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Abstract: The direction of human gaze is an important indicator of human behavior, reflecting the
level of attention and cognitive state towards various visual stimuli in the environment. Convolutional
neural networks have achieved good performance in gaze estimation tasks, but their global modeling
capability is limited, making it difficult to further improve prediction performance. In recent years,
transformer models have been introduced for gaze estimation and have achieved state-of-the-art
performance. However, their slicing-and-mapping mechanism for processing local image patches can
compromise local spatial information. Moreover, the single down-sampling rate and fixed-size tokens
are not suitable for multiscale feature learning in gaze estimation tasks. To overcome these limitations,
this study introduces a Swin Transformer for gaze estimation and designs two network architectures:
a pure Swin Transformer gaze estimation model (SwinT-GE) and a hybrid gaze estimation model
that combines convolutional structures with SwinT-GE (Res-Swin-GE). SwinT-GE uses the tiny
version of the Swin Transformer for gaze estimation. Res-Swin-GE replaces the slicing-and-mapping
mechanism of SwinT-GE with convolutional structures. Experimental results demonstrate that Res-
Swin-GE significantly outperforms SwinT-GE, exhibiting strong competitiveness on the MpiiFaceGaze
dataset and achieving a 7.5% performance improvement over existing state-of-the-art methods on the
Eyediap dataset.

Keywords: gaze estimation; swin transformer; convolutional neural networks (CNN); deep learning;
self-attention mechanism

1. Introduction

Gazing is a crucial form of human behavioral information that contains a wealth
of psychological insights and is a vital clue for comprehending human intentions and
emotions [1]. Gaze estimation by the human eye has a wide range of applications, including
medical treatment [2,3], virtual reality [4], human–computer interaction [5–8], market
research [9], and other fields. Gaze estimation research can be broadly categorized into
three areas based on different scenarios and applications: gaze point prediction [10], gaze
target prediction [11], and three-dimensional gaze estimation [12,13]. This study focuses
on three-dimensional line-of-gaze estimation.

Gaze estimation methods can be roughly divided into two categories: model-based
and appearance-based. The model-based gaze estimation method typically involves using
eye information, such as iris radius, kappa angle, and pupil position, to create a geometric
model for prediction [14,15]. These methods frequently require specialized equipment to
capture specific eye information [16,17], which can be costly and have limited applications.
As shown in Figure 1a, the appearance-based gaze estimation method does not require
specialized equipment and directly learns mapping functions from images in the gaze di-
rection, but requires enormous training data. Traditional appearance-based gaze estimation
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methods [18–20] typically learn theme-specific mapping functions. Therefore, these meth-
ods only demonstrate satisfactory performance in scenarios with limited head posture and
subject constraints and perform poorly in unconstrained scenarios. As shown in Figure 1b,
Sugano et al. [20] utilized a technique that integrated a saliency map, and generated a gaze
probability map and the average eye image to optimize the gaze estimator. This approach
enables the accurate prediction of gaze points using an optimized gaze estimator. With the
emergence of deep learning and the availability of numerous datasets, researchers [21–28]
have proposed appearance-based deep-learning gaze-estimation methods. As shown in
Figure 1c, these methods utilize various convolutional neural networks (CNN) models
and demonstrate exceptional performance even in uncontrolled environments, thereby
enhancing the accuracy of gaze estimation prediction in such scenarios [28]. Researchers
have achieved good performances using various CNN models. CNNs have a strong ability
to extract spatial details and effectively capture the local features of images. However,
CNNs may lose significant amounts of valuable information during pooling. This loss of
information can hinder the identification of local and global correlations, making it difficult
to capture the interrelationships between the eyes and face.

(c) Appearance-based deep learning gaze 

estimation methods

CNN

GazeEye image 

𝑒∗

Average eye

image ҧ𝑒
Gaze probability

map ҧ𝑝

Gaze estimator Gaze 

point Parameter 
optimization

(b) Traditional appearance-based gaze 

estimation method

(a) Appearance-based gaze estimation method

Mapping function Gaze

Face image Eye image

Appearance image

Figure 1. Basic methods for gaze estimation: (a) Appearance-based gaze estimation method. (b) Traditional
appearance-based gaze estimation methods, where * represents a specific eye image. (c) Appearance-
based deep learning gaze estimation methods.

