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Abstract: In recent years, multi-robot control systems and service robots equipped with graphical
computing have been introduced in various application scenarios. However, the long-term operation
of VSLAM calculation leads to reduced energy efficiency of the robot, and accidental localization
failure still persists in large-scale fields with dynamic crowds and obstacles. This study proposes
an EnergyWise multi-robot system based on ROS that actively determines the activation of VSLAM
using real-time fused localization poses by an innovative energy-saving selector algorithm. The
service robot is equipped with multiple sensors and utilizes the novel 2-level EKF method and
incorporates the UWB global localization mechanism to adapt to complex environments. During
the COVID-19 pandemic, three disinfection service robots were deployed to disinfect a large, open,
and complex experimental site for 10 days. The results demonstrated that the proposed EnergyWise
multi-robot control system successfully achieved a 54% reduction in computing energy consumption
during long-term operations while maintaining a localization accuracy of 3 cm.
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1. Introduction

With the emergence of improved perception technology and computational capa-
bilities, service robots have been upgraded from traditional, simple application fields to
large-scale and diverse ones [1]. Recently, robot integration and control have significantly
evolved from stand-alone operations to multi-robot-based group activities, where [2] an-
alyze multi-robot motion and task planning, application domain implementation, and
improved coordination, and [3] discuss with communication mechanisms, a planning
strategy and a decision-making structure. The architecture of the ROS (robot operating
system) open-source system [4], combined with the scalability advantages of Linux version
upgrades, enables the design of mobile robots and the connection of multi-robot system
(MRS) frameworks [5]. ROS offers a collection of robotic software libraries and a reliable
navigation mechanism for modular nodes [6], which allows for easy execution and com-
munication and provides a reliable solution for logistics and manufacturing tasks [7]. In
comparison to single-robot scenarios, multi-robot field operations occur in more complex
and dynamic environments. However, with advancements in SLAM (simultaneous local-
ization and mapping) methods, sensing technology, and multi-sensor fusion algorithms [8],
robots are now capable of performing spatial localization and navigation with increased
accuracy and efficiency in challenging and dynamic conditions [9]. During the COVID-19
pandemic, multi-robot systems were applied in various areas such as monitoring, food
delivery [10], and disinfection [11]. These systems have been instrumental in maintaining
social distance while ensuring essential tasks are completed efficiently.
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In complex application fields, relying solely on LiDAR for robot localization may
result in sparse feature points, potentially causing the robot to lose its sense of direction [12].
Furthermore, the presence of crowds can further aggravate this issue, rendering multi-robot
systems unsuitable for large-scale applications due to this limitation. For example, [13] stud-
ies the characteristics of laser scanners, and [14] describes SLAM problems and proposes
solutions. The fusion of image and LiDAR sensor localization technology can address many
of the navigation challenges. Ref. [15] compares and analyzes the mobile robot trajectories
calculated by various ROS-based SLAM systems. Ref. [16] proposes to reduce the number
of Rao–Blackwellized particle filter (RBPF) particles using adaptive technology. However,
the intensive image processing required by visual SLAM (VSLAM), where [17] introduced
ORB-SLAM and [18] showed that ORB-SLAM2, may gradually reduce the robot’s energy
efficiency over time, even with multi-sensor fusion improving its localization ability [19].
In fields where MRS need to adapt to increasingly complex human-robot collaboration,
optimizing robot utilization efficiency will become a critical issue to address in the future.
Despite the progress made in MRS, there is currently a lack of an interactive control mecha-
nism that can simultaneously maintain position awareness and optimize energy efficiency.
This presents a significant challenge that has yet to be overcome in this field.

This paper proposes an EnergyWise MRS with an interactive regulation mechanism
that maintains localization awareness while optimizing energy efficiency. The concept of
“leading the way” is introduced, and the switching of VSLAM during the fleet’s navigation
process is streamlined, optimized, and built upon the open-source TUW architecture [20].
The MRS presented in this work is capable of adjusting the visual computing resources
of each robot based on their relative positions and can be utilized in ROS-based service
robots [21]. This research proposes an innovative double-layer Kalman filter algorithm that
performs fusion perception calculations for various sensors, including the visual camera,
2D laser scanner, IMUs, and the odometer. To address the cumulative offset error of the
odometer and IMU, we propose leveraging ultra-wideband (UWB) [19] technology for
global localization, thereby providing a reliable mechanism for error correction. The robot
communicates with the MRS in real-time using the energy-saving selector’s calculation
mechanism. The MRS utilizes the robot’s localization results as the basis for decision-
making to initiate visual computation, conserving computational resources.

This study deployed three disinfection service robots in a complex and open indoor
space with moving crowds to evaluate MRS design performance and its energy-saving
capability. The experiment lasted for 100 h and ensured no localization failure problem.
During the verification process, the leader robot initiates VSLAM calculations and performs
multi-dimensional visual space perception and obstacle detection in the field. It then sends
the real-time fused poses back to the MRS for processing. In evaluating power consumption
statistics and comparing localization methods by each sensor, the MRS uses relative position
deviations on robots to control the on-off switching of the VSLAM calculation, thereby
accomplishing the energy-saving objective.

The contributions can be summarized as follows.

• The novel EnergyWise MRS and service robot system based on the ROS and TUW
frameworks have been introduced. It accelerates development speed and ensures
software scalability.

• By utilizing the 2-level multi-sensor fusion EKF algorithm and global UWB technology
integrated into both the MRS and robots, localization precision is enhanced to 3 cm.

• The innovative energy-saving selector algorithm improves VSLAM calculation regula-
tion, resulting in a 50% reduction in energy consumption. This mechanism offers a
power-efficient solution for MRS research.

