveground, below-ground, and dead biomass. Biomass stock and carbon
sequestration are tightly related functions. During photosynthesis, carbon is sequestered
in plants, where it is accumulated. According to the Czech National Forest Inventory, the
conversion coefficient from aboveground biomass to carbon is 0.49 for deciduous forests
and 0.51 for coniferous forests [66]. Aboveground biomass is most often expressed in t·ha−1.
For quantifying aboveground biomass in a specific habitat, it is necessary to identify the
boundaries of the habitat. The indicators were selected according to a study in which only
expert values were used [67]. Expert values were transferred to habitat groups by means of
the weighted method. In this case, about the focus was son enriching research with studies,
options, algorithms, data, or data scaling in diverse areas of interest.

Optical remote-sensing measures reflected radiation and, thanks to different bands,
provide radiation values in different spectral bands. Each band is specific to the reflectivity
for a certain type of surface. These bands are increasingly entering the modeling of
ecosystem functions as prediction data. Some variables can be determined by vegetation
indices (primary production, biomass stock, or C-factor). However, more accurate results
are obtained through the custom modeling of the selected variable when accurate training
and validation data are available. The modeling is performed using modeling algorithms
such as RF (random forest) [68], SVM (support vector machine) [69], ANN (artificial
neural network) [70], or XGBoost (extreme gradient boosting) [71]. In biomass-estimation
modeling, ANN and RF are widely used.

As mentioned above, ecosystem functions or primary variables are not directly mea-
surable from remote sensing. In many cases, functions are detectable based on their
relationship with vegetation indices. Many studies used vegetation indices, especially
NDVI, to estimate biomass [72–78]. The results were not based directly on the given
vegetation indices, but they were modeled using these indices. Vegetation indices are
input data (predictors) for modeling, along with spectral bands. However, other variables,
such as the digital elevation model [79,80], vegetation fraction [81,82], land cover [33], and
GLCM [80,83], are also used in modeling. These predictors can contribute to improvements
in modeling accuracy. However, their usefulness depends on the functions that are mod-
eled by the predictors. For some functions, other predictors, such as bioclimatic variables,
soil data, or wind speed, are necessary, and, in some cases, they are dispensable and no
longer create improvements. An estimation of primary production using only satellite
data was more accurate than an estimation combined with meteorological data [84,85].
Some studies indicate that the modeling of primary production without using a clumping
index underestimates the results, especially in tropical regions. Thus, global GPP models
without and with a clumping index were compared, and an increase of 5.53 PgC · year−1

was found when CI was used. However, the model is more effective in tropical regions
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(where the LAI is high), with an increase of 4.18 PgC · year−1 between 20◦ N and 20◦ S [86].
The only study demonstrating the opposite effect of the clumping index uses a different
model and approach. In this case, the use of the clumping index resulted in a GPP loss of
12.1 PgC · year−1 [87]. However, unlike the previous study, it did not use multiple canopy
layers with different proportions of sunlit and shaded leaves, but only a single layer divided
into shaded and sunlit leaves. Another study, which investigated the effect of CI on the
canopy radiation transfer and photosynthesis rate, demonstrated that the use of global
CI datasets overestimated the FAPAR values of the sunlit leaves and underestimated the
shaded leaves. Again, a 1 PgC · year−1 increase was found when global GPP was compared
using CI [88].

When modeling biomass estimation, the input data used, the number of ground
measurements, the prediction algorithms, the area of interest, and, thus, the overall accuracy
of the model change. The number of ground validation measurements varied significantly
in the final table. One study had only eight validation measurements and R2 0.58 [89], while
other studies demonstrated the following: twenty-four measurements and R2 0.75 [75],
forty-five measurements and R2 0.84 [90], seventy validation measurements and R2 0.57 [91],
eighty measurements and R2 0.87 [92], and six hundred and sixty-four measurements and
R2 0.41 [79].