Transformer was first proposed by Vaswani et al. [29]. At this stage, the transformer
model achieved the most advanced performance in natural language processing tasks.
With the remarkable performance of transformers in various tasks and the development
of models based on visual attention mechanisms in recent years, an increasing number of
transformer-based models have been applied to computer vision tasks and have achieved
good performance. Vit [30] employed a transformer structure to obtain better results
than the most advanced CNN in image classification tasks, showing that the transformer
achieved a better global relationship capture ability than the aforementioned CNN. How-
ever, unlike fixed-length word vectors in natural language processing tasks, target feature
scales in visual tasks are different, and fixed-length word vectors in transformers are un-
suitable for multiscale feature learning. Simultaneously, the resolution of the image is much
higher than the number of words in the text paragraph. therefore, it is difficult to achieve
the global self-attention calculation. To solve these problems, Liu et al. [31] proposed a
Swin Transformer model in 2021. Compared to transformer, the Swin Transformer can
better learn multiscale features by building a hierarchical feature map through a multistage
structure and employs Windows Multi-head Self-Attention (W-MSA) to limit self-attention
computing within the window, significantly reducing the computational complexity of
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self-attention, while designing Shifted Windows Multi-head Self-Attention (SW-MSA) to
ensure its global modeling ability.

Although numerous studies demonstrate the impressive capabilities of utilizing trans-
formers in visual tasks, their performance still lags behind that of similarly sized CNN.
One limiting factor is that other transformer-based models, such as the vision transformer
(ViT) [30], segment input images into non-overlapping patches [32] using a slicing-and-
mapping mechanism. The Swin Transformer follows the ViT approach [30] by dividing the
image into non-overlapping patches. These patches are then converted into vectors and
inputted into subsequent structures. As a result, the two-dimensional structure and local
spatial information inside the patch are lost, limiting the ability of the network to learn the
local spatial features of the image.

In this paper, we developed a Swin Transformer-based model to address gaze esti-
mation tasks. Based on the tiny version of the Swin Transformer, Swin-T, we designed
two network models, SwinT-GE and Res-Swin-GE. SwinT-GE uses Swin-T as the primary
framework to perform direct gaze estimation on images. To address the problem of the
slicing-and-mapping mechanism damaging the patch spatial information, ResSwin-GE
utilizes a combination of ResNet18 [33] and Swin-T to perform feature mapping on the
image. Compared with SwinT-GE, this approach preserves more local spatial features
while leveraging the Swin-T structure for multiscale feature learning and global modeling
of feature mapping.

To the best of our knowledge, this is the first study to introduce the Swin-T model to a
gaze-estimation task. The main contributions of this study are as follows.

(1) We introduced Swin-T into gaze estimation tasks and proposed a gaze estimation
network model based on Swin-T.

(2) We proposed a novel network model that combined a CNN and Swin-T and achieved
improved performance on two public datasets.

(3) We analyzed the improvement in network performance caused by using a CNN as a
pre-feature extraction module.

The rest of this paper is organized as follows. In Section 2, we review some related
work. Section 3 introduces the model structure in detail. In Section 4, we present our exper-
imental results and analyze the performance of the model. Finally, Section 5 summarizes
the study and suggests future research plans.

2. Related Works

In recent years, appearance-based deep-learning methods have become popular
in the field of gaze estimation, and numerous CNN-based gaze estimation methods
have been proposed. Zhang et al. [21] proposed the first CNN-based gaze-estimation
method. They designed a simple CNN based on LeNet [34], which employs a single
grayscale image of the human eye as an input for predicting the gaze direction. The perfor-
mance of the network exceeds that of most traditional appearance-based gaze-estimation
methods. Several researchers have proposed gaze-estimation methods based on CNNs.
Fischer et al. [22] utilized two VGG16 networks [24] to extract individual features from two
human eye images that were then connected for regression analysis. Cheng et al. [24] devel-
oped a four-stream CNN for extracting features from two human eye images. Two streams
were utilized to extract individual features from the left and right eye images, whereas the
other two streams were used to extract joint features from both images. Cheng et al. [25]
employed asymmetric regression to address extreme head postures and lighting conditions.
Park et al. [26] developed a method for learning the representation of human eye images
that reduced the impact of individual appearance differences. Chen et al. [27] utilized
extended convolutional networks to detect subtle changes in eye images. CNN-based meth-
ods have made significant progress in gaze estimation. However, CNN-based methods
commonly suffer from information loss in the pooling layer. The pooling layer compresses
the information within the input feature map into smaller representations. However, this
process may result in the loss of certain spatial information. The loss of information be-
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comes more severe as the number of pooling layers increases, which hinders global network
modeling. Therefore, the proposed method reduces the number of pooling layers and
introduces a self-attention mechanism for global modeling. The self-attention mechanism
calculates the dependency relationship between each feature vector and all other feature
vectors. It assigns a weight to each feature vector to demonstrate its importance within the
global features, thereby conducting global modeling. Compared to traditional convolu-
tional layers, the self-attention mechanism can model global features more flexibly without
requiring the pooling of input feature maps, thus avoiding information loss.

