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Abstract: The signal space separation (SSS) method is routinely employed in the analysis of multi-
channel magnetic field recordings (such as magnetoencephalography (MEG) data). In the SSS method,
signal vectors are posed as a multipole expansion of the magnetic field, allowing contributions from
sources internal and external to a sensor array to be separated via computation of the pseudo-inverse
of a matrix of the basis vectors. Although powerful, the standard implementation of the SSS method
on MEG systems based on optically pumped magnetometers (OPMs) is unstable due to the approxi-
mate parity of the required number of dimensions of the SSS basis and the number of channels in the
data. Here we exploit the hierarchical nature of the multipole expansion to perform a stable, iterative
implementation of the SSS method. We describe the method and investigate its performance via a
simulation study on a 192-channel OPM-MEG helmet. We assess performance for different levels of
truncation of the SSS basis and a varying number of iterations. Results show that the iterative method
provides stable performance, with a clear separation of internal and external sources.

Keywords: optically pumped magnetometer; magnetoencephalography; SSS; MEG analysis

1. Introduction

Magnetoencephalography [1,2] produces images of electrophysiological human brain
activity with high spatial and temporal resolution via measurement of extracranial mag-
netic fields generated by neuronal currents in the brain. MEG is a powerful tool for
neuroscience [3] with significant clinical applications, particularly in epilepsy [4], but
presents a significant engineering challenge. The neuromagnetic fields are typically tens of
femtotesla in strength, requiring highly sensitive magnetometers, such as superconducting
quantum interference devices (SQUIDs), and operation inside a magnetically shielded
room (MSR) to reduce interference from magnetic fields generated by sources external to
the MSR (e.g., moving vehicles, elevators and mains electricity).

However, the MSR will not completely attenuate all external signals, and some sources
of interference may exist within the MSR itself (including other biomagnetic sources such
as the heart and electronic devices such as cameras required for patient monitoring). These
interference components can be many orders of magnitude larger than the signals of
interest, obfuscating neuromagnetic data. The signal space separation (SSS) method [5,6] is
routinely employed in MEG analysis and is a powerful tool for separating the underlying
neuromagnetic signals of interest from raw data containing interference. Specifically, the
SSS method employs a magnetostatic multipole expansion to distinguish the contributions
of sources of magnetic field, which are internal and external to an array of magnetic field
sensors which form the MEG helmet.
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Recently, MEG systems based on optically pumped magnetometers (OPMs) have been
developed (OPM-MEG, see Brookes et al. and Schofield et al. for reviews [7,8]). Unlike
SQUIDs, OPMs can be flexibly placed [9,10] and mounted into lightweight helmets [11],
allowing virtually unconstrained participant movement [12–14] and scanning across the
lifespan [15,16]. OPMs can also be placed much closer to the scalp than SQUIDs (since they
do not require cryogenics). The reduced source-to-sensor separation leads to theoretical
gains in spatial resolution via an ability to sample higher spatial frequencies of the neuronal
fields [17–19]. Although a key advantage of OPM-MEG, this increased field complexity
requires a corresponding increase in the dimensions of the SSS expansion.

The performance of SSS relies on several parameters, including sensor calibration and
accurate knowledge of the array geometry, but also the total number of channels available
compared to the dimensions of the SSS basis [20]. At present, the total number of magnetic
field measurements available from OPM-MEG systems lags the number of channels of
their cryogenic counterparts (e.g., Rhodes et al. [21] reported a 174-channel OPM-MEG
system, compared to ~300 channels in commercial cryogenic MEG systems). This reduced
channel count, coupled with an increase in the complexity of the spatial topography of the
neuromagnetic fields, ultimately leads to poor performance of SSS.

Here, we describe an iterative approach to the SSS method, which exploits the hierar-
chical nature of the multipole expansion to enable stable implementation on OPM-MEG
devices with a low channel count. We begin with an overview of SSS and an illustration of
the issues encountered when applied directly to a simulated OPM-MEG sensor array with
192 channels. We then describe the iterative approach and conduct a simulation study to
investigate its performance and the optimal number of iterations required, followed by a
discussion of the results obtained.