2. Related Works
2.1. The ROS-Based Multi-Robot System

Since the inception of multi-robotics research in the 1980s, this field has experienced
substantial growth. It is easier to perform tasks efficiently and cost-effectively with
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MRS than with single-robot systems due to their scalability, reliability, flexibility, and
versatility [22]. MRS research spans multiple domains, allowing robots to collaborate and
support each other to accomplish interactive tasks [23]. An example of group control
in MRS is the classic Swarm robotic system, which set the precedent for research in this
field [24]. MRS has facilitated the development of industrial and service robots by connect-
ing individual robots into a coordinated system, allowing for valuable improvements in
many processes. MRS can enhance greater accuracy, quality, and cost savings by executing
routine service procedures [25].

With the trend towards open-source systems, ROS-based MRS have gradually devel-
oped. Open-source tools such as Player/Stage [26] and Gazebo [27] have been developed to
support system simulation for multi-robot control. In the development of MRS, many chal-
lenging issues related to distributing computing, collaboration, and coordination must be
addressed. Therefore, the development and deployment of MRS applications are challeng-
ing tasks, as real-time integration of robot modules and services is a crucial consideration.
To simplify the development of multi-robot applications, researchers have proposed various
middleware frameworks [28] that provide programming abstractions to manage hardware
and application complexity and heterogeneity [29]. Currently, a master-slave network node
architecture can be utilized to enable multi-robot communication via message passing
using multi-master [30]. Task allocation can be effectively combined with open-source
solutions. For example, TUW can aid in multi-robot tasks and path planning by designing
routes on a search graph for multiple robots. This approach involves constructing a search
graph from a pixel map and utilizing an extended priority planning method to locate paths
for multiple robots [31]. In ROS-based frameworks, navigation and control commands
for robots can be designed and executed within a global map, enabling MRS to plan and
execute tasks efficiently [32].

2.2. Multi-Sensor Fusion Localization Technology in MRS

In large-scale environments, various environmental characteristics, such as glass that
cannot be sensed by LiDAR or moving people [33], can cause environmental variations,
which may result in the failure of robot localization. To address this challenge, fusion
algorithms can be utilized to process and analyze the information collected by sensors. This
enables the robot system to make informed decisions about the end application, improve
localization accuracy, and avoid the problem of insufficient information provided by a
single sensor [34]. The Kalman filter (KF), a well-known autoregressive filtering algorithm
for linear systems, is commonly used for multi-sensor data fusion. This algorithm was first
published in 1960 by Rudolf Emil Kálmán [35]. The KF algorithm compares the predicted
model solution to the actual data obtained from observations. By considering the state
distribution of each data and solution over time, the KF algorithm finds the optimal solution
for the state over time. Due to its wide applicability, it is utilized in various fields and has
undergone many modifications to compensate for its limitation of only providing optimal
solutions in linear systems, such as the lossless Kalman filter (unscented Kalman filter,
UKF) [36], EKF, among others.

The extended Kalman filter (EKF) is commonly used for state estimation and data fu-
sion in robot navigation. In the MRS research field, multi-sensor perception techniques are
employed for robot localization, spatial exploration, and cognition. This enables multiple
robots to achieve greater environmental sensor coverage and improve the accuracy of object
location estimation [37]. Additionally, the integration of target position estimation tech-
niques enables robots to re-establish contact after extended periods of time and proposes a
fully distributed team planning algorithm that utilizes limited shared information when
available [38]. This article utilizes the EKF for multi-robot perception fusion localization
applications, based on recent developments in speed estimation and obstacle avoidance for
robots [39], thus inheriting the aforementioned advantages.

Due to the complexity of indoor environments, research on UWB indoor localization
has become increasingly widespread [40]. In addition to fulfilling the needs of indoor
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industrial localization [41], it is also used in indoor MRS applications [42]. Its high accuracy
makes it particularly suitable for supporting more extensive collaboration and multi-
robot application scenarios compared to other wireless localization solutions [43]. UWB
technology has become increasingly commercialized and offers advantages such as high
time resolution, large transmission capacity, and relatively low power consumption. Due to
these benefits, UWB is being used as an alternative to more complex and expensive motion
capture systems. By combining UWB anchors and tags, reference coordinate information
can be obtained for global localization, making it a suitable choice for indoor localization
applications [42]. Relevant research confirms that UWB indoor localization accuracy can
approach 0.5 m, making it suitable for use in service robots and in MRS for global robot
localization and configuration [43].

2.3. Power Efficiency with Service Robot and MRS Requirement

Currently, energy-saving designs have been developed and implemented in the field
of service robots; the objective is to minimize energy waste while enhancing operational
efficiency [44]. Additionally, the COVID-19 pandemic has brought about an urgent need
for contactless services to maintain social distancing [9], and the service efficiency of robots
is increasingly being emphasized [45]. In terms of the design and selection of service robots,
there is a growing focus on lightweight materials and streamlined appearances to reduce
the additional weight on the carrier. For control systems, high-energy efficient drive and
control components are chosen, along with the incorporation of energy recovery units.

Discussions on energy-saving measures related to ROS open-source architecture and
MRS have also been explored in the academic field. For instance, there have been studies
on path planning efficiency that aim to enhance the robot’s mobility and power usage and
also focus on the optimization of arrangements to reduce the robot’s repeated detours [46].
While localization accuracy improved with graphical processing, power consumption also
increased. As a result, energy-saving research on VSLAM has been conducted in recent
years. This includes using FPGA-embedded system designs as the basis for basic VSLAM
calculations [47], analyzing requirements based on dataset efficiency [48], and selecting
related visual algorithms. For the most energy-efficient application, ORB-SLAM2 will
be selected, where [49] mobile robots run on the NVidia Jetson platform, enabling high
performance while maintaining low power consumption. Ref. [50] studies the use of visual
SLAM methods in autonomous robots and their effect on power consumption.

