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Abstract: Binarized Neural Network (BNN) is a quantized Convolutional Neural Network (CNN),
reducing the precision of network parameters for a much smaller model size. In BNNs, the Batch
Normalisation (BN) layer is essential. When running BN on edge devices, floating point instructions
take up a significant number of cycles to perform. This work leverages the fixed nature of a model
during inference, to reduce the full-precision memory footprint by half. This was achieved by pre-
computing the BN parameters prior to quantization. The proposed BNN was validated through
modeling the network on the MNIST dataset. Compared to the traditional method of computation,
the proposed BNN reduced the memory utilization by 63% at 860-bytes without any significant
impact on accuracy. By pre-computing portions of the BN layer, the number of cycles required to
compute is reduced to two cycles on an edge device.

Keywords: batch normalisation; binarized neural networks; convolutional neural networks; inference;
edge devices

1. Introduction

It is becoming increasingly common to find Neural Networks on edge or mobile
devices. Two examples of these are objection detection and natural language processing.
Quantized Neural Networks are increasingly used as a solution to this problem, and BNNs
are one of these solutions [1].

While BNNs have a reduced memory footprint compared to an equivalent CNN,
full-precision values are still necessary during other operations within the network. This
presents an opportunity to reduce memory requirements further. It is especially important
since Static Random-Access Memory (SRAM) scaling on newer process nodes has been
almost negligible at 5.5% [2,3] compared to logic transistors at 67%. There are a few methods
to accomplish this, the simplest being a simple reduction in the precision of the number
representation (i.e., 32-bit to 16-bit) post-training, incurring a minor penalty in accuracy.

In this paper, the solution presented reduces memory utilisation and computational
complexity on edge devices. A linear transformation is applied to a set of layers, which
allows for the aspects of a BNN to be pre-computed on a high-performance device prior to
quantization and export. This reduces the loss in accuracy from quantization and simplifies
the instructions necessary, reducing the computational load.

1.1. Binarized Neural Networks

A BNN is a reduced precision CNN, boasting a smaller overall model size and a faster
classification at a minimal cost to accuracy. Its weights have been reduced to two differential
states, +1 and −1 in real terms, transformed to 1 and 0 once encoded. However, not all
layers must be fully binarized to qualify as a BNN. For example, binarizing a network’s
input would approximate away the granular information—hampering the ability of the
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network to train on and discern finer features. In addition, Larq [4] found that accuracy
can be improved by not binarizing the final layer.

A BNN consists of Binarized Convolution, Fully-Connected (FC), Pooling, and BN
layers [5]. It uses the Sign Function to binarize output feature maps for the next Convolu-
tion/FC layer, represented in Equation (2) [6]. In a traditional CNN, a Multiply-Accumulate
(MAC) operation can be represented as Equation (1). In a BNN, it is replaced with an Exclu-
sive NOR Gate (XNOR), and Popcount, is an instruction that returns the number of 1s in a
group of bits. With the total number of bits and 1s, an accumulated value can be found in
Figure 1. It is important to note that the input layer does not binarize the inputs and only
the weights, preserving the features of the input. However, as [7] notes, the input layer is
generally smaller than the subsequent layers.

cm =
N

∑
n=1

xn × wm, n + bm (1)

where n represents the number of input channels, m represents the number of output
channels, c is the output of the Convolution layer, x is the input, w is the weight, b is the
bias of the channel.

xb = Sign(x) =

{
+1 if x ≥ 0,
−1 if otherwise,

(2)

where xb is the binarized weight/activation and x is the real-value weight/activation.

Figure 1. Binarized MAC Operation. (a) Use of an XNOR to replace a full-precision multiplication
unit (b) Use of Popcount in Binarized Accumulation.

1.2. Batch Normalisation

BN [8] is necessary for a BNN, providing stability to the network from its extreme
quantization. However, it requires full-precision values and different mathematical opera-
tions to compute even during inference. Requiring multiple full-precision hardware logic
units to be implemented, which take up a larger area. This makes BN a prime target to
reduce hardware complexity and speed up overall inference.