Dosovitskiy et al. [30] were the first to propose the application of transformers in
the field of computer vision and achieved impressive results. In the image classification
task, ViT uses the pure transformer model to achieve better performance than the most
advanced convolutional network. Compared with CNN, the transformer model better
captures global relationships. Inspired by this, Cheng et al. [35] proposed the application
of a transformer model to gaze estimation. However, the slicing-and-mapping mechanism
used in this method destroys spatial information contained in the patch. Consequently,
the pure transformer model fails to achieve good results in the field of gaze estimation.
Hence, they proposed a hybrid CNN and Transformer model for gaze estimation, which
preserves the local spatial information of facial images and enhances the performance of
the model. The structure of traditional transformers is unsuitable for learning multiscale
features in gaze estimation tasks, such as fine-grained human eye features that focus on
local details and coarse-grained facial features that focus on overall quality. In addition, the
global self-attention calculation for images is highly complex. Regarding the issue of the
slicing-and-mapping mechanism destroying patch spatial information, this study proposes
ResNet18 [33] in its stead to address the problem. ResNet18 can better preserve the spatial
relationships between pixels within a patch, thereby maintaining the spatial information of
the image. Residual connections enable the network to learn complex image features while
maintaining information flow. Considering that traditional transformers are unsuitable for
gaze estimation tasks, this study adopted Swin-T, which is suitable for computer vision
tasks and has good computational efficiency for self-attention calculations and multiscale
feature learning.

3. Gaze Estimation Based on Swin-T

In this section, we introduce the experimental details of the application of Swin-T
to gaze estimation. Two structures were designed for gaze estimation, SwinT-GE and
Res-Swin-GE.

3.1. SwinT-GE Applied to Gaze Estimation

SwinT-GE uses the tiny version Swin-T infrastructure in the Swin Transformer to
conduct experiments. The network structure of SwinT-GE is shown in Figure 2, and its
main parts are as follows.

Input a face image I ∈ RH×W×3. Patch partition: the face image is divided into H×W
16

non-overlapping patches according to adjacent 4× 4 pixels and each patch Ii ∈ RH×W×3,
where i = 1 · · · H×W

16 . Then, each patch is flatten according to the three channels of R, G, B

to obtain the feature map I′ ∈ R
H
4 ×

W
4 ×48, where H and W refer to the height and width of

the image, respectively.
The feature map, which are the stage-wise outputs of different layers, undergoes a

multi-stage process to construct feature maps of varying sizes, enabling multiscale self-
attention calculations. Stage 1: the number of channels in the feature map is linearly
mapped from 48 to C using Linear Embedding (where C = 96 in Swin-T). The remaining
three stages (Stage 2–4) are first downsampled through patch merging, which halves the
height and width of the feature map, doubles the number of channels, and then enters
the repeatedly stacked Swin-T Block for self-attention calculation. The core module in
each stage is the Swin-T Block. After the feature map enters the Swin-T Block, it is first
normalized through the Layer Norm [36] to stabilize the data distribution, followed by W-
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MSA or SW-MSA. Compared with MSA in ViT, W-MSA significantly reduces the number
of calculations. MSA needs to perform self-attention calculations on the entire feature
map. Whereas, W-MSA first divides the feature map into multiple mutually independent
overlap windows of equal length and width and then performs self-attention calculations
on the feature vectors inside each window, effectively reducing the amount of calculation.
However, only a self-attention calculation is performed on the feature vector in a single
window, and the information between windows cannot be transmitted, which greatly
limits the learning ability of the model and its global modeling ability. To address this
challenge, Swin-T introduces SW-MSA, a mechanism that modifies the original window
layout of W-MSA. SW-MSA achieves this by shifting the window layout diagonally from
the upper left to the lower right, with a movement of half the window length. Consequently,
the feature map is partitioned into new windows based on different eigenvectors of the
modified window layout. Subsequently, the self-attention is calculated for the eigenvectors
in the new window to achieve information transmission between different windows and
ensure the global modeling ability of the model. Therefore, W-MSA and SW-MSA always
appear in pairs. A DropPath layer is used to regularize the feature map obtained from the
self-attention calculation. Then, the regularized feature map is added to the feature map
before entering the Layer Norm to form a residual connection, the next Layer Norm for
data normalization, and a multilayer perceptron (MLP) to increase the nonlinear expression
ability of the model. Adding the feature map from the DropPath layer to the feature map
can form a residual connection output of the Swin-T Block before the feature map enters
the Layer Norm.

To adapt to the gaze estimation task, this study adds Layer Norm, an adaptive average
pool layer, and a fully connected layer with an output dimension of two to predict the gaze
vector after the last stage.

Input Image

Patch Partition

Linear Embedding
Stage 1

Patch Merging

Swin-T Block

Swin-T Block

Swin-T Block

Patch Merging

Patch Merging

Layer Norm

W-MAS

DropPath

⊕

Layer Norm

MLP

DropPath

⊕

Layer Norm

Adaptive Average Pool

Fully Connected Layer
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Figure 2. SwinT-GE network structure for gaze estimation.