The summary of the aforementioned studies includes two aspects: utilizing high-
performance computing hardware to enhance VSLAM performance and analyzing the
computational efficiency of various VSLAM algorithms to select the most efficient one. No
matter which method is employed, the most efficient approach is to reduce the utilization
of VSLAM. Based on this concept, this paper proposes an energy-saving selector method
aimed at improving the energy efficiency of MRS.

3. The Control Theory of EnergyWise Multi-Robot System

This section provides the control theory of the energy-saving selector in the MRS
framework. Firstly, it describes the MRS and UWB anchor architectures in detail, followed
by the introduction of a service robot developed using ROS. The control process of the
energy-saving selector in the MRS is then explained, emphasizing its role in improving
power efficiency for each robot. Finally, the 2-level multi-sensor EKF and the procedure for
localization correction with UWB technology are presented in detail.

3.1. EnergyWise Multi-Robot System (MRS) System Architecture
3.1.1. Control Architecture

The EnergyWise MRS architecture is based on the open-source ROS framework, as
shown in Figure 1. The system consists of an energy-saving selector, TUW management
framework, and core master. Control algorithms are used for active switching of VSLAM
and robot navigation, task assignment, and network communication. The service robot
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adopts a wheeled mobile platform and disinfection module. MRS and robot control
commands are transmitted via Wi-Fi using ROS node topics. UWB anchors are placed
around the workspace, with a transmission range of 30 m, to provide global reference
coordinates transmitted by UWB tags mounted on each robot.
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In the TUW framework, the job station order manager module and the order planner
module are used to set up reference sites on the map, define tasks, avoid path conflicts, and
allow tasks to be assigned. The multi-robot router and path planner module synchronizes
task settings with the global map and creates navigation path routing, connecting with
real-time coordinates. The core master of multi-robot communication employs the ROS
topic/message communication format as a mechanism for command and information
transmission between robots and MRS.

The leading robot functions in conjunction with the EnergyWise MRS to achieve the
energy-saving objective. Referring to Figure 1, the first robot, Robot(1), is defined as the
leader robot, Robot(2) is the second robot in the order, and so on up to Robot(N). All
robots follow behind Robot(1) according to the pre-defined path for disinfection tasks.
The leader robot, Robot(1), simultaneously activates the 2D LiDAR and depth camera to
detect changes in the environment. In contrast, the following robots, Robot(2) to Robot(N),
deactivate the depth camera to save energy. When Robot(1) detects an increase in obstacles
in the surrounding environment, the multi-robot controller notifies the subsequent robots
to activate the VSLAM to enhance localization and obstacle avoidance capabilities.

3.1.2. The ROS Based Disinfection Service Robot

As illustrated in Figure 2, the service robot incorporates several sensing devices,
including a laser rangefinder, a depth camera, odometry via servo drives, an IMU, and a
UWB tag. The odometer utilizes encoder feedback from the servo drives, while the UWB
tag transmits the robot’s global localization reference coordinates in two dimensions. The
mobile platform can house a sprayer and UVC disinfection device, which are designed
as a type I spraying robot and a type II UVC disinfection service robot, respectively. It is
possible, however, to solve most spatial localization problems with 2D SLAM fusion with
a visual calculation algorithm in the localization function. However, the visual camera
combined with the localization calculation process consumes around 25 W of power. As
the robot depends on batteries for calculation and power supply, and energy consumption
is fixed in the dynamic system, minimizing computational consumption during navigation
is the primary focus of the issue.
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The energy-saving selector proposed in this paper was implemented by using the
2-level EKF architecture with multiple sensors, as shown in Figure 3. The design aims to
enhance the robot’s energy efficiency during navigation by utilizing a double-layer EKF
fusion and the energy-saving selector. In this design, level 1 EKF fusion is executed using
IMU, odometer, and global UWB to provide the robot’s global localization coordinates.
Then, the resulting output is switched with 2D and visual localization to the energy-
saving selector to determine whether to activate the visual calculation process and conduct
level 2 perceptual fusion. The final localization information is used as the coordinates and
localization reference for the robot to perform tasks in the navigation stack.
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The MCS global planner enables the robot to set its departure and destination goals
using a pre-defined path and transmits motion trajectories that the local planner can
reference. The DWA algorithm is employed to calculate the robot’s optimal speed and
angle of movement. In conjunction with the map information from the mapping and
navigation control module, it generates paths and achieves obstacle avoidance. In addition
to meeting the MRS task configuration requirements, this design also features a multi-
sensor design. The energy-saving selector is used to select and perform visual calculations,
achieving energy-saving effects. The architecture and operating mechanism of the energy-
saving selector will be introduced in detail in Section 3.2, and the calculation design of
2-level multi-sensor fusion will be discussed in Section 3.3.

3.2. The Global Energy-Saving Selector

The EnergyWise multi-robot system, as shown in Figure 4, consists of a local energy-
saving selector within each individual robot and a global energy-saving selector in the
multi-robot control system. By reducing the computation of VSLAM, the MRS achieves
optimal energy-saving effects. The selector selects “Pose B” and “Pose C” according
to the deviation between “Pose A, B, and C”. Among them, “Pose A” represents the
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localization information calculated by 2D LiDAR through AMCL. “Pose B” corresponds to
the localization information computed by the depth camera using ORB SLAM2. “Pose C”
refers to the localization information obtained by blending three sources: UWB, IMU, and
odometer, through level 1 EKF fusion. The UWB localization information is provided by
MRS, while the IMU and odometer localization information is obtained through calculations
using motor encoders on the robot. Finally, the 2-level EKF fusion calculates the final pose
information of the robot based on either “Pose A” or the energy-saving selector’s choice of
“Pose B” or “Pose C”.
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The energy-saving selector consists of two hysteresis selectors, as shown in Figure 5.
Hysteresis switching architecture prevents the selector from switching too quickly, which
could result in instability in robot operation, and selector G is located within MRS and
associated with Equation (1).