During inference, BN can be split into two constituent parts; Normalise, and another
operation known as ‘Scale and Shift’. Normalise, represented in Equation (3), inherits
its statistical parameters from the training set. These are the training set’s mean (µ) and
variance (γ2). During training, these values are updated to maintain an output feature map
with a µ close to 1 and a σ2 close to 0.

Scale and Shift, represented in Equation (4), learn its parameters through Backpropa-
gation. These are the scaling factor (γ) and the offset factor (β). Both Equations (3) and (4)
combine to form the BN inference Equation (5) [8]. Equation (6) is a recent update from
TensorFlow [9] which changed moving variance (σ2) to moving standard deviation (σ)
giving the learnt parameters greater weight over the inherited parameters.
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V′i =
Vi − µ√
σ2 + ε

(3)

Vo = γ×V′i + β (4)

Vo = γ×
V′i − µ√

σ2 + ε
+ β (5)

Vo = γ×
V′i − µ√

σ + ε
+ β (6)

where µ is the moving average, σ2 is the moving variance, σ is the moving standard
deviation, γ and β are the learned scale and shift parameters, Vi is the input to the BN
layer, V′i is the intermediate output from the normalise operation, Vo is the output of the
BN layer.

While CNNs are computationally demanding, BN is essential to a BNN [10]. Different
mathematical operators are required to compute BN during inference, and implementing
additional logic units affects chip area utilisation and has additional static power dissipation.
These may become relatively expensive as the additional full-precision logic units cannot
be used by the binarized layers, unlike a CNN.

1.3. Implementing Batch Normalisation on Hardware

Beyond quantizing Full-Precision parameters, previously adopted measures to reduce
hardware complexity and memory consumption were as follows; on Intel’s [11] accelera-
tor, merged parameters across layers to pre-compute new parameters reducing memory
requirements and compute complexity. In this work, the same MAC Processing Element
(PE) is reused and can be seen in Equations (7) and (8). However, this only accounts for the
Scale and Shift portion (Equation (4)) of the BN process and not the more computationally
complex normalise portion (Equation (3)).

V′o = Vi × w + (b− µ) (7)

f (Vo) = f (V′o × γ + β) (8)

In Cornell’s [12] accelerator, a linear transformation is used to reduce pre-compute
certain elements of the BN process. A linear transformation is applied to the inference BN
equation to reduce the computational burden on the hardware accelerator. Two constants k
(Equation (10)) and h (Equation (11)) are used to simplify the computation process. This
results in the Linear Equation (9). Unlike [11], the simplification adopted exists solely
within the BN layer. This means that the bias component is dropped, causing a 1% increase
in the test error rate. While seemingly insignificant, this is important since BNNs generally
perform slightly worse when compared to similar CNNs [6].

y = kx + h (9)

k =
k√

σ2 + ε
(10)

h = β− µγ√
σ2 + ε

(11)

where k and h are the arbitrary constants defined in Equations (10) and (11).
Unlike the previous two works discussed, ref. [13] proposes an accelerator that fo-

cuses on BN. This work has two contributions; the first is a reduced complexity BN layer
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named LightNorm. Furthermore, the second is a hardware accelerator that implements
the LightNorm layer. The accelerator consists of hardware for both Forward Propagation
and Backward Propagation, accelerating both Training and Inference. This work uses ap-
proximated arithmetic and tensor grouping with the same exponents to reduce the number
of computations required. While the contributions from this work are significant, the use
of Floating Point (FLP) representation limits adoption, especially on low-complexity edge
devices.

To evaluate these, a reference point is necessary. In addition to pre-existing work
from [6,11–15] used as a basis, training is performed with the aid of TensorFlow [16] and a
BNN extension, Larq [4]. Network weights and parameters are then exported for further
processing using the methodology elaborated in the subsequent section.

1.4. Resource-Constrained Edge Devices

Improving performance on edge devices requires tailoring implementations around
constrained resources. With the expected SRAM scaling issues going forward, memory
operations are a key area to tackle. As training is performed on more capable general-
purpose hardware, optimising for edge devices focuses primarily on inference.