3.2. Res-Swin-GE Applied to Gaze Estimation

Res-Swin-GE consists of a ResNet18-based ResNet Block and SwinT-GE with removed
patch partitions and linear embedding modules. The ResNet was proposed by He et al. [33].
The ResNet network incorporates a residual structure by introducing residual connections
between different layers. This design allows for the retention of shallow network features
and effectively mitigates the issue of model degradation. As a result, ResNet enables the
construction of deep convolutional neural networks that exhibit improved performance.
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The overall network structure of Res-Swin-GE is shown in Figure 3. This study replaces
the patch partition and linear embedding parts in SwinT-GE with ResNet Block, whose
main structure is the basic structure ResNet18. To match the number of feature channels
of the Swin-T Block in Stage 1, a 1 × 1 convolutional layer is used to adjust the number of
output channels at the end of the ResNet Block. Input a face image I ∈ R224×224×3, and
obtain the feature map I′ ∈ R7×7×96 after convolution partial feature extraction. Notably,
this study does not adjust the height and width of the feature map, but directly inputs the
feature map into the Swin-T Block. To match the size of the feature map, this study adjusts
the window size in Swin-T to enhance accommodation. The self-attention calculation under
small feature maps is discussed in detail in the subsequent experimental Section 4.4. The
subsequent structure is consistent with that of SwinT-GE described in Section 3.1. After
Stage 4, Layer Norm, adaptive average pooling layer, and a fully connected layer with an
output dimension of two are added to predict the gaze vector.

7×7 Conv1,64,/2

3×3MaxPool,/2

3×3 Conv,64,/2

3×3 Conv,64

3×3 Conv,64

3×3 Conv,64

3×3 Conv,128,/2

3×3 Conv,128

3×3 Conv,128

3×3 Conv,128

3×3 Conv,256,/2

3×3 Conv,256

3×3 Conv, 256

3×3 Conv, 256

3×3 Conv,512,/2

3×3 Conv, 512

3×3 Conv, 512

3×3 Conv, 512

Swin-T block

Patch Merging

Swin-T block

Swin-T block

Swin-T block

×2

Patch Merging

Patch Merging

Layer Norm

Adaptive Average Pool

Fully Connected Layer

Gaze

Input Image

ResNet Block

Stage 1

Stage 2

Stage 3

Stage 4

×2

×6

×2

1×1 Conv,96

Figure 3. Network structure of Res-Swin-GE.

4. Experiments

This section details the experimental performance of SwinT-GE and Res-Swin-GE on
two public datasets, MpiiFaceGaze and Eyediap, and compares the effectiveness of the
two primary modules in Res-Swin-GE. In Section 4.1, the experimental equipment and
details are introduced. Section 4.2 provides a detailed description of the two public datasets
used in this study, MpiiFaceGaze and Eyediap, as well as the preprocessing operations
applied to the datasets. In Section 4.3, the evaluation metrics and methods for the model
performance are described in detail. Section 4.4 discusses the effect of the hyperparameter
Window Size on the model performance in Res-Swin-GE. In Section 4.5, the experimental
results are analyzed, and some current advanced gaze estimation methods are selected
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and compared with the proposed method. In Section 4.6, Res-Swin-GE is subjected to
ablation experiments to explore the impact of the different components of the model on the
performance of the model.

4.1. Experimental Details

The model training in this study was conducted via a remote connection to a server
with an Ubuntu 20.04.3 operating system and PyTorch deep learning framework, using
Python3.8 programming language, and two NVIDIA GeForce RTX 3090 GPUs with 24 GB
memory. ADAMW [37] was used as the optimizer, and L1Loss was used as the loss function
for training. The iteration cycle was set to 30, and the initial learning rate was set to 5 × 10−4.

4.2. Datasets

In order to better evaluate the performance of the model, this article conducted experi-
ments on two publicly available popular datasets, MpiiFaceGaze and Eyediap. Figure 4
shows examples of facial images from the two datasets.

MpiiFaceGaze Eyediap

(a)

MpiiFaceGaze Eyediap

(b)

Figure 4. (a) Example face images in MpiiFaceGaze. (b) Example face images in Eyediap.

The MpiiFaceGaze [38] dataset, proposed and publicly released by Zhang et al. in 2017,
is a popular appearance-based gaze estimation dataset. The participants were requested
to install the corresponding program on their laptops and gaze at the target points, which
were generated at 20 random positions by the program every 10 min. The program would
simultaneously call the front-facing camera of the computer to capture the facial data of
the participants while generating the target points. The dataset comprised 213,659 facial
images from 15 participants. This data collection method in real environments provides
rich lighting and head-pose variations, offers unprecedented authenticity, and is suitable
for evaluating unconstrained gaze estimation methods.