∆G(k) = |A(k)−B(k)|
∆G(k) > σi_U → EKF2_in(k) = B(k)
∆G(k) < σi_L → EKF2_in(k) = C(k)

(1)

∆G represents the deviation between Pose A and Pose B, while σi represents a vari-
ance that can be set according to environmental features. When ∆G is greater than σi_U,
level 2 EKF uses Pose B as input, and when ∆G is less than σi_L, level 2 EKF uses Pose C as
input, respectively. Selector L is situated in the service robot system and is represented by
Equation (2).

∆L(k) = |A(k)−C(k)|
∆L(k) > σm_U → EKF2_in(k) = B(k)
∆L(k) < σm_L → EKF2_in(k) = C(k)

(2)

∆L represents the deviation between Pose A and Pose C, while σm represents a variance
that can be adjusted based on the characteristics of the robot and environmental features.
When ∆L exceeds σm_U, level 2 EKF uses Pose B as input; conversely, when ∆L is less
than σm_L, level 2 EKF uses Pose C, and selector L is in the individual service robot and
expressible by Equation (2).
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Figure 5. Design structure of energy−saving selector.

When the system starts, the first leading robot turns on the visual perception device
to detect the dynamic characteristics of the environment. It then transfers the results to
the MRS system, which determines the switching timing for VSLAM calculations for other
robots. Figure 6 shows the energy-saving selector switching architecture on the MRS side.
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Figure 6. Energy-saving selector switching architecture in EnergyWise MRS.

During the operation of the MRS, the system obtains the deviation ∆G(1) of Robot(1)
and evaluates it using selector G(1) in Figure 6. Subsequently, the system generates and
outputs SW(1), which is then sent back to Robot(1) through a wireless communication topic
in selector L. In this condition, SW(1) serves as the basis for deciding whether to activate
selector G(2). Following the design logic, the activation of selector G(3) is determined based
on SW(2), and similarly, the activation of selector G(n) is decided based on SW(n−1).

The control flow diagram of the energy-saving selector on EnergyWise MRS is shown
in Figure 7. According to the hysteresis switching rule in Equation (1), the system obtains
the deviation ∆G(1) of Robot(1) and sends ∆G(1) to selector G(1). If ∆G(1) > σi_U, SW(1) is
set to 1; conversely, if ∆G(1) < σi_L, SW(1) is set to 0. MRS sends SW(1) back to Robot(1),
and the result of SW(1) also serves as the activation criterion for selector G(2). It is assumed
that selector G(3) is activated by SW(2), likewise, selector G(n) is activated by SW(n−1).
As long as the pose deviation ∆G(k) of Robot(k) remains below σi_U, Robots (k + 1~n)
can deactivate the depth camera and ORB-SLAM2 to save power, ultimately achieving
energy efficiency.
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obtained by utilizing the hysteresis switching rule defined in Equation (2). The process
inputs selector L. When ΔL is greater than σm_U, the output is SWL = 1, and when ΔL is less
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Figure 7. The control flow chart of the energy-saving selector on the EnergyWise multi-robot system.

Figure 8 illustrates the energy selector L architecture designed for service robots.
Equation (1) is employed to calculate ∆G, which is then transmitted to the MRS via an ROS
topic. The MRS provides the SWG switching signal to the robot, allowing it to determine
the pose between Pose B and Pose C. However, environmental factors can potentially
impact Pose C, leading to offset issues. To address this, the service robot computes ∆L
using Equation (2) and utilizes SWL as input for the level 2 EKF when dealing with Pose B
and Pose C.
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Figure 8. Selector L switching architecture of service robot.

The control flow chart of selector L in the service robot system is illustrated in Figure 9.
In this process, the robot samples Pose A, B, and C. On the left side, ∆G is calculated
according to Equation (1) and transmitted to the MRS. The MRS responds with the SWG
signal to determine the selection of Pose B and Pose C. On the right side, the ∆L signal is
obtained by utilizing the hysteresis switching rule defined in Equation (2). The process
inputs selector L. When ∆L is greater than σm_U, the output is SWL = 1, and when ∆L
is less than σm_L, the output is SWL = 0. In addition to waiting for commands from the
MRS, this method also enables the robot to make independent judgments. This enables an
energy-saving synchronous control approach while reducing VSLAM computing resources,
ultimately enhancing system efficiency.
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3.3. 2-Level Multi-Sensor Fusion EKF

The MRS design combines local and global localization and introduces a 2-level multi-
sensor fusion EKF computing architecture, as shown in Figure 4. The pose calculation
results for each level are used as the basis for the decision-making process for image
localization resources. With the design of hierarchical multi-sensor fusion and the EKF
method, the aim is to determine the pose and velocity of a mobile robot over time. As a
nonlinear dynamic system, it can be characterized and defined as in Equation (3).

xk = f (xk−1) + wk−1 (3)

where xk is the robot’s system state at time k, f is a nonlinear state transition func-
tion, and wk−1 is the gaussian noise of the system process, which is assumed to be
normally distributed.