The number of validation measurements is certainly important. However, in the
results, it was found that the selected classification algorithm, the investigated area, scale,
satellite data, and the land-cover type are more influential. For example, RF can work
efficiently with large amounts of data. The SVM is less sensitive to noise and the unequal
distribution of training areas for different classes. The ANN can be used for many inputs
and large datasets. When comparing prediction algorithms, linear regression or multi-linear
regression were found to have lower biomass-prediction accuracy [77,91,93,94]. Slightly
better were logarithmic or polynomial regressions [77,94]. In contrast, some of the best
algorithms for biomass prediction were XGBoost and RF [83,91,95,96]. However, both
algorithms are suitable for biomass prediction, with XGBoost and RF achieving 86.9%
and 84.4% accuracy, respectively, in one study [83]. The ANN algorithm also performed
successfully and, similar to the previous two, it is well suited to biomass modeling [79,92].
Some works used data fusion, which is the integration of multiple data sources to obtain
more accurate and higher-quality information. Radar and multispectral data are most
commonly used for fusion. Biomass estimation from Sentinel-1 and Sentinel-2 data is a
typical example [90,95,97–100]. Nevertheless, when radar data are used alone, the results
are usually much worse than when optical data are used alone. One example of this is the
comparison of the accuracy of Sentinel-1 and Sentinel-2 (R2 = 0.34 and 0.82, respectively)
for biomass prediction [90]. There is also potential in radar sensing, but its suitability for
large-scale applications has not yet been confirmed [100].

The validation method is also an important factor. It was found that the choice of
method can increase or decrease the quality of the regression model. When using classical
10-fold cross-validation, the coefficient of determination was R2 = 0.53, whereas, when
using spatial 44-fold cross-validation, R2 = 0.14 [101]. Spatial cross-validation splits pixels
into homogeneous clusters (44 in this case), and a threshold of a particular distance is set.
According to another study, processes and variables in ecology are almost always spatially
autocorrelated, and it is appropriate to use spatial cross-validation in such cases [102]. A
similar view was advocated in another study that added a temporal, hierarchical, and
phylogenetic component to spatial clustering. Predictors that depend on each other are
usually used in modeling. If the data set is dependent, it is almost always appropriate to
use block cross-validation rather than random cross-validation [103].

Another very important parameter is the spatial resolution of the data. The use of a
higher resolution can improve the identification and detection of the spectral behavior of
individuals (trees), whereas lower resolutions detect the behavior of groups of individuals
(forest stand). Lower resolutions cause many scrambled pixels in the transitions between
individual habitats, and their results are more inaccurate. On a small scale, this is not a
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major problem; however, at a large scale, it is an important parameter. The prediction
accuracy can be high (R2 = 0.71) even when using medium-resolution data (TERRA-MODIS).
However, this was observed in a large study area with only one habitat type [94]. If high-
resolution data are used at a smaller scale but with many habitats, the accuracy may be
lower [104]. Thus, when using high-resolution data at larger scales, model accuracies can
range from 0.8 to 0.9 R2 [77,82,83,92].

The indicators and primary variables that were selected based on the functions men-
tioned above were assigned to classes according to the classification presented by Pet-
torelli [4]. Two classes were created:

• The provision of food and materials (materials that can be converted to provide energy
and nutrition or for purposes other than food);

• Supporting habitats (suitable living space for individual species).

For each function, identifiers were assigned, followed by the publications in which the
identifiers were mentioned. The next table (Table 4) presents an overview of the methods
used in ecosystem-function mapping from remote-sensing data. The table contains several
attributes. The ecosystem-function attributes and indicators are listed according to the
Pettorelli classification [4]. In addition, the satellite (carrier), the study used, the details,
and the formula are included.
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Table 4. Overview of methods for ecosystem-function mapping from remote-sensing data.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

Provisioning
Provision of Food

and
Materials

Biomass stock

GeoEye-1,
Pleiades-1A [89]

Log-biomass estimation in Colombia
(tropical climate). The best model in

this study used RVI index.

LogAGB [t × ha−2] =
−3.208 × RVI + 2.185

Landsat 5,7, ALOS
PALSAR,
LIDAR

[104]
Evaluation of methods used in

forest-biomass estimation in Poland,
Sweden, Mexico, Africa, and Indonesia.

TERRA-MODIS [96]

Corn-biomass estimation in China
(temperate climate). The best algorithm

for biomass estimation was XGBoost
(R2 = 0.78), followed by RF (R2 = 0.77).
The SVM and ANN were less accurate.