The Eyediap [39] dataset was proposed and publicly released by Kenneth et al. in
2014. Participants were requested to sit in front of a depth camera and continuously gaze
at a randomly moving ball, while data were acquired using both the depth camera and a
regular RGB camera. After data acquisition, the researchers used the three-dimensional
coordinates recorded by the depth camera to calculate the gaze direction. The dataset
contains 94 video segments from 16 participants, each accompanied by a file providing
important information, such as the head pose and target location for each frame. The gaze-
labeling results of the dataset were relatively accurate because of the use of a depth camera
for data acquisition. However, there was no significant variation in lighting conditions
because the data were collected exclusively in a laboratory environment.

This study followed the dataset preprocessing procedure proposed by Fischer et al. [22]
to crop 224 × 224 color facial images from the two datasets for gaze estimation.

4.3. Evaluation Metric

In this study, the leave-one-person-out (LOPO) method was used as the experimental
evaluation metric. Such an experimental strategy is common in experimental evaluations
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of gaze estimation. There are 15 experimental subjects in the MpiiFaceGaze dataset. One
of the experimental subjects was selected successively as the test set, and the remaining
14 experimental subjects were selected as the training set for the experiments. Finally, the
average angular error of all experiments was used as the model performance. This study
adopted the same strategy for the Eyediap dataset. Notably, the Eyediap dataset lacks
experimental subjects P12 and P13, with only 14 subjects.

In this study, angular error was used as the evaluation metric for model performance.
The larger the angular error value, the larger the model error, and the lower the performance.
The angular error is defined as

Langular = arccos
(

g · ĝ
‖g‖ · ‖ĝ‖

)
(1)

Here, g ∈ R3 is the true gaze vector, while ĝ ∈ R3 is the predicted gaze vector of
the model.

4.4. Window Size Parameter Analysis of Res-Swin-GE

Window size in Res-Swin-GE is an important parameter that determines the size of
each sub-block of the feature map in W-MSA and SW-MSA. By adjusting the window
size, the size of each sub-block can be controlled, thereby affecting the receptive field
size, accuracy, and computational efficiency of the network. Reducing the window size
can enhance the model’s ability to capture fine-grained details and extract local features.
However, it is important to note that this also leads to increased computational requirements
and memory usage. Whereas, increasing the window size can enhance the model’s ability
to extract global features, capturing a broader context. However, it may result in the loss of
detailed information and local features. This study keeps other parameters in Res-Swin-GE
unchanged and discusses the influence of window size on the experimental performance
of Res-Swin-GE. Table 1 lists the angle errors of Res-Swin-GE for different window sizes
on the two public datasets. As listed in Table 1, this study evaluated the performance
of window size from 1 to 7. Experiments show that windows that are too large or small
degrade the performance of the model. This paper found that when adjusting window
size = 2, Res-Swin-GE recorded optimal performance for MpiiFaceGaze and Eyediap, that
is, Res-Swin-GE reached 3.75◦ on MpiiFaceGaze and 4.78◦ on Eyediap.

Table 1. Angular error of Res-Swin-GE on MpiiFaceGaze and Eyediap under different window sizes.

Hyper-Parameters MpiiFaceGaze [38] Eyediap [39]

Window Size WS

WS = 1 3.94◦ 4.86◦

WS = 2 3.75◦ 4.78◦

WS = 3 4.76◦ 4.85◦

WS = 4 3.82◦ 5.18◦

WS = 5 5.13◦ 4.98◦

WS = 6 4.67◦ 4.91◦

WS = 7 4.60◦ 4.95◦

4.5. Experimental Results Analysis
4.5.1. Angular Error of SwinT-GE and Res-Swin-GE on Different Subjects

As shown in Table 2, in the MpiiFaceGaze dataset, when the samples of P0 subjects
were selected as the test set, the prediction performance of SwinT-GE and Res-Swin-GE
was optimal, and the angular errors are 8.46◦ and 2.22◦, respectively. When the samples
from the P14 subjects were used as the test set, the prediction performances of SwinT-GE
and Res-Swin-GE were the worst, with angular errors of 10.83◦ and 5.10◦, respectively. The
differences were 2.37◦ and 2.88◦, respectively. As shown in Table 3, in the Eyediap dataset,
when the samples of P14 subjects were selected as the test set, the prediction performance
of SwinT-GE and Res-Swin-GE was optimal, and the angular errors are 8.28◦ and 3.18◦,
respectively. When the samples of P10 subjects were selected as the test set, SwinT-GE
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performed the worst, with an angular error of 10.75◦. When the samples of P4 subjects
were selected as the test set, Res-Swin-GE performed the worst with an angular error of
6.29°. The differences between SwinT-GE and Res-Swin-GE in the two cases were 2.47◦ and
3.11◦, respectively.