1.4.1. TensorFlow Lite

TensorFlow Lite [17] is a solution that uses FlatBuffers [18] and custom operators
to reduce latency, memory, and power usage. It has a derivative focused primarily on
Microcontrollers, TensorFlow Lite Micro [19], with support for Cortex Microcontrollers
with CMSIS-NN [20]. It allows model conversion through the TensorFlow Lite Converter.

1.4.2. Larq Compute Engine

Larq Compute Engine [21] is a similar solution to TensorFlow Lite that focuses primar-
ily on BNNs. It supports conversion from Larq-based BNN models to a .tflite-based output.

Amongst the various strategies employed, operation fusing is very useful. In Tensor-
Flow Lite, layers are fused, in the order Conv2D, BatchNorm, and ReLU. By fusing multiple
layers, the singular resultant operation can be computed faster with fewer parameters.
Furthermore, in Larq Compute Engine, layer fusing is also supported. However, due to
the nature of a BNN, these are in a different order; namely, QuantConv2D, ReLU, and
BatchNorm.

There are other strategies involved such as Integer-Arithmetic-Only Inference [22],
Quantization, Pruning, and Clustering. When combined together, these are an essential
package for running inference on edge devices.

1.5. Further Discussion

The next section will discuss a proposal to reduce hardware complexity requirements.
These can be split into two general methods:

1. Parameter Quantisation: Reducing the precision of real-valued parameters comes at a
minor cost to accuracy but can significantly reduce memory usage.

2. Layer Grouping and Computation Re-ordering: Equations can be simplified by group-
ing layers and re-ordering computations to use fewer logic units. This can be per-
formed post-training and prior to loading the parameters on an edge device. Since
equations are simplified, the total number of parameters can be reduced, reducing
memory usage.

The final section discusses the performance impact of these methods. Both will be
evaluated in terms of accuracy loss, memory, and logical operation reduction.

2. Specification and Proposal

This section discusses the Design Methodology and Proposal. In-depth specifications
on the bit representation and the reference network are also presented in this section.
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2.1. Methodology
2.1.1. Processing Parameters

Figure 2 details the general process that was taken from the initial stages of training to
specific steps taken before exporting the weights and parameters. Dataset pre-processing is
a process that normalises the dataset for use within the network. In the case of a BNN, the
value range is normalised between −1 and +1 for the best performance.

Figure 2. Model processing flow: input dataset from MNIST [23].

Model training is an iterative process that consists of the training, verification, and tun-
ing of the network based on the results. Training convergence and the target model specifica-
tions will eventually be achieved by tuning the hyperparameters and the learning optimisers.

To implement the proposal, verification of the correctness of the output is necessary.
To do this, layer outputs are extracted from the trained model with the same test input. This
is then compared against the modified parameters once computed. Essentially, the model
will be running on TensorFlow [16] and Larq [4] as a 32-bit Floating-Point (FLP) benchmark.

2.1.2. Grouped Layer Operations

Layers are grouped together and treated as a single entity to allow for the re-arrangement
of element-wise mathematical operations. This allows for the simplification of the math-
ematical operations during full-precision computation. This means that the number of
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different logical processing units can be reduced on hardware. There is also an opportunity
to reduce the number of exported parameters saving on total memory utilisation.

Figure 3 highlights the three different grouped layers. The first and second groups
are the Full-Precision and Binarized Convolution groups, consisting of the Convolution
layer, Max-Pooling, and BN. Max-pooling is not used in all cases, and removing it would
be inconsequential to the output in the proposed changes. The third group consists of a
Binarized Dense layer and BN.

The Full-Precision Convolution group demonstrates that the proposed method applies
not only to a BNN but also to a CNN. While the binarized groups are specifically for use
within a BNN, the proposed method applies for dense layers in a CNN similarly to the
relationship between the first and second group.

Figure 3. The three different grouped layers. Computations within the same group are re-arranged.

Grouping these layers together allows operations from other layers within the same
group to be moved. Once operations have been shifted between layers, it will become easier
to simplify the process. By employing this strategy, parts of a layer can also be computed
on a high-performance machine reducing the computational burden on an edge device.
Section 2.3.2 will cover this in greater detail.

