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Abstract: We designed an out-of-water radar water velocity and depth sensor, which is unique due
to its low cost and low power consumption. The sensor is a first at a cost of less than USD 50, which
is well suited to previously cost-prohibited high-resolution monitoring schemes. This use case is
further supported by its out-of-water operation, which provides low-effort installations and longer
maintenance-free intervals when compared with in-water sensors. The inclusion of both velocity
and depth measurement capabilities allows the sensor to also be used as an all-in-one solution for
flowrate measurement. We discuss the design of the sensor, which has been made freely available
under open-hardware and open-source licenses. The design uses commonly available electronic
components, and a 3D-printed casing makes the design easy to replicate and modify. Not before
seen on a hydrology sensor, we include a 3D-printed radar lens in the casing, which boosts radar
sensitivity by 21 dB. The velocity and depth-sensing performance were characterised in laboratory
and in-field tests. The depth is accurate to within ±6% and ±7 mm and the uncertainty in the velocity
measurements ranges from less than 30% to 36% in both laboratory and field conditions. Our sensor
is demonstrated to be a feasible low-cost design which nears the uncertainty of current, yet more
expensive, velocity sensors, especially when field performance is considered.

Keywords: Doppler radar; field verification; IoT; low cost; low power; open hardware; noncontact;
radar level measurement; real-time environmental monitoring; sensor design; stormwater monitoring;
urban water; water depth; water velocity

1. Introduction

When monitoring, modelling, and engineering urban water systems, one critical
hydrological variable is the volumetric flowrate or discharge. Knowledge of discharge is
important in optimising future urban water systems and minimising their environmental
impact [1,2], detecting and locating leaks and burst pipes [3], and estimating pollutants
from combined sewer overflow events [4,5]. Flow can be measured in a number of ways,
ranging from manual dilution methods (i.e., adding salt tracers and EC sensors [6]), using
stage discharge relationships that may or may not include the use of hydraulic control
structures (i.e., weirs [7–9]), to the velocity–area method. Due to its accuracy and relative
ease of installation, the velocity–area method is by far the most common method for small
streams and stormwater drains. The cross-sectional area can be estimated from a water
depth measurement using known bathymetry [10]. The mean flow velocity can either be
obtained from in-water sensors or estimated via the surface velocity from an out-of-water
sensor [9,11,12].

To facilitate a deeper understanding and to obtain a more accurate understanding of
waterways, higher resolution monitoring has been desired so that real-time monitoring
and control of our urban waterways can be achieved [3,13–15]. For flowrate monitoring
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via the velocity–area method, this means having suitable velocity and depth sensors.
Unfortunately, commercially available sensors for monitoring velocity, such as QCam [16]
or the HACH AV sensor [17], are expensive, with per-sensor costs of several thousand USD,
onerous to install, and require ongoing maintenance [18,19]. This limits their potential for
deployment in the large quantities needed for higher resolution monitoring and prompts
the call for low-cost, low-maintenance sensors that are easy to install [20].

Fortunately, low-cost velocity sensing has seen some advances in recent years. Par-
ticularly, in-water sensors have been developed, such as the hydromast proposed in [21],
which utilises the pressure exerted by the water flow to measure the water velocity at
the bed of the channel. A low-cost acoustic Doppler sensor is proposed in [22] and uses
continuous-wave ultrasonic Doppler to obtain a measurement for the water velocity.

While low-cost sensors have shown promise in accurately and inexpensively measur-
ing water velocity, these in-water sensors need to be located within the water stream [21,22].
In-water sensors are susceptible to debris and may require hazardous confined-space entry
to be mounted on the channel bed [23]. This can lead to additional costs, initially during
installation and in maintenance over the lifetime of the sensor. For example, [24] outlines
the severe challenges of operating an in-water sensor, including maintenance up to every
two weeks, which is not logistically or economically possible when considering a dense
network of sensors in a water catchment. Out-of-water and noncontact sensors promise to
offer the same measurements, but without contact with the body of water being measured,
hence alleviating these issues.

There are plenty of examples that describe how to measure water depth using non-
contact, out-of-water approaches [25,26]. An advanced approach was described by [27],
who developed a novel out-of-water depth sensor by measuring the phase of a reflected
radar signal. This approach achieved millimetre accuracy; however, it is unclear if it would
be suitable for use in remote-area applications given power and size constraints. Unfor-
tunately, there are a limited number of examples in the literature of noncontact velocity
sensing, and those that exist in the commercial realm have high purchase costs.