2. Theory
2.1. The SSS Method

Briefly, the SSS method uses a multipole expansion to describe the range of magnetic
fields which can be measured by an array of sensors. Assuming the region containing
the sensors is free from sources of magnetic field, a scalar potential V(r) which obeys
Laplace’s equation (∇2V = 0) can be expressed using a series expansion of solid harmonic
functions as

V(r) = ∑∞
l=1 ∑l

m=−l αlm
Ylm(θ, ϕ)

rl+1 + ∑∞
l=1 ∑l

m=−l βlmrlYlm(θ, ϕ) (1)

where

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Plm(cos(θ))eimϕ (2)

is the normalised spherical harmonic function r, θ and ϕ are spherical coordinates, Plm(cos(θ))
is the associated Legendre function and αlm, βlm are the weighting coefficients of each
component. The spherical harmonic functions represent spatial oscillations that increase
in spatial frequency with increasing values of l (and m). Thus, high expansion orders
l correspond to complex patterns of the magnetic scalar potential and the magnetic field.
The r dependence of each term determines the spatial characteristics of the fields described
by each set. Those proportional to r−(l+1) are singular at the origin and those proportional
to rl diverge at infinity. For a known MEG sensor array geometry, and an origin inside
the array, the first series in Equation (1) then describes magnetic fields from sources inside
the array and the second series describes sources external to the array. The signal vectors
measured by the array corresponding to each term can be calculated and (by denoting
the signal vectors of Ylm(θ,ϕ)

rl+1 as alm and the signal vectors of rlYlm(θ, ϕ) as blm) any total
measured signal vector can be expressed as

Φ = ∑∞
l=1 ∑l

m=−l αlmalm + ∑∞
l=1 ∑l

m=−l βlmblm (3)
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By constructing two matrices Sin and Sout (containing the signal vectors alm and
blm) and vectors xin and xout (containing the vector weights αlm and βlm) the signal
(i.e., Equation (3)) can be compactly expressed as

Φ = [Sin Sout]

[
xin
xout

]
= Sx. (4)

To estimate the internal signal of interest (Φ̂in) from the measured signal Φ one can
estimate a weights vector (x̂) via the pseudo-inverse matrix S+ as

x̂ =

[
x̂in
x̂out

]
= S+Φ (5)

followed by computing
Φ̂in = Sinx̂in. (6)

In practice, the series must be truncated, as the sensor array is not capable of character-
ising all possible spatial frequencies. In fact, the total number of basis vectors must be less
than or equal to the number of channels (Nchans) in the array. This dimension is given as

Ndims = (Lin + 1)2 + (Lout + 1)2 − 2 ≤ Nchans (7)

where Lin and Lout are the truncation orders for the inner and outer subspaces respectively.
Cryogenic MEG systems contain roughly 300 channels, meaning high truncation orders
(e.g., typically Lin = 8 and Lout = 3 are used, giving Ndims = 95� Nchans) are possible and
the computation of S+ is stable.

2.2. SSS with OPM-MEG

Recently developed OPM-MEG systems feature far fewer channels (typically <64 sen-
sors, but OPMs measure two or three components of magnetic field per sensor) and require
higher truncation orders due to an increased proximity of sensors to the scalp. For example,
Tierney et al. [19] suggested orders of Lin = 11 and Lout = 5, Ndims = 178 would be needed
to fully realise the potential of such systems. This reduction in Nchans, combined with an
increase in Ndims means computation of S+ can be unstable.

To illustrate this point, we estimated the relative reconstruction noise of an array of
64 triaxial (192-channels) OPMs (cMEG Adult Large Helmet, Cerca Magnetics Limited,
Nottingham UK) as shown in Figure 1. The relative reconstruction noise (nr) is an estimate
of the residual noise found by simulating random (spatially and temporally uncorrelated)
noise across the sensor array. The noise signal vector (Φnoise) is used in Equation (6) to
estimate the internal signal vector (Φ̂in, noise) and nr is calculated as

nr =

∥∥Φ̂in, noise
∥∥

‖Φnoise‖
(8)

where ‖Φ‖ denotes the norm of the vector. The value of nr can be interpreted as an
approximate factor by which the noise level of a signal vector will be amplified following
the SSS operation, ideally it should be close to unity. We investigated the reconstruction
noise by generating 100 random signal vectors (zero-mean Gaussian noise) and computing
nr for values of Lin = 3− 11 and Lout = 3− 5 (the centre of mass of the sensor positions
was the origin of the system) before averaging across the 100 repeats. All simulations were
implemented in MATLAB (MathWorks Inc., Natick, MA, USA), and we used code from
Tierney et al. [19] to calculate the S matrices. Figure 2 shows that both nr and the condition
number of the matrix S exponentially increase with increasing complexity of the model,
suggesting standard implementation of SSS is likely to be unstable for this set-up.
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Figure 1. (a) The 64-slot Cerca cMEG helmet used in this study. (b) Incorporating 64 triaxial OPMs
(QuSpin Inc., Louisville, CO, USA) gives a sensor array featuring 192 channels. (c) The position
(black circles) and orientation (red arrows) of the channels are shown relative to the head and brain
of a participant.
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Figure 2. The impact of conventional implementation of SSS on the 192-channel array and the effects
of an iterative method to stabilise the outputs. (a) The condition number of the (column-normalised)
SSS matrix increases exponentially as a function of increasing complexity of the inner and outer
subspaces. (b) An increasing condition number leads to an unstable computation of the pseudoinverse
matrix, which causes an exponential increase in the reconstruction noise. (c) Application of an iterative
approach to SSS significantly reduces the reconstruction noise estimate (note the difference in scales
between (b,c)).
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2.3. An Iterative Approach