2.2. Reference Network
Pico MNIST BinaryNet

This network is a stripped-down model of Larq’s [4] BinaryNet that uses the MNIST [24]
dataset. The training was performed over 500 epochs. An accuracy of 96.11% was achieved
during post-training inference. The convolution layer window uses a 3× 3 window with a
stride of 1. Max-pooling is performed with a 2× 2 window with a stride of 2× 2. Table 1 is a
representation of all layers within the network with the number of weights and parameters.
BN parameters take up 39.5% of the total memory footprint.

A second copy of the same network is used without bias and the scaling factor (γ).
The training was performed over 500 epochs. An accuracy of 94.58% is achieved during
inference. It is approximately 25% smaller in size without these two parameters. This
would serve as a comparative basis for the same network size in the latter section.
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Table 1. Reference Network using MNIST.

Layer Type Output Size Weight (1-Bit) Parameter (32-Bit) Memory (kB)

Convolution 26× 26× 8 72 8 0.04
Max-pooling 13× 13× 8 0 0 0
BatchNorm 13× 13× 8 0 32 0.12
Convolution 11× 11× 16 1152 16 0.2
Max-pooling 5× 5× 16 0 0 0
BatchNorm 5× 5× 16 0 64 0.24

Flatten 1× 400 0 0 0
Dense 1× 10 4000 10 0.53

BatchNorm 1× 10 0 40 0.16
Softmax 1× 10 0 0 0

Total 5224 170 1.29

In this subsection, it can be seen that smaller networks have a greater proportion of
memory consumed by the BN parameters. Reducing these will allow networks to run on
resource-constrained devices. Hardware designs using these networks are also much more
flexible in lowering overall power consumption or maintaining a low inference latency.

2.3. Proposed Quantization Method

The methods used for operation simplification are further quantizing parameters or
re-arranging operations to reduce the necessary logic units. The former is much simpler
to implement, and discussions on the topic will be light. The latter will take up a larger
proportion of the discussion. These are completed prior to exporting the parameters to
edge devices. Figure 4 demonstrates the proposed process flow of exporting parameters to
edge devices.

Figure 4. (a) Typical Post Training Quantization. (b) Proposed Quantization Method.

2.3.1. Parameter Quantization

By default, Keras [25] trains and stores a network’s parameters in 32-Bit FLP. However,
since Full-Precision values in a BNN are much fewer, Fixed-Point (FiP) representation is
used. Both are represented differently, with the FLP data format using IEEE-754 [26] and
FiP format used for the proposed method. (FiP) values can also be computed with only an
integer arithmetic compute unit.

The FLP data format is expressed as {S,E,M} where S represents the sign-bit, E repre-
sents the exponent bits, and M represents the mantissa bits.

The FiP data format is expressed as {S,I,F} where S represents the sign-bit, I represents
the integer bits, and F represents the fractional bits. Figure 5 is an example of a 16-Bit FiP
Representation that uses the {1,7,8} configuration. Fixed point values are exported with the
aid of [27].
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Figure 5. 16-Bit FiP representation.

In the latter portion of the work, different bit widths are used to find the relationship
between accuracy differences and memory usage. This can be useful when designing
custom configuration and hardware for running BNNs. This is performed post-training
before quantising parameters to reduce the quantization effect.

2.3.2. Reduction of Arithmetic Operations

The method proposed in this section reduces the five parameters (b, µ, σ, γ, β) in either
convolution group to three. This is possible by merging several parameters into two new
constants, j and k.

Equation (12) is comprised of two parameters from two layers, bias from Equation (1)
and µ from Equation (3). The resulting constant is computed during convolution and can
be represented as Equation (14). The BN layer traditionally requires multiple mathematical
operators and would be simplified to a linear equation with fewer parameters. This is
performed with constant k from Equation (13), resulting in Equation (15).

j = b− µ (12)

k = γ× 1√
σ + ε

(13)

cm =
N

∑
n=1

xn × wn + j (14)

z = c× k + β (15)

where x is the input, w is the weight, b is the bias of the channel, µ is the moving average,
σ is the moving standard deviation, γ, and β are the learned BN scale and shift parameters,
j, and k are the arbitrary constants defined in Equations (12) and (13), where n represents
the number of input channels, m represents the number of output channels, c is the output
of the convolution/max-pooling layer, z is the output of the BN layer.