There are two technologies reported in the research literature for out-of-water velocity
sensing: particle image velocimetry and Doppler radar velocimetry [28,29]. Particle image
velocimetry techniques, while delivering accurate results, are not well adapted to low-
power or low-cost sensing due to their use of computationally heavy algorithms [30–32]
which require high battery power and processors sufficiently adapted to the required
calculations. Additionally, image-based techniques are susceptible to adverse weather,
such as fog, or lighting conditions, such as nighttime [33]. Doppler radar has recently been
shown to be viable as a low-cost technology in [34], in which a prototype custom radar
sensor and data processing algorithm was developed. These authors failed to develop an
autonomous ‘field-ready’ sensor and simply demonstrated that the necessary technologies
are feasible. The authors of [35] utilised a custom-designed low-noise amplifier integrated
circuit, which is cost-infeasible for all but commercial scales. They do, however, incorporate
an inclinometer for automatic measurement of the sensor angle. Neither of these works
investigated combining depth measurement into the sensor.

To the authors’ knowledge, there have only been two recent works discussing a
combined water level and velocity sensor. Both [36,37] use in-water sensors that use optical
properties to determine the water level and velocity. These papers focus on the proof
of concept of the measurement principle and do not consider their incorporation into a
‘field-ready’ or low-cost design.

It is apparent that current approaches to low-cost velocity sensing each have their own
limitations. Our review of the literature on the current state of low-cost sensors concluded
that there is not a current viable solution for low-cost velocity and depth monitoring. This
paper proposes a newly designed sensor to address this significant gap in the space of
low-cost water monitoring.

The sensor presented in our paper is a low-cost, low-power, out-of-water radar sensor
that can measure both water velocity and water depth. It addresses many of the challenges
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found when using existing sensors. By being both low-power and out-of-water, the sensor
is low-maintenance as its batteries need to be changed very infrequently, and being out of
the water, it is less likely to be blocked by debris. Furthermore, being out-of-water also
simplifies the installation of the sensor, as mounting the sensor above the waterway can
often be accomplished without entering the waterway or requiring confined-space entry.

While previous works have explored the potential of low-cost radar measurement,
they left significant work in terms of bringing this technology into a state ready for use is
large-scale environmental monitoring schemes. In contrast, the sensor developed in this
study is ready for field operation in such monitoring schemes. Our sensor advances the
out-of-water noncontact sensing space by integrating depth and velocity sensing into a
single package, utilises 3D printing for cost reduction and reproduction ease, and includes
a 3D-printed radar lens to vastly increase the sensitivity of the device.

In this paper, (1) the design and operating principle of the sensor are discussed,
(2) the sensor is validated and characterised in laboratory and in-field tests, and (3) the
results of the laboratory and in-field tests are used to characterise the sensor and analyse its
performance.

2. Materials and Methods
2.1. Sensor Design

The sensor uses radar to measure both the water velocity and the water depth. A
commercial off-the-shelf radar chip, the Acconeer XM132 [38], handles the generation
and detection of the radar signals. The XM132 uses a pulsed coherent 60 GHz radar. In
general, radar operates by emitting a radio wave which then reflects off an object and
is detected by the radar antenna. Pulsed coherent radar sends out short pulses of radar,
the time of flight of which can be used to determine the distance to the object. As the
pulses are coherent, their phase is well known. This can be used to determine the phase
upon reflection, which can encode velocity information via the Doppler effect. For the
context of water velocity measurement, the radar is typically reflected back to the sensor
due to the effect of Bragg scattering. This occurs off short surface waves with wavelength
on the order of the radar wavelength, which may be caused by wind, rain, turbulence,
and longer surface waves [39,40]. These surface waves travel at a speed of a few tens
of centimetres per second along the water surface, hence in general the reflected signal
contains multiple frequency components from the advancing and receding surface waves.
Due to current variations, these two frequency components may have differing amplitudes
and may not be distinguishable. Ideally, the midpoint of the two frequency components
should be measured to obtain the surface velocity [39,40]. The Doppler effect then defines
the relationship between the frequency shift of the radar upon reflection and the water
velocity via

v =
c∆ f

2 f cosθ
(1)

where c is the speed of light in air, ∆f is the frequency shift between incoming and outgoing
radar signals, f is the radar frequency (fixed for the used radar module), and θ is the angle
between the radar and object motion.

The line-of-sight distance to the water surface can be determined by considering the
time taken for the radar signal to return to the sensor. Therefore, the distance d to the water
surface can be determined using the following:

d =
ct
2

(2)

where t is the time of flight of the pulse.
For a reflection off a water surface, a radar measurement can determine both the

Doppler shift and the time of flight. Here, as also seen in [35], it is approximated that the
water surface is perpendicular to gravity, hence an accelerometer mounted to the radar
sensor can be used to determine θ. Once this is known, Equations (1) and (2) can now
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be applied to determine the water surface velocity and line-of-sight distance to the water
surface. The line-of-sight distance to the water surface can be converted to a water depth
measurement, D, via

D = H − d sinθ (3)

where H is the perpendicular distance from the radar sensor to the channel bed, which
should be measured manually during the installation of the sensor.