As shown in Tables 2 and 3, when the samples of different subjects in the dataset
were selected as the training set, the performances of SwinT-GE and Res-Swin-GE differed
significantly. This is because the training and test sets contain different subject samples.
Even if they gaze in the same direction, different subjects show different kappa angles
owing to the different internal structures of their eyeballs. The size of the kappa angle is
determined by the internal parameters of the eyeball, and it is difficult to determine the size
learned from the images. As a result, the performances of SwinT-GE and Res-Swin-GE were
quite different when faced with different subjects. This is called the personal calibration
problem, and is quite prevalent in the field of gaze estimation.

The calibration problem can be considered a domain adaptation problem, where the
training set is the source domain and the test set is the target domain. The test set typically
contains unseen subjects (cross-person questions) or unseen environments (cross-dataset
questions) [40]. Personal calibration problems are related to many factors, such as the
type of dataset. In the MpiiFaceGaze dataset, the difference between the extreme results
predicted by SwinT-GE and Res-Swin-GE was 2.37◦ and 2.88◦, respectively. In the EyeDiap
dataset, the difference in extreme results predicted by SwinT-GE and Res-Swin-GE was 2.47°
and 3.11◦, respectively. This is because the MpiiFaceGaze dataset is collected from the real
environment, has richer light changes and head pose changes, and contains more samples.
The network structure proposed in this study can efficiently use the rich feature information
contained in the dataset. Thus, the performance of this dataset is relatively stable.

Table 2. Angular errors of SwinT-GE and Res-Swin-GE for each experimental subject on the
MpiiFaceGaze [38] dataset.

Methods P0 P1 P2 P3 P4 P5 P6 P7

SwinT-GE 8.46◦ 8.69◦ 8.89◦ 9.80◦ 9.08◦ 8.81◦ 10.32◦ 9.54◦

Res-Swin-GE 2.22◦ 2.66◦ 3.60◦ 3.84◦ 3.01◦ 3.49◦ 3.16◦ 4.80◦

Methods P8 P9 P10 P11 P12 P13 P14 Avg

SwinT-GE 9.79◦ 9.08◦ 8.74◦ 8.51◦ 8.65◦ 9.11◦ 10.83◦ 9.29◦

Res-Swin-GE 4.41◦ 4.48◦ 3.33◦ 3.49◦ 4.83◦ 3.79◦ 5.10◦ 3.75◦

Table 3. Angular errors of SwinT-GE and Res-Swin-GE for each experimental subject on the Eye-
diap [39] dataset. Note that the Eyediap dataset lacks experimental subjects P12 and P13.

Methods P1 P2 P3 P4 P5 P6 P7 P8 P9

SwinT-GE 10.36◦ 9.67◦ 9.84◦ 10.63◦ 10.48◦ 10.45◦ 10.68◦ 10.44◦ 9.21◦

Res-Swin-GE 4.46◦ 4.15◦ 3.62◦ 6.29◦ 5.07◦ 6.21◦ 6.15◦ 5.82◦ 6.14◦

Methods P10 P11 P12 P13 P14 P15 P16 Avg

SwinT-GE 10.75◦ 9.55◦ - - 8.28◦ 9.59◦ 9.95◦ 9.99◦

Res-Swin-GE 5.00◦ 4.16◦ - - 3.18◦ 3.39◦ 3.32◦ 4.78◦

4.5.2. Angular Error of SwinT-GE and Res-Swin-GE at Different Gaze Angles

Figure 5a,b are the distribution diagram of gaze direction of subjects in the Mpi-
iFaceGaze dataset and Eyediap dataset. The horizontal axis is the angle of the yaw axis of
the gaze direction, and the vertical axis is the angle of the pitch axis of the gaze direction.
The closer the color is to orange-red, the greater the data distribution, and the closer the
color is to dark blue, the smaller the data distribution. Figure 5 illustrates that both datasets
exhibit a higher concentration of gaze direction data in the central area, while displaying a
lower distribution of data in the extreme gaze directions.
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Figure 6a–d show the angular error distribution of the SwinT-GE and Res-Swin-GE
prediction results on the two public datasets, respectively, where the horizontal axis is the
angle of the yaw axis of the gaze direction and the vertical axis is the angle of the pitch axis
of the gaze direction. The closer the color is to orange-red, the greater the angular error of
the model’s prediction results at this gaze angle. the closer the color is to dark blue, the
smaller the angular error of the model’s prediction results at this gaze angle. As shown
in Figure 6, on the two datasets, SwinT-GE is overall bright, while Res-Swin-GE is overall
blue. This shows that Res-Swin-GE performs better overall than SwinT-GE. However, the
prediction performance of the two network structures under extreme gaze angles was
poor because there were fewer learning samples under extreme angles, and the impact of
personal calibration problems was more significant under extreme gaze angles.

MpiiFaceGaze Eyediap

(a) (b)(a)

MpiiFaceGaze Eyediap

(a) (b)(b)

Figure 5. Data distribution of subjects’ gaze directions in the two public datasets: (a) MpiiFaceGaze [38].
(b) Eyediap [39].