Sentinel-1,
Sentinel-2 [95]

Forest-aboveground-biomass modeling
using random forest in Poland
(temperate climate). The model
underestimated larger values of

biomass (greater than 250 t × ha−2) and
overestimated small values of biomass

(lesser than 100 t × ha−2)

Landsat, SPOT,
RapidEye [105]

Biomass estimation in eastern Ontario,
Canada (temperate climate). Maize

biomass correlated best with SRe and
soybean biomass correlated best with

MTVI2.

AGBmaize[g × m−2] =
8.247 × SRe − 360.98

AGBsoybean[g × m−2] =
17.26 × MTVI2 − 82.339

Sentinel-2 [93]

Biomass estimation in grasslands in
Brazil (subtropical

climate). The best results were obtained
with NDREI and EVI.

AGB[g × m−2] = 6.14 +
(0.86 × EVI) + (3.94 ×

NDREI)
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Table 4. Cont.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

TERRA–
MODIS [94]

Biomass estimation in grasslands in
China (semi-arid continental climate).
The best results were obtained with

MNDVI.

AGB[g × m−2] = 51.747
× ln(MNDVI) + 155.87

Sentinel-2 [83]

Biomass estimation in grasslands in
China (subtropical climate). The

XGBoost models performed better than
random forest. Inputs: Sentinel bands,
vegetation indices, GLCM (7 × 7 field)

Sentinel-2,
Landsat [106]

Comparison between Landsat and
Sentinel-2 and bi-temporal (2015, 2019)
and uni-temporal (2019) imagery for
boreal forest (88% of Picea abies) in

Norway (temperate climate). The best
results were achieved by Sentinel-2

imagery.

AGB[t × ha−2] =
−185.93 − (485.72 ×

B4/B7) + (301 × B4/B11)

Sentinel-2 [81]

Biomass modeling in coniferous forest
in Ukraine (temperate climate). The
best model used NDVI, FCOVER,

NDVI, and TVI.

AGB[t × ha−2] = 716.261
× NDVI × TVI−1.644

QuickBird [75]

Forest-biomass estimation for Quercus
rotundifolia in Portugal (Mediterranean
climate). The best models used NDVI

and SR.

AGB[t × ha−2] =
−37.026 + 223.808 ×

NDVI
AGB[t × ha−2] =

−47.108 + 42.582 × SR

Sentinel-2,
Landsat 8 [77]

Biomass modeling in forests in Pakistan
(humid subtropical climate). The best

model used NDVI.

AGB[t × ha−2] = (2099.9
× NDVI2 − 1635.6 ×

NDVI) + 331.04
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Table 4. Cont.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

Sentinel-2,
Sentinel-1 [90]

Forest-biomass modeling in Indonesia
(tropical climate). The best model used

VH polarization (Sentinel-1), NDI45,
and B6 (Sentinel-2).

AGB[t × ha−2] =
−418.95 +

(542.23 × NDI45) +
(248.48 × B6) − (6.56 ×

VH)

Sentinel-2,
Landsat 8,
Gaofen-2

[91]

Forest-biomass modeling in China
(temperate climate). The best accuracy
was modeled using the Gaofen-2 data
and random forest algorithm (59.43%).
Sentinel-2 had slightly higher accuracy

than Landsat-8. Random forest
algorithm performed better than

multiple linear regression with various
remote-sensing data.

Landsat, ALOS PALSAR [79]

Forest-biomass modeling in China
(subtropical climate). Landsat provided
a more accurate estimation of biomass

than ALOS PALSAR. The best
algorithm was ANN, whereas RF and

kNN were less accurate.

Sentinel-2 [92]

Forest-biomass modeling in Western
Iran (subtropic climate). The best

algorithm to predict biomass was the
multi-layer-perceptron artificial neural
network (MLPNN), with a coefficient of
determination of 0.87. The NDVI and

IPVI had the strongest correlation with
biomass.
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Table 4. Cont.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

Sentinel-2,
Landsat 8 [78]

Grass-biomass modeling in Kruger
National Park in South Africa

(semi-arid subtropical climate). As
biomass predictors, Landsat 8 and

Sentinel-2 bands were outperformed by
NDVI. The accuracy of the NDVI

predictor for 2018 was 0.74.