To address this and enable the exploration of SSS on OPM-MEG data, we implemented
an iterative method for estimating the weights. We exploit the assumption that the SSS
vectors represent MEG data in a hierarchical manner, i.e., we assume that lower-order
components always explain a larger amount of signal energy than higher-order components
(distal interference signals, with simple spatial field patterns, are high amplitude compared
to the low amplitude and focal neuromagnetic signals, they will therefore dominate the
MEG data). We first compute a subset of weights for a subset of the vectors of S, which
initially includes only the first-order inner terms and all outer terms. We then create a new
subset, this time including only the second-order inner terms and all outer terms, subtract
our first estimate of the inner signal from the measured signal, and compute the subset
of weights for the second-order terms (such that we only update the specific multipole
components described by our subset of S) and update weights for this subset. This process
repeats for all orders of the inner subspace and then iterates multiple times until a stable
weights vector estimate is found.

First, we separate the (column-normalised) inner subspace vectors corresponding to
orders lin = 1 to Lin as

Sin =
[
Sin, lin=1 Sin, lin=2 . . . Sin, lin=Lin

]
, (9)

and then extract each set of vectors Sin, lin in turn to compute a series of Lin partial bases,
all including the outer subspace, as

Slin =
[
Sin, lin Sout

]
. (10)

We then apply the same approach to the weights vector

xin =
[
xin, lin=1 xin, lin=2 . . . xin, lin=Lin

]T
, (11)

where T denotes the transpose, and create a series of Lin partial weights

xlin =
[
xin, lin xout

]T . (12)

Starting with zero values for all weights, lin = 1, and a measured signal vector Φ, we
estimate xlin=1 as

xlin=1 = S+
lin=1Φ, (13)

and update the corresponding components of x. We then move to lin = 2, first subtracting
the lin = 1 estimate from the measured signal and computing the xlin=2 specific weights as

xlin=2 = S+
lin=2(Φ− Sx) = S+

lin=2

Φ− S


xin,lin=1

0
...
0


. (14)

For lin = 3 we evaluate

xlin=2 = S+
lin=2

Φ− S


xin,lin=1
xin,lin=2

0
...
0



. (15)
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The process is repeated up to lin = Lin, and then the entire cycle is iterated Nit times
according to

xlin = S+
lin

(
Φ− Sx{ln∈N|ln<Lin and ln 6=lin}

)
, (16)

where x{ln∈N|ln<Lin and ln 6=lin} denotes only the weights corresponding to all orders except
the specific value of lin; these weights are already zero if the current iteration number
(nit of Nit total iterations) is 1, but for nit > 1, the non-zero weights calculated in the
previous iteration must be replaced by zeros. The lout weights are always zero and update
on each iteration.

Once the process is completed, a final weights vector x̂it = [x̂it,in x̂it,out]
T is formed,

and the inner signal can be estimated as

Φ̂in = Sinx̂it,in. (17)

To assess the performance of the iterative approach, we returned to the reconstruction
noise simulation. We used the same array geometry, signal vectors and range of Lin/Lout
values to compute nr. We performed Nit = 10 iterations for each signal vector. Compared
to the pseudoinverse method, Figure 2 shows that the iterative method results in a marked
decrease in reconstruction noise which was <2 for all cases c.f. � 10, previously, indicating
a more stable implementation of SSS is achieved. Our MATLAB implementation of the
iterative method is provided as Supplementary Material.

3. Simulation Study
3.1. Methods
3.1.1. Reconstruction Noise

We used the same simulated signal vectors from Section 2.2, but this time computed
the relative reconstruction noise estimate following each iteration.