Figure 6 demonstrates the proposed compute process compared to the traditional
compute flow if implemented on Hardware. There are several advantages to reducing the
number of element-wise mathematical operators, which are as follows:

1. The process uses 32-Bit FLP to compute a part of the equation prior to being exported.
This reduces the quantization effect from the exported parameters.

2. By going from five parameters to three, the memory requirements are lowered. This
reduces the amount of memory needed on-chip.

3. Additional arithmetic units to compute division or square root operators are no longer
needed. These take up a greater area and more clock cycles to compute fully.

4. The use of a linear equation means that the logic block can be re-used in a CNN for a
MAC operation. Figure 6c demonstrates a generic MAC PE unit.
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Figure 6. Hardware-Implemented Batch Normalisation. (a) Compute Flow for the Proposed Linear
Transformation (b) Compute Flow on a Traditional Batch Normalisation. σ and ε is computed
together. (c) A generic MAC PE that runs the transformed equation.

2.4. Proposal Discussion

The proposed quantization method is performed before quantization. This would
provide benefits with no real downsides since the model’s weights and parameters are
fixed during inference.

In theory, going from five full-precision parameters to three reduces the memory
footprint of a BN layer by 40%. This also extends to the hardware; reducing the number of
arithmetic operations from five to three reduces the necessary instructions allowing simpler
hardware to run BN.

In the case of Application Specific Integrated Circuit (ASIC), a simpler hardware
design would require far less area and potential savings in other areas. Since the pro-
posed method is a linear equation, the same MAC PE in Figure 6c can be reused for
convolution operations.

3. Results

This section examines the relationship between accuracy and memory consumption
on the network. The aim is to attain as high an accuracy as possible with the smallest
possible memory footprint. There are several limitations in comparing the efficacy of the
proposed changes, which arise from the limitations of a BNN.

In this work, a relatively small dataset, MNIST, has been used as a test vehicle to
validate the proposed method to accommodate the limited computation resources. Table 2
presents different network configurations with their corresponding parameter precision,
data format, and memory utilisation. All configurations are tested with 10,000 test samples.
Pico(A) is the network found in Table 1 with five parameters reduced to three. Furthermore,
Pico(B) is a derivative trained without bias and γ with the same memory footprint after
Pico(A) has gone through a linear transformation.
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Table 2. Network format and size using the MNIST dataset.

Network Name Remarks Parameter
Precision Data Format 3 Memory (kB)

Pico(A) 1 BNN, with bias and γ

32 FLP {1,8,23} 1.29
32 FiP 2 {1,8,23} 1.03
16 FiP {1,7,8} 0.84
14 FiP {1,7,6} 0.81

12 FiP (A) {1,7,4} 0.79
10 FiP {1,5,4} 0.76

Pico(B) 1 BNN, no bias or γ

32 FLP {1,8,23} 1.03
32 FiP 2 {1,8,23} 1.03
16 FiP {1,7,8} 0.84
14 FiP {1,7,6} 0.81

12 FiP (A) {1,7,4} 0.79
12 FiP (B) {1,5,6} 0.76

[28] CNN, Pooling
Estimation 32 FiP - 5.35

[29] CNN, Reduced
Params, No bias 16 FiP - 9.13

[30] Hybrid
XNOR-CNN 1b, 2b, 32 FLP - 220.1

[31]
CNN, Hardware
and Software
Co-Process

16 FiP {1,7,8} 86.8
12 FiP {1,5,6} 65.1

1 Convolution Precision at 1-Bit. 2 The Proposed Method (FiP) model include the operation reduction while FLP
operations do not. 3 FiP and FLP Data Formats are represented differently, refer to Section 2.3.1 for more details.

It is important to examine the impact of precomputing on the BN layer, with and
without quantization. In Pico(A), 32-Bit FLP refers to the configuration used in Tensor-
Flow/Larq. Furthermore, 32-Bit FiP refers to the precomputed parameters being used
without quantization. Pico(B)’s 32-Bit FLP is provided as an additional point of comparison
with the same memory footprint.