2.1.1. Electrical and Physical Overview

A schematic of the sensor is provided in Figure 1. It is separated into functional com-
ponents. The MCU, an ATmega328PB, controls the other components of the printed circuit
board (PCB) and handles the interface with the output. The ATmega328PB was chosen
due to its ease of use and familiarity within sensing and datalogging applications [41].
A KXTJ3-1057 accelerometer measures the local acceleration of gravity to determine the
orientation of the sensor. A power switch was incorporated in order to minimise the idle
current draw of the sensor by turning components on and off as needed. In addition to
handling the generation and detection of the radar signal, the radar module also has a
custom developed processing algorithm to extract the depth and velocity.
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Figure 1. Electrical schematic for the sensor. The blue dashed line separates the functional components
of the schematic. For a complete set of design files, please view the supplementary materials available
with this article.

The sensor operates off a 3.3 V supply and communicates via a universal asynchronous
receiver-transmitter (UART). A CAT5 cable carries this power and connectivity from a
datalogger. The sensor body measures 60 mm in diameter and 60 mm in height and is
entirely 3D-printed from polylactic acid (PLA) plastic. A picture of the sensor is provided
in Figure 2. On the back of the sensor, there is a 15 mm radius ball mount which can be used
to quickly attach the sensor during installations while still allowing for easy rotation of the
sensor to the correct orientation. The front of the sensor houses a 3D-printed radar lens,
which significantly boots the radar sensitivity. The back of the sensor is filled with a potting
compound for waterproofing; however, there is an air cavity between the radar module
and the lens required for radar operation. This cavity is waterproofed such that no water
can enter it. The total cost of the sensor was less than USD 50 for the small production run
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of sensors for this study. A larger production run of a few hundred sensors would likely
result in a lower per-unit cost.
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Figure 2. Picture of radar sensor labelling key features. Left: front view. Right: back view. The
waterproofing back cover and cable are not shown in the back view so that the internal part of the
sensor can be seen.

2.1.2. Radar Lens

Natively, the beam angle from the radar module is quite large, at a beam width of
between 40◦ and 80◦ [42]. This is unideal for water measurement for several reasons: (a) a
large beam width means that the radar power is dispersed over a wide area, hence only a
small fraction is reflected back to the sensor; (b) narrow and distant water flows may only
occupy a small fraction of the beam width, and hence not utilise the full output of the radar
sensor; and (c) if the spot size of the radar beam on the water surface is too large, other
objects present, such as pit walls or vegetation, may enter the radar beam and affect the
measurement. For these reasons, it would be ideal to focus the beam width to a smaller
angle. Recently, much work has been performed on developing radar quasioptics using
low-cost additive manufacturing techniques such as fused deposition modeling (FDM) 3D
printing [43–47]. Here we apply the advances of these previous works and incorporate such
a 3D-printed radar lens to focus the radar beam. Many of these works have experimented
with gradient refractive index to achieve a variable index of refraction. This work did not
pursue this technology due to possibility of water ingress into metamaterials.

As the radar lens is 3D-printed with the case out of common PLA plastic, it is very
inexpensive to produce and easily adjustable to the optimal lens shape. At the same time,
the addition of the radar lens brings a 21 dB gain to the collected radar power when
compared with the absence of any radar lens. A diagram of how the radar lens works is
shown in Figure 3. The radar lens is positioned in the case such that it focuses parallel
incoming radar rays to the radar module located at the focal point of the lens.
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is an arbitrary integer. β is the beam width angle of the radar emission. Paths of the rays through the
lens are reversed for incoming radar signals.

Several lens designs and parameters were tested for optimal gain before the final
design was settled on. The PLA plastic used for the manufacturing was measured to have
a refractive index at 60 GHz of 1.8 ± 0.2. For the spherical planoconvex lens used here, the
following is a result of geometric optics:

1
f
=

nlens − n0

n0

1
R

(4)

where f is the focal length of the lens, nlens is the refractive index of the lens material, n0 is
the refractive index of the surrounding medium, and R is the radius of curvature of the lens.
As long as the dimensions of the lens remain much larger than the wavelength, geometric
optics can be used for analysis [48]. For a given plastic refractive index, this formula can
be used to determine the radius of curvature to give optimal gain to the radar system. A
further constraint of the focal length is that it should be a multiple of λ/2 to minimise the
destructive interference of the radar signal reflecting between the radar module and the
lens surface. Here, a focal length of f = 38 mm was chosen with an R = 30 mm radius of
curvature. The diameter of the radar lens was made as large as is practical at b = 49 mm.
This decreases diffractive effects and increases the proportion of the incoming radar signal
collected, hence further increasing the receiver gain.