Sentinel-1,
Sentinel-2 [82]

Biomass estimation in Mediterranean
shrublands (subtropic climate).

Sentinel-2 had higher accuracy (0,72)
than Sentinel-1 (less than 0.6). The

fusion model improved accuracy to
0.86. In general, Sentinel-2 showed
higher accuracy in shrub-biomass

estimation than Sentinel-1, but
Sentinel-1 had the potential to indicate

vegetation structure.

AGB[kg × m−2] = (0.148
+ 1.735 × NDVI) × sqrt

(1 + (2.5σHV-1.2) ×
FVC/0.5)

SPOT-5 [76]

Mangrove-forest-biomass estimation in
Malaysia (tropical climate). The best
model was achieved by using NDVI

and GEMI-NDVI.

AGB[t × ha−2] = 793.676
× NDVI/
574.770 ×

GEMI-NDVI-574.219

Sentinel-2 [80]
Forest–biomass modeling using

Sentinel-2 bands and vegetation indices
(subtropical monsoon climate).

Primary production Landsat 5,7 [107]

Gross primary production of maize and
soybean in Nebraska, USA (temperate
climate). The best model for maize used
green WDRVI, and the best model for

soybean used green NDVI.

GPPmaize[gC × m−2 ×
day−1] =

2.63 × (Green WDRVI ×
PAR) − 8.59

GPPsoybean[gC × m−2 ×
day−1] =

2.86 × (Green NDVI ×
PAR) − 11.9
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Table 4. Cont.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

TERRA–
MODIS,

ENVISAT–
MERIS

[84]

Gross primary production in Alpine
grasslands in Italy (sub-alpine

temperate climate). The MTCI was the
best index for estimating GPP (Model 2,
direct linear relationship between GPP

and MTCI and PAR).

GPP[gC × m−2 ×
day−1] = a × (MTCI ×

PAR) + b

TERRA–
MODIS [108]

Gross primary production using
vegetation-photosynthesis model and

MODIS GPP (tropical climate).
Predictions using vegetation indices
performed well compared with GPP

estimated by eddy covariance.

GPP[gC × m−2 ×
day−1] = ε × α × EVI ×

PAR

TERRA–
MODIS [85]

Gross-primary-production modeling in
Australia (tropical climate). The best

model used EVI.

GPP[gC × m−2 ×
day−1] =

(1.17 × (EVIMOD09−0.08)
+ 0.03) × PARTOA

TERRA–
MODIS;

Landsat 5,7
[109] Gross primary production of maize in

China (temperate climate).

GPP = ε × APAR = ε ×
IPAR × FPAR

IPAR = SWRad − 0.45
FPAR = (NDVI × 1.24) −

0.168

Clumping index
TERRA–
MODIS [48]

Estimation of global CI from MODIS
BRDF data at 500-m resolution. The

model was based on the NDHD index
and compared with 33 measurements

distributed globally. The resulting
accuracy was R2 = 0.38.
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Table 4. Cont.

Type Ecosystem Function Indicator Satellite Source Details Formula (if Available)

TERRA–
MODIS, POLDER [110]

Determination of global CI from
MODIS and POLDER data using

NDHD. In total, 72
ground-measurement data were used,
and the resulting model accuracy was

R2 = 0.8.

Supporting Habitats

Habitat
extent

Various sources [111]
Review of habitat mapping depending

on the resolution of remote-sensing
data.

Various sources [112]
Review of habitat mapping depended

on the resolution of remote-sensing
data and usage purpose.

Landsat [113]
Estimation of tree-canopy cover (TCC)

in Portuguese oak woodlands in
Portugal (Mediterranean climate).

TCC = 63.626 − 447.22 ×
B5 + 623.837 × B4

−714.626 × B3 + 281.354
× B7

Sentinel-2, Landsat [114]
Delineation of habitat types and habitat

dynamics in north-west Germany
(temperate climate).