To understand the relationship between the selected bit significance and its impact on
accuracy, inference was run with the parameters quantized to different configurations. Two
main factors impact the Pico Networks, the size of the integer bits representation and the
fractional bits precision.

From Table 3, the integer bits representation needs at least 7 bits of precision to fully
represent the full number range of the output feature maps and the parameters. In the
proposed design, going below 7 bits will cause values to saturate. Fractional bits precision
affects the ability of the layer to fine-tune the normalisation process. With the Pico Networks,
a precision of 6 bits is an adequate amount with minimal impact.

Looking at the normalised accuracy and memory utilised, there are no observable
differences between both Pico 32-Bit FLP and FiP implementations. This would indicate
that the proposed quantization method does not incur an accuracy penalty. However, as
seen in Pico(B), excluding bias and γ comes at a cost to accuracy.

Taking it further, 16-Bit and 14-Bit FiP demonstrate no significant changes in the ability
of the network to infer on the test dataset when quantizing after the pre-compute process.
In this particular case, 14-Bit Pico(A) FiP would be the ideal implementation to export to an
edge device. At a memory utilisation of 63% compared to the original, with a negligible
loss in accuracy, it would be a good choice for a memory-constrained device.
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Table 3. Network accuracy and statistics. Accuracy and memory is normalised against the 32-Bit
Pico(A) implementation.

Network
Name

Parameter
Precision Accuracy (%) Memory

(kB)
Normalised

Accuracy
Normalised

Memory

Pico(A)

32 FLP 96.11 1.29 1.0 1.0
32 FiP 96.11 1.03 1.0 0.8
16 FiP 96.15 0.84 1.0 0.65
14 FiP 96.00 0.81 1.0 0.63

12 FiP (A) 94.74 0.79 0.99 0.61
10 FiP 43.18 0.76 0.45 0.59

Pico(B)

32 FLP 94.58 1.03 0.98 0.8
32 FiP 94.58 1.03 0.98 0.8
16 FiP 94.37 0.84 0.98 0.65
14 FiP 92.94 0.81 0.97 0.63

12 FiP (A) 11.35 0.79 0.12 0.61
12 FiP (B) 55.44 0.76 0.58 0.61

[28] 32 FiP 96.3 5.35 1.0 4.1

[29] 16 FiP 97.3 9.13 1.01 7.1

[30] 1b, 2b, 32 FLP 98.4 220.1 1.02 170.6

[31] 16 FiP 98.70 86.8 1.03 67.3
12 FiP 97.59 65.1 1.02 50.5

Figure 7 is a demonstration of the relationship between quantizing parameters and
the ability of the network to infer accurately. As it is difficult to assess between the different
network configurations, the main takeaway here is that it is important to understand the
relationship between the full number range representation and the quantization applied.

25 24 23
40

60

80

100

Parameter Precision

A
cc

ur
ac

y

Pico(A)
Pico(B)

González, E. et al., 2019

Figure 7. Accuracy drop from parameter quantization, ref. [31].

When comparing against CNN implementations, the key finding is that huge reduc-
tions in the memory footprint can be attained with a minor reduction in accuracy. When
comparing against [31], a BNN has the same drop-off in accuracy when quantizing when
compared to a typical CNN.

When comparing the drop-off in accuracy between Pico(A) and Pico(B), it is clear that
additional learned parameters help to stave off the drop in accuracy from quantization.
With the proposed method, there is no additional memory or computations necessary
when incorporating these parameters. This happens as a result of pre-computing parts of
the process.



Sensors 2023, 23, 5556 12 of 15

With an accuracy drop within 3%, total network memory utilisation is reduced by up
to 39%. When implementing these on resource-constrained edge devices, these savings
are significant.

To demonstrate a more practical use case, the proposed work was tested on larger
production-ready networks. ImageNet [32] was tested with both a CNN and BNN im-
plementations. Table 4 is an extension to the results found earlier in Table 3. The typical
method uses 32 FLP and the proposed method adopts 32 FiP.

Table 4. Running on ImageNet.