2.2. Data Processing

Data processing algorithms are needed to both determine the orientation of the sensor
from the accelerometer readings and process the raw radar data collected to a final depth
and velocity measurement. For determination of the orientation, the onboard accelerometer
measures the acceleration of gravity in the local coordinates of the accelerometer. The
accelerometer is mounted on the PCB such that the z-coordinate is parallel to the radar
beam. Therefore, the angle between the radar beam and the horizontal is given by the
following:

θ = atan2
(

gz,
√

g2
x + g2

y

)
(5)

where gx, gy, gz are, respectively, the x, y, z components of the acceleration as reported by
the accelerometer, and atan2 is the two-argument arctangent function.

The determination of the water velocity and depth from the raw radar data is more
involved. The radar module measures the signal strength reflected from the environment.
These data are binned by the distance of the reflection from the sensor. These bins are
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60 mm in length. The reflection data are measured 64 times at rate on the order of 1 kHz.
For data processing, the reflection data are organized into a 2D array as shown in Figure 4
(top). In this array, the time of the measurement is given by the column and the distance
bin by the rows. The start and end distances for the measurement of the reflected signal
strength can be configured to suit the sensor’s installation. In this study, values of 240 mm
and 2280 mm were used. To determine the water velocity, the Doppler velocity needs to be
determined from the change in reflected signal strength over time. To accomplish this, a fast
Fourier transform(FFT) is applied to each row of the array. This transforms the time axis
into a frequency axis where the large values indicate the frequency has a large amplitude
in the reflected signal (see bottom of Figure 4). Before the FFT is applied, the mean
component of the signal is removed to detrend the data. This eliminates the contribution
from stationary objects’ reflections which would otherwise obscure the dynamic signal
from the water surface.
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Figure 4. Typical radar scan data array. Top: raw reflected signal strength data returned by the radar
module. Each bin represents the reflected signal strength from an object at the given distance from
the sensor and at the given time. Signal strength is indicated by the colour scale. Bottom: radar after
FFT processing on each data row. Each bin now represents the amplitude of the component frequency
in the signal. The frequency scale is mapped to velocity via Equation (1). Colour indicates amplitude
of frequency component in signal.

A single scan from the radar sensor completes all time samples within tens of mi-
croseconds. This is a very short time period compared with the random fluctuations of the
water surface, so a single scan would be affected by this random fluctuation. Furthermore,
the radar scan itself also has some uncertainty. To sample the water over a longer period of
time and reduce uncertainty, the energy-preserving root mean square (RMS) average of six
FFT processed scans, taken about one second apart, is calculated.

As per the theory behind radar velocity measurement [39], the signal does not have
a single frequency peak, but rather a frequency spectrum. Therefore, to determine the
Doppler frequency, an intelligent peak-finding algorithm is run on the RMS averaged array.
The array is first preprocessed by applying a Gaussian blur with a kernel size of 1.5 bins.
From here, the bin with the greatest amplitude is found; as this should occur in the bin
corresponding to water surface – sensor distance, the analysis is then restricted to this
row of the array. At this point, the value in the peak bin is taken as the ‘signal strength’
of the measurement. As the contrast between the peak and the background signal can
be small, all bins with an amplitude less than one third of the maximum amplitude are
set to zero. This eliminates most of the background signal, which can otherwise bias the
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readings to towards the centre of the measurement range. Finally, the amplitude-weighted
average of the frequency bins is taken, which equates to a frequency that we consider to
estimate the Doppler frequency ∆f. When combined with the angle measurement from the
accelerometer θ, Equation (1) can be used to calculate the surface velocity.

To determine the distance to the water surface, a higher resolution mode on the
radar module was used which provided the reflection amplitude in 2 mm increments but
provided no time domain data. The bin with the greatest reflection amplitude was taken as
the distance to the water surface.

2.3. Power Usage

To test the power usage of the sensor, a Multicomp Pro MP730026 ammeter was
placed in series with the ground connection. The ammeter was then used to measure the
sleep current of the sensor, which is the current while the sensor is not performing any
measurements. This was found to be 100 nA. To measure the duration and charge needed
for a single velocity and depth measurement, a Rigol DS1054Z oscilloscope was connected
across the ammeter. As the shunt resistance of the ammeter was 4 Ω, this allowed for
high time-resolution measurement of current consumption. A single measurement (which,
as described above, is the average of 6 individual scans) was found to take 7.02 s and
require 0.0742 mAh of charge. This results in an average current of 38.1 mA for a single
measurement. The peak current could also be measured to be 64 mA. For a typical logging
rate of 10 measurements per hour, the average current draw of the sensor is 740 µA. This
provides 196 days of operation on a typical 3500 mAh single 18,650 Li-ion cell. For a logging
rate of 1 measurement per hour, over 5 years of operation could be optimally achieved.
This low power consumption supports the use case of the sensor in battery-operated
installations with infrequent maintenance.