Habitat
quality

ASTER [115]

Delineation of waterhole bodies (SBR
index) and mapping of their condition

in Ethiopia and Kenya (tropical
climates).

SBR =
ASTERBand3/ASTERBand2

AVHRR,
MODIS [116] Habitat-condition evaluation in

Australia (tropical, subtropical climate).

Sentinel-2 [117] Forest-health assessment in the Czech
Republic (temperate climate).

Sentinel-2 [118]
Potential ecosystem functioning of

forests in Dřevnice basin in the Czech
Republic (temperate climate).
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3. Discussion and Conclusions

The importance of ecosystem functions and services has increased in research and
everyday life in the last few years. The realization that ecosystem services and functions
need to be studied has led many researchers to work on the problem. However, it is still
necessary to work on refining and improving the results of ecosystem-function monitoring.
With the arrival of a large number of new satellites and new types of sensor, there are more
opportunities to monitor or map ecosystem functions. Different methods are emerging to
identify or quantify ecosystem functions using many satellites, different areas of interest,
and different ground data. Some algorithms for ecosystem-function determination are
not valid for other areas of interest or different sensor types. In our opinion, there is a
lack of freely available data with very high resolutions. There are no data available that
fulfil the following criteria: very high spatial resolution, near-infrared bands, thermal
infrared bands, weekly temporal resolution, and free data availability. Currently, such
data may be difficult to obtain, but the use of these data would be a major advance in the
monitoring of ecosystem services in future years. Data from Sentinel and Landsat satellites
have high potential, but there are limitations in their spatial resolution. In a comparison of
freely available optical data between Sentinel-2 and Landsat 9, Sentinel had a better spatial
resolution (10, 20, and 60 m) and more near-infrared bands (B5, B6, B7, B8, B8a, and B9).
Landsat therefore benefits from the presence of thermal infrared (Bands 10 and 11 with
100 m) and panchromatic bands (15 m). area further image type is radar images, which are
mainly investigated in relation to the moisture content of the surface. However, there are
also limitations regarding spatial resolution due to the noise caused by surface roughness
and the volume of the vegetation. Therefore, they are sometimes used together with optical
data as supplementary data.

Satellite data enable further processes for obtaining basic qualitative and quantitative
values. With good temporal resolution, they describe the current value of attributes reflect-
ing the spatiotemporal variability of the vegetation-growth phase and fitness. However, the
time resolution depends on the cloud cover. Sensors on satellites such as Sentinel-2 (MSI)
and Landsat 9 (OLI-2; TIRS-2) offer undeniable advantages in terms of freely available
data. Despite their lower spatial resolution, these are still high-quality data sources, which
represent progress in the field. Sensors produce high-spatial-resolution data. It is planned
to send new Sentinel and Landsat satellites into orbit. The new satellites will feature new
sensors, and improved resolution is expected. The new Landsat Next is due to be launched
around 2030 and should offer 25 spectral bands, a significant improvement in spectral
resolution [35].

In ecosystem services, there is no uniform methodology to solve the problem regarding
the partition and classification of ecosystem functions. Many authors attempted to define
the boundaries between services and functions. However, the results were ambiguous,
and the boundary was identified as uncertain, although some authors defined functions
and services clearly [2–9]. This study’s classification of ecosystem functions is based on
the Pettorelli classification [4], which is, in my opinion, the best classification of ecosystem
functions determined from remote sensing. The review (Table 4) refers to typical studies on
the quantification or identification of ecosystem functions that are vegetation-related. The
list includes studies with a wide range of data used, areas of interest, vegetation indices,
modeling approaches, other supporting data, and ground validation data. The aim was to
show the variety of the procedures, the resulting algorithms, the data selection, and the
scale of the processing. The findings of the review are as follows:

• Optical data are useful independently for estimating aboveground biomass from satel-
lite data. Radar data cannot yet be used independently for estimating aboveground
biomass and serve as supplementary data for optical data [79,90,95,97,117];

• Sentinel-2 performs better than Landsat in mapping primary variables and attributes
associated with biomass in forest stands [77,91,106,119–121];

• Spatial resolution is crucial for biomass estimation [56,76,91,95];
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• The texture and extent of land-cover classes increase the accuracy of biomass estima-
tion. They are useful only as supplementary data [79,81,83];

• In general, very-high-resolution satellite data are highly useful for habitat map-
ping [111,112];

• The best modeling algorithms are XG-Boost, random forest, and artificial neural
network [83,91,92,95,96].