Network Method Accuracy
(Top-1%)

Parameter
Utilisation 1 (%)

Memory
Savings (kB)

MobileNet [33] Typical 70.6 0.96 -
Ours - 80

XNOR-Net [34] Typical 45.0 0.48 -
Ours - 0

Real-to-Binary [35] Typical 65.0 1.29 -
Ours - 34

1 Refers to the BN (γ, β, µ, σ) and bias parameters used in the proposed simplification as a percentage of total
model memory utilisation.

In [33,35], the four BN parameters are used, and these are simplified to three param-
eters saving on memory. Similar to Pico(B), in [34], γ is not used reducing the possible
savings in memory to zero. However, since portions of the BN layer are pre-computed, the
number of cycles needed on an edge device to compute the layer is still reduced.

Bias is the only parameter not found in all three networks. In a Full-Precision Con-
volution layer, as in Equation (1), it adds an additional parameter per channel and a clock
cycle per output feature. While its impact is small, with an additional 1% of accuracy in
MNIST and CIFAR-10 [12], it still has an impact. In the proposed work, because parameters
are merged across layers, having an additional bias parameter has no additional impact on
memory utilised or clock cycles.

The benefits of using the proposed method goes beyond memory utilisation. Since
time-consuming instructions are pre-computed, the computational complexity for edge
devices is reduced. In Figure 8, a Cortex-M4 running a full 32 FLP BN inference is compared
against the proposed method.

Figure 8. Instruction sequence of the conventional at 32 cycles and proposed method at 2 cycles on a
Cortex-M4. Instruction timing from [36]. VADF is a shortened form for the VADD.F32 instruction on
a Cortex-M4. Both VSQRT.F32 and VDIV.F32 takes 14 cycles to compute.

A Cortex-M4 was chosen in this example since it has a FLP Unit present which is
necessary to compute FLP. Reducing the number of cycles required from 32 to 2 cycles
is a significant difference, but it must be noted that this example does not include other
instructions (e.g., store/load) of a typical operation.

For practical use, the entire operation would usually have additional instructions,
such as fetch and store. Furthermore, it would also be affected by bottlenecks in other areas,
such as the memory bus. Whilst this would narrow the difference in the number of cycles
required to compute a feature, specialised hardware, such as an ASIC-based accelerator,
would be able to fully utilise the benefits of the proposed work.
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BN takes up a small portion of the network, and it is often overlooked. In [33], the BN
parameters account for roughly 1% of the total model size and it requires a larger variety of
instructions to compute. The proposed method has shown that improvements made in this
layer are still relevant for edge devices.

4. Conclusions

Before exporting the weights and parameters, the proposed improvements to the
BNN make it possible to utilise it on much smaller edge devices, such as a microcontroller.
A minimal loss in accuracy is possible since computationally complex operations are
pre-computed on a host device at full precision prior to quantization.

If precision needs to be preserved, operations on devices without a FLP unit can
be made simpler without quantization. Devices without onboard memory can be used
with parameter reduction and quantization for minimal cost. To customise for particular
applications, these features can also be combined with or added to other solutions.

However, it is also important to verify the peculiarities of the network and the hard-
ware employed. Saturation and overflow are issues that would occur if the integer bits
portion is over-quantized. Additionally, the fractional bits allow for fine-tuning of the
feature map normalisation that cannot be ignored. A sweet spot for parameter quantiza-
tion is around 10 bits in this work, but it is also important to note that this differs based
on configuration.

The primary contributing components to this work are the decrease in both the number
of parameters and the number of computations needed. Adoption of BN on edge devices
would be made much simpler by utilising the same arithmetic operations as a MAC on
a CNN.

When comparing a BNN against a CNN, a BNN shines in overall memory footprint
at a small cost to accuracy. This is further compounded by the smaller advancements in
SRAM density. As such, it is important to consider the implementation of a Deep Learning
Neural Network (DLNN) beyond accuracy, latency, and power consumption.
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Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application Specific Integrated Circuit
BN Batch Normalisation
BNN Binarized Neural Network
CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
DLNN Deep Learning Neural Network
FC Fully-Connected
FiP Fixed-Point
FLP Floating-Point
MAC Multiply-Accumulate
MNIST Modified National Institute of Standards and Technology
PE Processing Element
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ReLU Rectified Linear Unit
SRAM Static Random-Access Memory
XNOR Exclusive NOR Gate
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