The five-dimensional state vector, xk involves the robot’s pose, orientation, and re-
spective velocities. lx,k is the x-direction position status of the robot, ly,k is the y-direction

position status of the robot, and θk is the angular status of the robot, vk−1 and
.
θk−1 are the

line speed commands given to the robot, respectively. And the angular velocity command
can be defined as in Equation (4).

xk =
(

lx,kly,kθkvk
.
θk

)T
(4)

f (xk−1) is the nonlinear system transfer function of the robot motion model, as shown
in Equation (5).

f (xk−1) =


lx,k−1
ly,k−1
θk−1
vk−1.
θk−1

 =


vk−1 ∗ cos(θk−1) ∗ ∆t
vk−1 ∗ sin(θk−1) ∗ ∆t

.
θk−1 ∗ ∆t

vk−1.
θk−1

 =


f 1
f 2
f 3
f 4
f 5

 (5)

Euler angles represent rotational values. Furthermore, the observation function of the
sensor can be defined as in Equation (6).

zk = h(xk) + vk (6)
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zk is the k item of the robot pose state measured at time t. The robot pose state zk
measured by the sensor used by the robot can be defined as the following Equation (7),
where vk is the Gaussian noise of a sensor state measurement and h(xk) is the system model
for converting sensor data into the robot state after sensor measurement.

zk =
(

zlx,k
zly,k

zθk zvk z .
θk

)T
(7)

It is the first step in the algorithm to perform a prediction step that projects the current
state estimation and error covariance forward in time. Equations (8) and (9) represent
this process.

x̂k = f (xk−1) (8)

P̂k = FPk−1FT + Q (9)

f is a standard kinematic model based on Newtonian mechanics and used in robot
motion. x̂k refers to the estimation of the robot state at time t item k. Furthermore, since
EKF linearizes the nonlinear system, the physical meaning of F is the Jacobian matrix after
linearizing f , as shown in Equation (10).

F =


1 0 −vk−1 ∗ sin(θk−1) ∗ ∆t cos(θk−1) ∗ ∆t 0
0 1 vk−1 ∗ cos(θk−1) ∗ ∆t sin(θk−1) ∗ ∆t 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1

 (10)

The estimated error covariance, P, is then perturbed by Q, the process noise covariance.
P̂k is the state covariance matrix estimated by EKF, as shown in (11). Q is the covariance ma-
trix of state noise, as shown in Equation (12). As each state is measured by its corresponding
sensor, a matrix describes the covariance of all state measurement noises.

P̂k =



σ̂2
lx |k−1 σ̂lx ly |k−1 σ̂lxθ|k−1 σ̂lxv|k−1 σ̂

lx
.
θ|k−1

σ̂ly lx |k−1 σ̂2
ly |k−1 σ̂lyθ|k−1 σ̂lyv|k−1 σ̂

ly
.
θ|k−1

σ̂θlx |k−1 σ̂θly |k−1 σ̂2
θ|k−1

σ̂θv|k−1 σ̂
θ

.
θ|k−1

σ̂vlx |k−1
σ̂ .

θlx |k−1

σ̂vly |k−1
σ̂ .

θly |k−1

σ̂vθ|k−1
σ̂ .

θθ|k−1

σ̂2
v|k−1

σ̂ .
θv|k−1

σ̂
v

.
θ|k−1

σ̂2.
θ|k−1


(11)

Q =



σ2
Q,lx,k−1

0 0 0 0
0 σ2

Q,ly,k−1
0 0 0

0 0 σ2
Q,θk−1

0 0

0
0

0
0

0
0

σ2
Q,vk−1

0

0
σ2

Q,
.
θk−1


(12)

In the next step of the algorithm, we perform a correction step, which is summarized
in the equations below.

K = P̂k HT
(

HP̂k HT + R)−1 (13)

xk = x̂k + K = K(z− Hx̂k) (14)

Pk = (I − KH)P̂k

(
I − KH)T + KRKT (15)

The Kalman gain can be calculated using the measurement covariances, R and Pk, as
well as the observation matrix, H. Pk is the covariance matrix between the updated robot
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estimated state xk and the state estimate, as shown in Equation (17), and R is the covariance
matrix of the sensor noise and can be defined as in Equation (18). The gain is utilized
to update the state vector and covariance matrix. Besides, the Joseph form covariance is
applied to update Equation (18) to promote filter stability by ensuring that Pk remains
positive and semi-definite.

Kk =



Klx |k 0 0 0 0
0 Kly |k 0 0 0
0 0 Kθ|k 0 0

0
0

0
0

0
0

Kv|k
0

0
K .

θ|k


(16)

Pk =



σ2
lx |k σlx ly |k σlxθ|k σlxv|k σ

lx
.
θ|k

σly lx |k σ2
ly |k σlyθ|k σlyv|k σ

ly
.
θ|k

σθlx |k σθly |k σ2
θ|k

σθv|k σ
θ

.
θ|k

σvlx |k
σ .

θlx |k

σvly |k
σ .

θly |k

σvθ|k
σ .

θθ|k

σ2
v|k

σ .
θv|k

σ
v

.
θ|k

σ2.
θ|k


(17)

R =



σ2
R,lx,k−1

0 0 0 0
0 σ2

R,ly,k−1
0 0 0

0 0 σ2
R,θk−1

0 0

0
0

0
0

0
0

σ2
R,vk−1

0

0
σ2

R,
.
θk−1


(18)

Updates are made to the state vector and covariance matrix using the gain. As part
of updating Equation (11), Joseph form covariance is applied to promote filter stability
by ensuring that Pk remains positive and semi-definite. As specified in the standard EKF
formulation, H represents the Jacobian matrix of the observation model function H. In
the allowed state estimation matrix, H represents the transition matrix for sensor state
measurement. As indicated by the matrix element H, a state is present among the estimated
variables, which will be discussed in the subsequent section on simulation.

4. MRS Experimental Result in Large Scale Complex Field

To validate the energy-saving effectiveness of EnergyWise MRS, this section conducted
experiments with three robots in four different scenarios. Additionally, it explains the
localization performance of the 2-level EKF in large-scale, complex environments.