2.4. Lab Characterisation

To gain an understanding of the performance of the sensor and its response to velocity
and depth, a laboratory characterisation experiment was conducted. A flume was used
to create conditions of varying depth and velocity (Figure 5, top). The water velocity and
depth were adjusted by adjusting the flowrate and height of weirs in the flume. Due to
the hydraulics of the flume, the data above a velocity of 0.5 m/s and below 25 mm of
depth displayed supercritical flow as opposed to the subcritical flow when these conditions
were not met. The ‘true’ depth was measured by using two sets of level indicators on
either side of the section of water measured by the radar sensor. The average of these two
measurements was taken to be ‘true’ water depth. The disagreement between the two level
indicators never exceeded 2 mm, so the flow in the region measured by the radar sensor
was relatively level. The flow was also observed to be in steady state. The ‘true’ velocity
of the water in the flow was measured using a pair of venturi meters positioned in line
with the two level indicators. Again, the average of the two venturi meters was taken to be
the true velocity. As the velocity of the water is not uniform across the cross section of the
flow, the venturi meters were positioned close to the surface to obtain a best estimate for
the water surface velocity. This was performed because the Doppler radar measurement
technique used by the sensor measures the velocity of the water surface.

Three radar sensors (A, B, and C) were mounted a distance of H = 740 mm above the
channel bed and pointing at an angle of 74◦ from the horizontal. Sensor B was placed along
the thalweg of the flow with sensors A and C offset by 60 mm to the left and right sides,
respectively (Figure 5 bottom). Multiple sensors were used to triplicate the data and gain
an understanding of the variance in performance between the sensors. The radar data were
recorded from each of the three sensors onto a computer via UART. Each datapoint is the
average of 12 consecutive measurements. The results presented in this work were analysed
using the processing algorithm explained above.
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2.5. Field Trial

For the field trial, the sensor was deployed for 5 weeks at the inlet of Troup’s Creek
Wetland in Melbourne, Australia. Over this period, the channel was mostly dry; however,
two large flow events were captured. The radar sensor was connected to a datalogger which
uploaded a measurement from the sensor every 10 min to a cloud server. The radar sensor
was compared against a commercial HACH AV9000 Submerged Area Velocity Sensor [17],
an in-water acoustic Doppler velocity and level sensor. The HACH probe was installed
at the bed of the channel and was set to log locally at intervals of 1 min. A photograph
of this setup is provided in Figure 6. For the field trial, it was initially assumed that the
HACH sensor recorded the true velocity and depth of the channel. The validity of this
assumption is questionable, as is discussed in the results. At certain times during the trial,
the HACH sensor reported failed velocity and depth measurements, usually due to an
obstruction in front of the sensor. These periods of time are identified by a high density
of identical velocity readings from the HACH sensor and have been removed. The data
were also filtered so that all of the following were true: (a) the radar sensor was installed
within the recommended operating angle of between 70◦ and 87◦ (on some occasions,
birds or humans would move the sensor, which would cause the sensor to be pointing at
objects other than the water flow), (b) the radar depth was non-negative and the water
surface was further than 350 mm from the sensor, and (c) the HACH depth was above
100 mm. This last condition was necessary as the cable shroud (Figure 6) around the HACH
sensor cable was observed to create a small hydraulic jump at low depths, invalidating
velocity readings. The installation height of the radar sensor was measured manually
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during installation and used to determine the water depth from the distance data. A HACH
datapoint was associated with each radar sensor measurement by finding the temporally
nearest HACH datapoint. Therefore, the maximum time difference between the HACH
sensor measurement and the radar sensor measurement was ±1 min.
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Figure 6. Photograph of site setup at Troup’s Creek. Note the location of the radar sensor in the top
right of the image. The HACH sensor is located at the left end of the cable shroud, the deepest point
of the channel. Both the HACH sensor and cable shroud are visible in the inset. The direction of
water flow is forward in the image.