(a) (b)

MpiiFaceGaze Eyediap

(c) (d)

SwinT-GE

Angular Error 

Distribution

Res-Swin-GE

Angular Error 

Distribution

Figure 6. Angular error distribution of prediction results for the two network structures under
different gaze directions on the two public datasets. (a,c) Angular error distribution of SwinT-GE and
Res-Swin-GE on the MpiiFaceGaze [38] dataset. (b,d) Angular error distribution of SwinT-GE and
Res-Swin-GE on the Eyediap [39] dataset.
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Figure 7a,b show the improved prediction accuracy of Res-Swin-GE compared to
SwinT-GE on the MpiiFaceGaze and Eyediap datasets under different gaze directions.
Figure 7 was obtained by considering the difference between the angular error distribution
of SwinT-GE and that of the dataset corresponding to Res-Swin-GE in Figure 6. The
horizontal axis is the included angle of the yaw axis in the gaze direction, and the vertical
axis is the angle of the pitch axis in the gaze direction. The closer the color is to orange-red,
the greater the improvement in prediction performance at that gaze angle. the closer the
color is to dark blue, the smaller the improvement. As shown in Figure 7, the color near
the center is blue, while the color near the edges is orangish-red. This shows that the
prediction accuracy of Res-Swin-GE showed a slight improvement in the gaze direction
near the central area, but the prediction accuracy of Res-Swin-GE showed a more significant
improvement in the extreme gaze direction.

MpiiFaceGaze Eyediap

(a) (b)(a)

MpiiFaceGaze Eyediap

(a) (b)(b)

Figure 7. Improved prediction accuracy of Res-Swin-GE compared to SwinT-GE under different gaze
directions for the two public datasets: (a) MpiiFaceGaze [38]. (b) Eyediap [39].

4.5.3. Comparison of Slicing-and-Mapping Mechanism and ResNet Block Feature
Extraction Effect

In Figures 8 and 9, column a shows the original input image, and columns b, c, d are
extracted from the slicing-and-mapping mechanism, ResNet Block shallow convolution, and
ResNet Block deep convolution feature maps. By comparing columns b, c in Figures 8 and 9, it
can be seen that the feature maps extracted by the slicing-and-mapping mechanism are
sketchy. As a result, many of the fine-grained features of the eyes and coarse-grained
features of the face are lost, which is very important for gaze estimation. In contrast, the
feature map extracted by ResNet Block shallow convolution can contain more details and
preserve various features of the image, which is helpful for further abstract learning of the
subsequent structure.

Observing the column d feature maps in Figures 8 and 9, it can be observed that the
advantage of using ResNet Block to replace the slicing-and-mapping mechanism is not
only that it effectively preserves various details of the image, but also that ResNet Block
can automatically extract important features related to gaze estimation tasks (such as eye
features) and filter out some weakly correlated features (such as nose, mouth, and other
features), ensuring that the subsequent structure focuses on important features during the
gaze prediction action tasks.
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MiifaceGaze

(a) (b) (c) (d)

Figure 8. Example of feature maps extracted by different modules from images in the MpiiFaceGaze [38]
dataset: (a) Original input image. (b) The feature maps extracted from the slicing-and-mapping.
(c) The feature maps extracted from ResNet Block shallow convolution. (d) The feature maps extracted
from ResNet Block deep convolution.Eyediap

(a) (b) (c) (d)

Figure 9. Example of feature maps extracted by different modules from images in the Eyediap [39]
dataset: (a) Original input image. (b) The feature maps extracted from the slicing-and-mapping.
(c) The feature maps extracted from ResNet Block shallow convolution. (d) The feature maps extracted
from ResNet Block deep convolution.

4.5.4. Comparison to the State-of-the-Art

To better evaluate the performance of the Res-Swin-GE network, we compare Res-
Swin-GE with state-of-the-art methods. The result is shown in Table 4.

Table 4. Comparison of angular errors of different networks on two public datasets.

Methods MpiiFaceGaze [38] Eyediap [39]