Previous studies mostly agree that the best data for habitat mapping are those very
high in spatial resolution and containing at least the NIR band. However, when vegetation
indices based on visible radiation and indices based on NIR and SWIR radiation were com-
pared, the results diverged. Some studies reported that indices based on visible radiation
were more strongly correlated with biomass than indices based on NIR [75,105]. Another
study reported that indices based on visible radiation and NIR were equally important [89].
In contrast, one study reported that the Red Edge and NIR bands were the most impor-
tant [93]. One study reported that currently, remote-sensing data (optical and radar) are
not sufficient to determine biomass above 100 to 150 t × ha−1 in forest stands [104]. For
primary production, one study reported that ground measurements offer far more accurate
results than satellite data [109]. However, it should be mentioned that this study was based
on satellite data at a resolution of 100 m. The usage of scale greatly affects the final accuracy
of the model, regardless of the data used. As mentioned above, parameters such as the
spatial resolution, modeling algorithm, scale, area characteristics, and number and quality
of ground measurements always affect the accuracy of the prediction. Another parameter
that should receive more attention is the validation method, which also affects the qual-
ity of the model. However, the validation method is dependent on the aforementioned
parameters. If the spatial resolution or the number of training and validation points is
poor, the result is poor in terms of both random and spatial cross-validation. If we focus on
the vegetation indices used in the monitoring of ecosystem functions, the most frequently
used index is the NDVI. The NDVI estimates of biomass or primary production were the
most accurate in six cases. The SR and EVI were also frequently used indices. In the final
table, thirteen papers focused on vegetation in temperate, nine in subtropical, and seven in
tropical climates.

In conclusion, the use of remote-sensing data is a promising way to obtain information
on ecosystem functions. The use of these up-to-date, non-destructible data is a very fast
method that can be applied over a large area. Ecosystem functions depend on many factors
such as the slope, aspect, precipitation, temperature and other bioclimate variables, soil,
wind speed, and ecological variables. However, this study is concerned with determining
the indicators of ecosystem functions from remote-sensing data and whether they are ap-
plied independently. Some applications still need supplementary meteorological, climatic,
or hydrological data. A selection of studies demonstrated that functions can be identified,
but there is still a need for data from ground measurements. However, only a small amount
of ground data is needed (depending on the size and type of the area) compared to mea-
suring the whole area by using ground-based methods. Complex ground measurements
are very expensive and time-consuming. If an entire area were to be measured manually,
the time cost would be enormous. Work is still needed to improve the identification and
quantification of ecosystem functions, but remote sensing has significant potential.
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Abbreviations

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ANN Artificial neural network
CI Clumping index
ESA European Space Agency
EVI Enhanced Vegetation Index
FCOVER Fraction of Green Vegetation Cover
GAI Green-Area Index
GLCM Gray-Level Co-Occurrence Matrix
GPP Gross primary production
IPVI Infrared percentage vegetation index
LAI Leaf area index
MNDVI Modified Normalized Differences Vegetation Index
MODIS Moderate-Resolution-Imaging Spectroradiometer
MSI Multispectral Instrument
MTCI MERIS Terrestrial Chlorophyll Index
MTVI2 Modified Triangular Vegetation Index
NASA National Aeronautics and Space Administration
NDHD Normalized difference hotspot and darkspot
NDREI Normalized Difference Red-Edge Index
NPP Net primary production
OLI Operational Land Imager
PAR Photosynthetically Active Radiation
RF Random forest
RVI Ratio Vegetation Index
SBR Simple-Band-Ratio Index
SR Simple Ratio Index
SRe Simple Ratio Red Edge Index
SVM Support vector machine
TCC Tree canopy cover
TIRS Thermal Infrared Sensor
TVI Transformed Vegetation Index
USGS United States Geological Survey
WDRVI Wide-Dynamic-Range Vegetation Index
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