3. Results
3.1. Lab Characterisation

The performance of the sensor’s depth measurement is shown in Figure 7. A strong
linear trend is present in the data, with R2 coefficients greater than 0.86, and the probability
of the null hypothesis that the gradient is zero is p < 0.0001. For sensors A and B, the depth
response differs from unity by less than 2% while the depth offset is less than 6 mm. Sensor
C does not have as ideal a response, however, with a gradient error of 12% and a 9 mm
offset. It is possible that some of this uncertainty in the depth measurement is due to the
placement of sensors A and C off the centreline of the flume, as the offset slightly affects
the equations needed to recover the depth and velocity, and this offset may also affect the
sensor’s line of sight to the water. The root mean square (RMS) errors of each measurement
from their linear fit are 17%, 16%, and 24% for sensors A, B, and C, respectively. Due to
constraints in the laboratory flume, only a small depth range of 15 mm to 125 mm could be
tested; however, on this range it is seen that the sensor produces an accurate response to
changes in the water depth.
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Figure 7. Correlation plot of measured depth against sensor depth from laboratory characterisation.
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The performance of the sensor’s velocity measurements is shown in Figure 8. Again, a
strong linear trend is present in the data. All of the linear trendlines had a probability of
the null hypothesis for a gradient of zero of p < 0.0001. The velocity data also show that
sensor C does not perform as strongly as sensors A or B; this could be due to either unideal
positioning of sensor C or a defect in sensor C’s assembly. Considering only sensors A and
B, the linear correlation coefficient is greater than 0.89 and the gradient is within 6% of unity.
The offset is less than 0.14 m/s. It is seen, however, that below 0.3 m/s, the response of the
radar velocity to changes in measured velocity is limited. This represents that the sensor
has difficulty in resolving low velocities; however, this is somewhat unsurprising as it is a
common issue faced by radar-based velocity sensing [19]. Due to this differing behaviour
past 0.3 m/s, considering only the data above 0.3 m/s, sensors A, B, and C have RMS errors
from their linear fit of 20%, 28%, and 30%, respectively. This figure gives an indication of
the point-to-point error expected for a velocity measurement and is due to both a systematic
and random error component. In field applications, where the measurement interval is
much shorter than the characteristic timescale of velocity changes, averaging neighbouring
measurements helps reduce the random component of this error; however, this is not able
to address the systematic component. These data demonstrate the capability of the sensor
to effectively measure the surface water velocity up to at least the 1.2 m/s tested in this
experiment. While the sensor was installed quite close to the water surface (740 mm from
the flume bed), the radar signal was also attenuated by the 10 mm acrylic top of the flume,



Sensors 2023, 23, 6314 12 of 19

which the radar signal had to pass through. These data demonstrate some capacity for
the radar sensor to measure through certain small obstructions to a direct line of sight
to the water surface. This suggests another application for the sensor, that of external
and unintrusive measurement of open channel flow in small pipes. Together, these lab
characterisation tests provide evidence for the sensor’s ability to measure both depth and
velocity.
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3.2. Field Trial

The timeseries data recorded over the duration of the field trial are displayed in
Figure 9. The depth data (Figure 9, top) show that the new radar sensor’s depth mea-
surements agree with the HACH measurements, with most data mostly superimposed
on each other. It is seen, however, that there are a few sporadic depth measurements
where isolated depth measurements from the radar sensor are lower than neighbouring
measurements; again, this is most prevalent at low depths. While it is not certain what
causes these sporadic points, they may be due to the effect of background clutter (ground,
plants, etc.) [23]. Given their sparsity and distinctness from the rest of the depth data series,
it is believed that a simple filtering algorithm could be applied to these data to reduce any
significant jumps in the dataset. Furthermore, we believe the sensor data could be more
thoroughly explored to provide uncertainty estimates of each measurement, either by a)



Sensors 2023, 23, 6314 13 of 19

using the variability in the six individual scans or b) using the strength information as a
quality scoring system.
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Figure 10 shows a strong linear correlation between the depth values from the radar
and HACH sensors, with a line of best fit having an R2 of 0.88, a gradient of 0.93, and an
intercept of 7 mm. The probability of the null hypothesis that the gradient is zero for the
regression is p < 0.0001, reconfirming that precise absolute depth measurements are possible
from this radar sensor, even with only a single measurement of the installation height of
the sensor. The mean absolute error of the sensor is estimated to be 15%, and this is greater
than what most existing commercial sensors promise [15,27,49] (which are often accurate
to a few percent or mm). However, these are often provided for ideal laboratory conditions
and others do report extremely high uncertainties (e.g., >30%) when these commercial
sensors are used in field conditions, especially during times of low water depths [50]. These
quoted uncertainties serve as a lower bound for the performance, as (a) the sporadically
low points have not been filtered in this analysis; (b) the analysis assumes that the HACH
sensor provides the true water depth when in reality it has an uncertainty of at least 2%,
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located upstream of the radar sensor, and its datasets were only synchronized up to a ±1
min error; and (c) the radar sensor can be more susceptible to passing debris and variance
in water level due to turbulence and surface waves, whereas these changes would not be
picked up by the in-water HACH sensor.
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For the velocity data, there are again similar trends between the two sensors, demon-
strating the potential of the radar sensor to estimate water velocities (Figure 9, bottom). A
linear trend is also seen between the HACH and the low-cost radar sensor (Figure 10, right),
with an R2 of 0.48, a gradient of 0.54, and an intercept of 66 mm/s. The radar velocity data
have a mean absolute error (MAE) from their trendline of 36%. The probability of the null
hypothesis that the gradient is zero is p < 0.0001, implying the fit is significant. This general
agreement is an important finding, demonstrating the ability of the low-cost, low-power,
noncontact sensor to detect water velocities and providing an opportunity for collecting
highly spatially distributed datasets of water movements throughout complex catchments.