iTracker [10] 7.33◦ 7.13◦

RT-Gene [41] 4.66◦ 6.02◦

FullFace [42] 4.93◦ 6.53◦

Dilated-Net [22] 4.42◦ 6.19◦

CA-Net [12] 4.27◦ 5.27◦

Gaze360 [23] 4.06◦ 5.36◦

GazeTR-Hybrid [35] 4.00◦ 5.17◦

AFF-Net [43] 3.73◦ 6.41◦

Res-Swin-GE (ours) 3.75◦ 4.78◦

Figure 10 shows the angular errors of Res-Swin-GE and the aforementioned networks,
of which some recorded good performances on the MpiiFaceGaze and Eyediap datasets.
The vertical axis is the angular error of each network on the MpiiFaceGaze, and the
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horizontal axis is the angular error of each network on Eyediap. the closer to the lower
left corner, the better the performance of the method on the MpiiFaceGaze and Eyediap
datasets. As shown in Table 4, the angular error of Res-Swin-GE on the MpiiFaceGaze
dataset reaches 3.75◦, and the angular error of the next best method (AFF-Net) on the
MpiiFaceGaze dataset is 3.73◦. the difference between the two is only 0.02◦. Although
Res-Swin-GE achieved the most advanced performance with an angular error of 4.78◦ on
the Eyediap dataset, the error of the next best method (GazeTR-Hybrid) on the Eyediap
dataset was 5.17◦, and the difference between the two was 0.38◦. Res-Swin-GE increased
by 7.5% compared with GazeTR-Hybrid. It is evident that Res-Swin-GE outperforms other
methods and is located closest to the bottom left corner of Figure 10.

MpiiFaceGaze Evediap

iTracker 7.33 7.13

RT-Gene 4.66 6.02

FullFace 4.96 6.76

Dilated-Net 4.42 6.19

CA-Net 4.27 5.27

Gaze360 4.06 5.36

GazeTR-Hybird 4 5.17

AFF-Net 3.73 6.41

Hybird-Swin(ours) 3.75 4.78

3
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4
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e

Eyediap

iTracker

RT-Gene

FullFace

Dilated-Net

CA-Net

Gaze360

GazeTR-Hybird

AFF-Net

Res-Swin-GE(ours)

Better

(ours)

Figure 10. Angular errors of Res-Swin-GE compared to different networks on two public datasets.

4.6. Ablation Study

This section describes the experimental ablation results. Res-Swin-GE comprises
ResNet18 and a Swin-T main structure. In order to verify the effectiveness of the combi-
nation of the two, this paper disassembles the two parts and adds a fully connected layer
after the last layer of ResNet18 to output the gaze vector. In this paper, this structure is
called ResNet18-Pure. The Swin-T part uses the SwinT-GE mentioned in Section 3.1, sets
the classification number to two, and directly predicts the gaze vector from the facial image.

In Table 5, the angular errors of Res-Swin-GE on the MpiiFaceGaze and Eyediap
datasets are 3.75◦ and 4.78◦, respectively. After removing the Swin-T structure, the angular
errors of ResNet18-Pure on the MpiiFaceGaze and Eyediap datasets are 4.00◦ and 5.15◦,
respectively. Compared with Res-Swin-GE, the angular errors increased by 6.7% and 7.7%,
respectively, demonstrating the role of Swin-T structure in Res-Swin-GE. After removing
ResNet18, the angular errors of SwinT-GE on the MpiiFaceGaze and Eyediap datasets
reached 9.29◦ and 9.99◦, respectively. Compared with Res-Swin-GE, the accuracy decreased
significantly, and the angular error increased, i.e., 147.7% and 109.0%, respectively. This
demonstrates the importance of the ResNet18 structure in Res-Swin-GE. Figure 11 presents
a more intuitive comparison. It is apparent that the ResNet18 structure brings significant
improvement. Meanwhile, the Swin-T architecture is also crucial.
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Table 5. Angular errors of Quad Res-Swin-GE, ResNet18-Pure, and SwinT-GE on two public datasets.

Method ResNet Swin-T MpiiFaceGaze [38] Eyediap [39]

SwinT-GE ×
√

9.29◦ 9.99◦

ResNet18-Pure
√

× 4.00◦ 5.15◦

Res-Swin-GE
√ √

3.75◦ 4.78◦

3.75 4.00 

9.29 
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r 

er
ro

r

MpiiFaceGaze

4.78 5.15 

9.99 

A
n

g
u

la
r 

er
ro

r

Eyediap

Figure 11. Angular errors of Res-Swin-GE, ResNet18-Pure, and SwinT-GE on the two publicly
available datasets.

5. Conclusions

In this paper, we introduced a Swin Transformer into the field of gaze estimation.
We proposed two forms of Swin Transformers: the pure Swin Transformer (SwinT-GE)
and the hybrid Swin Transformer (Res-Swin-GE). The structure of SwinT-GE followed
the tiny version of the Swin Transformer, which directly predicted the direction of gaze
from face images. Res-Swin-GE replaced the slicing-and-mapping mechanism of SwinT-
GE with ResNet18. The experimental results demonstrated that Res-Swin-GE performed
significantly better than SwinT-GE in gaze estimation tasks. Compared to state-of-the-art
methods, Res-Swin-GE demonstrated strong competitiveness on both the Mapiifacegaze
dataset and the Eyediap dataset. In future work, we will focus on extracting more robust
features to address the challenges posed by individual calibration issues. Furthermore, we
plan to apply Res-Swin-GE in the fields of virtual reality and augmented reality to provide
more realistic and interactive experiences.
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