4.1. The Experimental Field and Testing Scenario

The experiment aimed to utilize the proposed EnergyWise MRS to enhance the
energy-saving efficiency of VSLAM calculations in the robot system and test it in an
office building during the COVID-19 pandemic. It involved three disinfection service
robots, one equipped with a UVC sterilization lamp, and the other two equipped with
disinfectant sprayers. Over 10 working days, the experiment spanned 100 h. As shown
in Figure 10, the test site has complex and open environmental characteristics, including
issues of light penetration and reflection from the ground and walls, as well as occasional
dynamic pedestrian obstacles.
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4.1. The Experimental Field and Testing Scenario 
The experiment aimed to utilize the proposed EnergyWise MRS to enhance the en-

ergy-saving efficiency of VSLAM calculations in the robot system and test it in an office 
building during the COVID-19 pandemic. It involved three disinfection service robots, 
one equipped with a UVC sterilization lamp, and the other two equipped with disinfect-
ant sprayers. Over 10 working days, the experiment spanned 100 h. As shown in Figure 
10, the test site has complex and open environmental characteristics, including issues of 
light penetration and reflection from the ground and walls, as well as occasional dynamic 
pedestrian obstacles. 

 
Figure 10. Panoramic overview of the experimental site (size is about 16 m × 15 m). Figure 10. Panoramic overview of the experimental site (size is about 16 m × 15 m).

The testing ground measures approximately 16 m × 15 m, with a distance of 1 m
between each grid point, as shown in Figure 11a. The navigation process can be divided
into four scenarios: I, II, III, and IV, with the disinfection path planned as a black dotted
line. According to Figure 11b, the robot travels at an approximate velocity of 1 m/s, taking
around 130 s to travel from the starting point to the endpoint, with movement along the x
and y axes, respectively.
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As shown in Figure 12, in scenario I, there is no obstacle interference, and the SLAM 
task can be accomplished using only 2D LiDAR. As in scenario II, there is a spontaneous 
crowd that does not interfere with the disinfection task, and the robot follows its prede-
termined path. In scenario III, despite minor environmental deviations, stable localization 
performance is achieved with UWB and 2D LiDAR. Finally, in scenario IV, sudden crowd 
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Figure 12. Multi-disinfection service robots operating in four different scenarios in the real world: 
(A) Scenario I: Operating in area A without any obstacles. (B) Scenario II: Disinfection is carried out 
in area B, where fast-moving crowds may appear as obstacles. (C) Scenario III: Disinfection is carried 

Figure 11. The situational block of the experimental field and the time domain diagram of the motion
path: (a) The field has an area of 16 m × 15 m and is divided into four scenarios: I, II, III, and
IV. (b) The time−domain diagram illustrates the motion path over time, with the horizontal axis
representing time in seconds and the vertical axis representing the path in meters; the path is also
segmented into scenarios I, II, III, and IV.

As shown in Figure 12, in scenario I, there is no obstacle interference, and the SLAM
task can be accomplished using only 2D LiDAR. As in scenario II, there is a spontaneous
crowd that does not interfere with the disinfection task, and the robot follows its predeter-
mined path. In scenario III, despite minor environmental deviations, stable localization
performance is achieved with UWB and 2D LiDAR. Finally, in scenario IV, sudden crowd
interference disrupts the robot’s operation, but with VSLAM, the robots can still complete
the task.
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Figure 12. Multi-disinfection service robots operating in four different scenarios in the real world:
(A) Scenario I: Operating in area A without any obstacles. (B) Scenario II: Disinfection is carried out
in area B, where fast-moving crowds may appear as obstacles. (C) Scenario III: Disinfection is carried
out in area C, which has environmental variations. (D) Scenario IV: During the operation in area D,
crowds of onlookers appeared and interfered with the robot’s progress.

4.2. The 2-Level EKF Experiment Result
4.2.1. The Sensors Performed in the Experiment Field

The robot system initially operates in manual control mode, recording various sensors’
detection results under obstacle-free conditions. ODOM + IMU calculates the encoder
feedback at a frequency of approximately 100 Hz, as shown in Figure 13a. Due to environ-
mental influences, cumulative errors occur, causing the deviation from the target path to
increase over time. The UWB signal operates at 1 Hz, with a deviation of approximately
30 cm. The LiDAR and depth camera utilize AMCL and ORB-SLAM2 for pose estimation
calculations, respectively. AMCL runs at approximately 50 Hz, while ORB-SLAM2 runs at
approximately 20 Hz. Based on Figure 13b, both methods yield similar localization results,
with a deviation of less than 5 cm.
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Figure 13. Predefined and feedback paths detected by the sensors: (a) The sensor results are
represented by colored lines: pink dotted line: predefined path, red: LiDAR and AMCL, blue:
ORB−SLAM2, purple: ODOM + IMU, green dot: UWB. (b) As a result of local amplification, the
offset corresponding to each sensor can be found, which ODOM + IMU has a large error.



Sensors 2023, 23, 5724 15 of 24

4.2.2. The 2-Level EKF Experiment Result

To address encoder error accumulation and improve drift performance, the ODOM,
IMU pose, and UWB signals are combined and processed using level 1 EKF. Figure 14 shows
the resulting output. Although the robot’s path may not fully align with the commanded
path, the accumulated drift over time is corrected by incorporating the UWB localization
signal, resulting in improved encoder signal performance.
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Figure 14. The comparison between the actual path taken in the field and the navigation path diagram
produced by the level 1 EKF with UWB localization.

Table 1 shows the sensor fusion settings used at each level, as described in Section 3.
The level 1 EKF utilizes sensors such as an odometer, IMU, and UWB to calculate mixed
feedback signals. Applying the method described above, the level 2 EKF primarily relies
on LiDAR localization information (Pose A) as input. Depending on the energy-saving
selector, it decides whether to perform mixed calculations with the depth camera (Pose B)
or the level 1 EKF calculation result (Pose C).

Table 1. Two-level EKF sensor fusion setting table.