The deviations observed between the radar and the HACH sensors were, however,
greater for the velocity measurements than for the depth measurements. This was expected,
as velocity measurements are far more complex and always have higher uncertainties
than depth measurements [50]. The fact that open water flows have varying velocities
throughout their cross section makes comparing one sensor with another even more
challenging as deviations between sensors deployed in the field are further exacerbated
due to the following: (a) the technique used for estimating velocity (e.g., water column
velocity measurements vs. surface water velocities) and (b) the installation characteristics
of the sensor (e.g., wall effects causing the sensor’s measurements to be less representative
of the actual water’s velocity).

We believe that these factors resulted in the deviations we observe in Figure 9 (bottom)
and Figure 10 (right). First, while both the HACH sensor and the radar sensor rely on the
same fundamental physics (Doppler shift), they are measuring different parts of the water
velocity profile, with one being out of the water column and the other being inside the
water. Indeed, prior research demonstrates that the velocity can significantly change within
a cross section of the water flow [51], and that this profile changes depending on the flow
conditions. Under many conditions, the surface velocity can be 20% lower than the average
cross-sectional velocity [51], especially if the flow is now measured along the thalweg. This
likely contributes to the 0.54 gradient of the line when comparing the HACH with the radar
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sensor. Importantly, the differences between surface water velocities and average in-water
velocities are often the greatest at low flow velocities and low depths, which are where
the radar sensor and the HACH sensors deviate the most. Furthermore, the sensitivity
of the in-water sensor is likely to be higher than that of the radar sensor, which relies
on remote sensing style measurements, likely contributing to the plateau observed in the
correlation plot (i.e., no variation in radar sensor response up to 300 mm/s) and the intercept
of 66 mm/s.

The installation characteristics of the two sensors also need to be considered when
interpreting Figures 9 and 10. Indeed, due to vandalism, the HACH sensor was installed
with a metal shroud to protect its cabling, as is visible in Figure 6. This was observed to act
as a small hydraulic structure, particularly impacting low flow depths and hence low water
velocities, and was assumed to increase in-water velocities by impacting acoustic signals
that travel through the flow over the structure. This would have contributed to the large
deviations observed in the velocities from the two sensors, especially during times of low
water depths. In fact, the largest deviations observed in Figure 9 (bottom) occurred during
the times of the lowest water depths (3 and 4 February), suggesting that this structure could
also have contributed to these results.

To explore the inherent difficulties in comparing two sensors and to begin to under-
stand the performance of the radar sensor in more detail, we compared two identical
HACH AV sensors installed in the same cross section. The second in-water HACH sensor
was installed 1 m to the right of the original HACH sensor, as seen in Figure 6. The R2

between the two identical HACH sensors was 0.56 and the right HACH sensor measured
62% higher on average. These values are not dissimilar to the values we reported above for
the comparison between the original HACH sensor and the radar sensor. The disagreement
between these two sensors installed in similar conditions is indicative of the challenge of
in-field velocity measurement and the typical degradation of performance in field vs. lab
tests. This difference occurs despite the HACH sensors being state-of-the-art commercial
sensors.

In summary, we provide the evidence above to demonstrate that the radar sensor is
capable of estimating water velocities (i.e., R2 = 0.48 when compared with a commercial
sensor). However, it is noted that this sensor is measuring surface water velocities, which
are related, but not equivalent, to the cross-sectional average velocity (hence resulting in a
slope of the line of best fit of 0.54 when compared with the instream sensor). We further
note that although installation characteristics limit our comparison between the HACH and
the radar sensor, this field dataset, along with the extensive laboratory datasets, implies
that the uncertainties in the sensor for velocities less than 300 mm/s are significant. While
the poor performance of the radar sensor below 300 mm/s precludes the application of
this radar sensor in measuring velocity in slow water bodies, it is less of a limitation for
stormwater, wastewater, and rivers, in which the events of interest tend to have velocities
well in excess of 300 mm/s. Future research could explore how radar lenses with greater
gain or narrower cone angles could help to reduce these uncertainties.