EKF Level State Measurement
Configuration

zlx,k zly,k zθk zvk z .
θk

Level 2 EKF
LiDAR-AMCL (PoseA) 1 1 1 0 0
ORB-SLAM2 (Pose B) 0 0 0 1 1
Level 1 EKF (Pose C) 0 0 0 1 1

Level 1 EKF
Odometer 0 0 0 1 0

IMU 0 0 0 0 1
UWB 1 1 0 0 0

Figure 15 compares the localization performance of three robots during global nav-
igation operations in an experimental field using a 2-level EKF with a predefined path.
Figure 15a illustrates the result of a global path calculation. By employing the 2-level EKF,
it was determined that the robot could navigate a vast field space using level 1 ODOM +
IMU and UWB localization processes, despite experiencing drift deviation. Furthermore,
the MRS operated smoothly in a large-scale complex field with 2D LiDAR and visual
ORB-SLAM2.
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Figure 15. Pre-defined path and 2−level EKF calculation results in robots: (a) Calculation results of
global planning path and 2−level EKF localization in three robots. (b) The 2−level EKF localization
calculation results of partially enlarged scenario II. (c) The 2−level EKF localization calculation results
of partially enlarged scenario III. (d) The 2−level EKF localization calculation results of partially
enlarged scenario IV.

The local path localization results of three robots in scenario II are illustrated in
Figure 15b. When obstacles in the surrounding environment do not interfere, the 2-level
EKF method can effectively track the predetermined path with high accuracy. Figure 15c,d
demonstrates the robot’s localization outcomes while following the trajectory path in scenar-
ios III and IV, respectively. Despite dynamic obstacles, robots avoid them, resulting in suc-
cessful navigation. Although there are many interference factors in the operating field, such
as fixed obstacles and light source reflections in scenario III and crowds in scenario IV, the
2-level EKF with VSLAM assistance can perform more accurate localization calculations.

Despite the complex environmental variations present in the field, the MRS and robots
maintain stable navigation along a predefined path owing to the successful implementation
of a 2-level EKF localization calculation. This method consistently ensures accurate local-
ization. The results demonstrate that the X-axis and Y-axis localization errors of the three
robots are within a range of less than 3 cm. Figure 16 displays the results of the localization
error for Robot(1) utilizing ORB-SLAM2 in conjunction with EKF fusion calculation with
AMCL. Although this configuration generally provides better localization accuracy, it may
exhibit transient localization deviations during rotation. However, the implementation of a
2-level EKF calculation effectively minimizes error and achieves quick convergence.
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Figure 16. The localization error of the Robot(1) on the x−axis and the y−axis.

Figures 17 and 18 present the estimation errors of motion paths for Robots (2) and (3),
respectively. In scenarios I and II, ORB-SLAM2 calculation is not required, and thus, no
transient localization offset occurs. However, the steady-state operating error for these
robots is slightly higher than that of Robot(1). Activation of the visual localization system
was necessary to facilitate rotation and obstacle avoidance upon entering scenarios III
and IV. However, this led to a significant increase in estimation errors. The leading robot,
which utilized visual localization assistance throughout the experiment, achieved better
localization accuracy than the other robots.
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Figure 18. The localization error of the Robot(3) on the x−axis and the y−axis.

Figure 19 presents the results of the localization error calculation analysis conducted
on various sensors and the 2-level EKF during the 100 h operation of the MRS. Furthermore,
this analysis compares the proposed 2-level EKF with other localization methods. LiDAR-
AMCL (Pose A) and ORB-SLAM2 (Pose B) both have a primary error range of less than
10 cm, with ORB-SLAM2 having a smaller overall error but a wider deviation range. The
main reason for this is that under rotational conditions, VSLAM temporarily generates
larger calculation deviations. In the case of ODOM + IMU + UWB (Pose C), it is evident
that errors in ODOM and IMU accumulate due to the surrounding environment, as well as
the impact of UWB localization accuracy and update time. The maximum deviation can
reach 30–40 cm, but error accumulation is mitigated by UWB correction, thereby preventing
sustained error divergence. Comparing 2-level EKF (A+C) with Pose A, the localization
error is improved by approximately 1–2 cm. On the other hand, 2-level EKF (A+B) achieves
a localization error range of 3 cm, as indicated by the red dashed line. However, the error
range is influenced by the ORB-SLAM2 maximum deviation and exhibits a similar widening
trend. Overall, 2-level EKF (A+B) achieves the most accurate localization performance with
a 3 cm error range.
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4.3. The Energy Saving Performance Evaluation
4.3.1. The Result of the Interaction between the Energy-Saving Selector and 2-Level EKF

With the integration of a 2-level EKF localization fusion algorithm in EnergyWise MRS,
service robots can navigate large and complex fields while performing disinfection tasks
autonomously. By utilizing the energy-saving selector, the allocation of visual localization
resources can be optimized, leading to a reduction in robot computing resources. The
following is a description of the test results obtained by combining an energy-saving
selector and a 2-level EKF in EnergyWise MRS, along with a discussion of the benefits of
this method.

In scenario I, the leader Robot(1) of the VSLAM did not detect any obstacles, resulting
in ∆G not exceeding σi_u, and therefore the SWG did not initiate. During acceleration and
deceleration, the deviation ∆L between level 1 EKF localization and LiDAR localization
may exceed σm_u. In such cases, SWL may temporarily replace the level 1 EKF attitude
with VSLAM. Once the deviation is lower than σm_L, the SWL will switch back to the level
1 EKF pose. When entering scenario II, although there is some interference, the ∆G of the
leader Robot(1) is insufficient to trigger SWG. Consequently, Robot(2) operates similarly to
scenario I. In contrast, upon entering scenario III, some obstacles are too close to the leader
Robot(1), causing ∆G to exceed σi_u. This triggers SWG, and the MRS transmits the signal
to Robot(2), which switches to VSLAM and level 2 EKF input signals.