3.3. Comparison with the Literature

While a strict comparison of the performance of this sensor with others available on
the market is difficult due to the limited information provided in these publications, we
attempt to perform a qualitative comparison with the literature, as summarised below and
in Table 1. An implementation of Doppler radar using a custom-designed integrated circuit
obtained an uncertainty of 8% in ideal conditions at the single velocity it was tested at of
1.2 m/s [35]. The 8% figure is likely an underestimate of the sensor’s mean absolute error.
For our sensor, while our error was 36% in field conditions and between 20% and 30% for
the lab tests, this was over the entire range of the sensor. The low-cost, low-power in-water
sensor proposed in [22] has RMS errors ranging from 17% to 43% between 200 mm/s and
1200 mm/s in long-term field testing. This performance is comparable with that of the
radar sensor here. Image velocimetry from unmanned aerial drones (UAV) was attempted
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in [31]; in flow velocities of up to 200 mm/s, the average difference from a reference ADCP
sensor was 50 mm/s. This equates to a minimum average error of 25%. A second image
velocimetry from the UAV study found mean absolute errors of between 60 mm/s and 140
mm/s in flows of up to 1100 mm/s [28]. These values are 5% and 13% of the peak flowrate,
respectively. A low-cost, low-power radar Doppler sensor utilising a custom radar board
achieved mean errors of −3% and −11% at the two flow velocities tested in a field-day
test [34]. Furthermore, [29] studied the accuracy of the commercial Decatur Surface Velocity
Radar [52] at a range of sites and found that its surface velocity error ranged from 7%
to 25%. From this comparison with the current literature (Table 1), our proposed sensor,
while having a slightly higher average uncertainty, is near the range of the uncertainties of
other sensors. The radar sensor also has the advantages of being out-of-water, low-cost,
low-power, and capable of simultaneous depth measurement.

Table 1. Comparison of our work with existing velocity sensors. While a cost estimate is not available
for all works, as low cost was not a target for these works, their costs are likely to be significantly
higher than USD 50.

Ref. Use State Type Cost Velocity
Uncertainty

Uncertainty
Method

This work Out-of-water Field-ready 60 GHz radar <50 USD 36% MAE (field)

[35] Out-of-water Prototype 24 GHz radar n.a. 8% @ 1.2 m/s Spot difference
(field)

[22] In-water Field-ready Acoustic Doppler <50 USD 43% RMS (field)

[31] UAV Field-ready Image
velocimetry n.a. 25% MAE (field)

[28] UAV Field-ready Image
velocimetry n.a. 13% MAE (field)

[34] Out-of-water Prototype 24 GHz radar <50 USD * −3% @ 1.4 m/s
−11% @ 1.2 m/s Mean error (field)

[29,52] Out-of-water
(handheld) Field-ready 24 GHz radar 1500 USD 25% Local error

(field)

* Hypothesised cost if mass-produced in silicon system-on-chip.

4. Conclusions

The radar velocity and depth sensor designed and verified here was tested and found
to successfully measure depth and velocity in both laboratory and field trials. The depth
response was found to be highly linear, with the linear regression having a gradient
differing only by at most 6% from unity and offsets of less than 7 mm in both lab and field
tests. The average error in the surface velocity measurement was found to be less than 30%
in lab conditions and 36% in real-world conditions from the mean velocity. The velocity
uncertainty is greatest in slow-moving water of velocities of less than 300 mm/s. However,
this limitation does not significantly inhibit stormwater, wastewater, and river monitoring
applications as velocities of interest tend to be well above 300 mm/s. While the velocity
error is larger than those of the best available sensors, the sensor proposed here has the
advantage of being the first to compete with such sensors at a low cost (USD <50). Its low
power consumption and out-of-water installation reduce maintenance frequency and cost.
This supports low-cost long-term deployment, enabling wide arrays of these sensors to be
installed to collect data over a large area with high spatial resolution. These deployment
schemes have been previously prohibited by cost. The design of the sensor is made freely
available and utilises off-the-shelf components. The use of 3D printing technology for the
casing allowed a novel sensitivity-enhancing radar lens to be included at minimal cost.
The sensor is also interfaceable with a wide array of dataloggers, and has an onboard
accelerometer for automatic inclination detection.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s23146314/s1. Please find the complete design files necessary to modify
and build the sensors, along with the data used in the analysis of this study, in the supplementary
materials.
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