As long as the obstacle situation persists, the ∆G of the leader Robot(1) remains below
σi_L, causing SWG to deactivate. Therefore, Robot(2) switches off VSLAM and relies on level
1 EKF output attitude. Nonetheless, the deviation ∆L on Robot(2) continues to be calculated
continuously, and SWL is switched. In scenario IV, which involves navigating through a
region with dynamic crowd obstacles, the VSLAM posture of the leader Robot(1) causes
∆G to consistently exceed σi_u. As a result, the MRS keeps Robot(2) VSLAM continuously
enabled to ensure that all robots can effectively position themselves and avoid obstacles.
Finally, Figure 20 demonstrates that the localization calculation results of the three poses
are sufficiently accurate to enable effective integration with the energy-saving selector and
2-level EKF of the MRS.
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4.3.2. The Result of Energy-Saving Selector

The initial waveform of the SWG+SWL of Robot(2) and Robot(3) is shown in Figure 21.
By comparing the figures above and below, we can observe that in scenarios I and II,
the two robots primarily determine the opening of VSLAM based on the SWL signal. In
scenarios III and IV, the SWG is determined by the calculation of the leader Robot(1) based
on the MRS instructions. In this example, the switch waveforms of the two robots match
after 89 s. Table 2 presents the relevant running time and energy-saving effect of each
robot’s VSLAM calculation by organizing the start-up status of each calculation. During the
experiment, the leader Robot(1) kept VSLAM turned on at all times, resulting in VSLAM
consuming 3180 J of energy with no apparent energy savings observed. Robots(2) and (3)
took 34.79 s and 36.06 s, respectively, to complete the VSLAM calculation, resulting in
energy-saving ratios of about 73% and 72%.
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Table 2. The calculation and comparison of the energy-saving effects of the robots.

Robot No. Robot Operation Time (s) VSLAM Operation
Time (s)

VSLAM Energy
Consumption (J) Energy-Saving Ratio

Robot(1) 127.2 127.2 3180 0%
Robot(2) 128.9 34.79 869.75 73%
Robot(3) 130 36.07 901.5 72.2%

MRS(Total) 386.1 198.05 4951.25 48.4%

Table 3 presents energy-saving results for a multi-disinfection robot system operating
continuously for 10 days, including two non-working weekends. During regular weekdays,
both the EnergyWise MRS and the disinfection service robot can reliably maintain approxi-
mately 125 trips per day in complex environments. Table 3 shows the 10-day accumulated
operational time along with a VSLAM calculation comparison. Our analysis indicates that,
compared to the previous experiment, all robots except the leading robot can benefit from
the algorithmic efficiency of the energy-saving selector. Specifically, this method can reduce
VSLAM computation resources by approximately 80% and improve efficiency by 54%. The
results demonstrate that the energy-saving selector can significantly improve the long-term
performance of the multi-robot system.
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Table 3. Running benefits after 10 days after importing energy-saving selector.

Robot NO. Robot Operation Time (h) VSLAM Operation
Time (h)

VSLAM Energy
Consumption (kJ) Energy-Saving Ratio

Robot(1) 74.2 74.2 6678 0%
Robot(2) 70.6 13.6 1226 81%
Robot(3) 67.9 12.5 1124 82%

MRS(Total) 212.7 100.3 9028 54%

5. Discussion and Conclusions

This paper developed an energy-saving-oriented multi-robot system and disinfection
service robots based on ROS. The proposed EnergyWise saving selector allows the MRS
to make proactive decisions on executing visual SLAM based on real-time localization
information for each robot, thereby addressing the issue of reduced energy efficiency in
long-term visual localization calculations. By combining EnergyWise MRS and service
robots, significant energy-saving effects in VSLAM are achieved through algorithmically
adjusting system resources for visual computation, resulting in an efficiency improvement
of nearly 54%. The system was applied in large public environments during the COVID-19
pandemic to provide environmental disinfection services.

In addition, the integration design of UWB and 2-level EKF helps to prevent occasional
localization failures of robots in large and complex environments caused by dynamic
crowds and obstacles. By analyzing the recorded data of various localization methods and
the outputs of the 2-level EKF during 100 h of operation in a large-scale field, it was observed
that LiDAR demonstrates stable localization capability, while VSLAM achieves the highest
accuracy but may experience transient localization deviations. The recorded results from
the 2-level EKF indicate that the first-level EKF combined with UWB effectively mitigates
the localization offset issue of ODOM + IMU, while the second-level EKF combined with
2D and VSLAM improves the overall localization accuracy to reach 3 cm.

The experimental results mentioned above confirm the effectiveness of EnergyWise
MRS, the energy efficiency module, and the 2-level EKF algorithm. Therefore, the findings
demonstrate that the proposed methods can be applied to service robot research. It not only
enhances MRS power efficiency but also improves the localization mechanism applicable
to large and complex environments. UWB can be integrated into mobile designs and assist
in long-range position sensing, thus allowing research achievements to be disseminated in
MRS applications to common fields.

MRS face academic challenges in information sharing, communication, and task allo-
cation. Information sharing is limited by communication bandwidth and network topology,
requiring effective communication protocols and routing algorithms. Communication can
be affected by delays, failures, and interference, necessitating robust communication mecha-
nisms. Methods to address these challenges include model predictive control, reinforcement
learning, and distributed optimization. In terms of MRS and robot connections, 5G commu-
nication technology can improve multi-robot systems’ communication performance and
task allocation.

Exploring the feasibility of 5G MRS is also a promising research direction. Since
MRS require a large amount of data exchange and collaboration, the high bandwidth and
low-latency characteristics of 5G communication technology can effectively support the
information sharing and communication needs between multi-robots. In addition, 5G
also provides more reliable connections and greater network capacity, which can help
solve communication bottlenecks in MRS. Future research could focus on larger-scale robot
control systems and facilitate diverse practical applications with faster and more reliable
communication and data-sharing capabilities.
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