3.1.2. Source Separation

We simulated a series of magnetic dipoles placed inside and outside the sensor array.
External dipoles were randomly positioned and oriented within a spherical shell with an
inner radius of 2 m and outer radius of 3 m. Internal dipoles were randomly positioned
and oriented on a spherical shell with an inner radius of 0.005 m and outer radius of 0.05 m;
the minimum distance between the internal sources and the sensors was 21.5 mm. Both
shells were centred at the centre of mass of the OPM-MEG helmet, as shown in Figure 3.
We randomly chose 5 internal dipoles and 5 external dipoles and simulated signal vectors
following the application of sinusoidal currents at distinct frequencies (randomly chosen
integers between 1 and 100 Hz) for 1 second at a sample rate of 1200 Hz. The internal
dipoles had a dipole moment of 10 nAm, and the external dipoles had a dipole moment of
10 mAm. We added zero-mean Gaussian noise of amplitude 30 fT to each simulated sensor.
Signal vectors were calculated for each dipole in turn and summed to obtain the final vector.
We then applied the iterative SSS method to the data. An example of the signals and the
impact of standard implementation of the SSS method is shown in Figure 4.

To assess the impact of the number of iterations, we applied the iterative SSS method
using Nit = 20 and extracted three metrics for each iteration: (1) the explained variance
(EV) of the reconstructed inner signal compared to the calculated inner signal; (2) the
root mean square error (RMSE) between the reconstructed inner signal and the known
simulated inner signal; (3) the norm of the difference between the weights vectors for the
current and previous iteration, i.e., ∆xit =

∥∥xnit − xnit−1
∥∥ for nit > 1. This was repeated for

100 different combinations of dipoles, and each signal vector was evaluated for Lin = 7− 11
and Lout = 3− 5. Results were then averaged over the 100 runs.
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Figure 3. Spherical shells within which internal and external sources were generated. (a) A side-on
view of the OPM-MEG helmet showing sensor locations (black dots) and the (red area) spherical shell
(0.005 m < radius < 0.05 m) within which the internal dipole sources were generated. (b) A top-down
view of the internal source shell. (c) A side-on view of the OPM-MEG helmet relative to the (blue
area) spherical shell (2 m < radius < 3 m) within which the external dipole sources were generated.
Both shells were centred at the centre of mass of the sensor locations: (x, y, z) = (0, 0, 0.02) m.
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Figure 4. Performance of the iterative implementation of the SSS method for an example instance
of simulated data. (a) A total of 50 ms of simulated data for a single channel in the OPM-MEG
helmet. The total signal (Φ) is shown, as well as the signal from the internal sources (Φin ) generated
from the five randomly positioned and oriented internal dipoles and the signal from the external
signal (Φout ) generated by the five random external dipoles. (b) The simulated internal signal is
compared to the SSS estimated inner signals (Φ̂in ) found using both our iterative method and using
a standard implementation of the SSS method (Lin = 10 and Lout = 4 for both cases, five iterations).
(c) Similar plots for the external signal. We note that for both inner and outer signals, the iterative
reconstructions agree well with the simulated data, but the standard implementation results in a
noisy signal.
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3.2. Results

Figure 5 shows that an initial minimum in the relative reconstruction noise is found
with the value then gradually increasing as the number of iterations increases. The noise
level also increases as Lin increases. The number of iterations after which the minimum
point occurs decreases with an increase in Lout. In all cases, the value of nr is relatively low,
roughly between 0.9 and 2.
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Figure 5. The impact of the number of iterations on the relative reconstruction noise for increasing
model complexity, Lin = 7− 11 and (a) Lout = 3, (b) Lout = 4, (c) Lout = 5, when using the iterative
SSS approach.

Figure 6 shows that the SSS reconstruction of the internal signals explains >99% of the
variance in the simulated signals for Lin > 9 after five iterations. This increases to 99.8%
explained variance for Lin = 11 and Lout = 3 or 4 reducing to 99.6% for Lout = 5. The high
levels of explained variance indicate the iterative method can accurately separate fields
from internal and external sources.
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Figure 6. The impact of the number of iterations on the variance of the (simulated) inner signal that
is explained by the array for increasing model complexity, Lin = 7− 11 and (a) Lout = 3, (b) Lout = 4,
(c) Lout = 5, using the iterative SSS approach.

Figure 7 reflects the results of Figure 4, showing a decrease in RMSE, which plateaus
after five iterations. The final error value decreases further with an increase in Lin. Again,
indicating good performance of the iterative approach.

Figure 8 shows the change in weights estimate ∆xit decreases to <0.1 after five itera-
tions. The change in weights is broadly consistent for all values of Lin, suggesting stable
solutions are possible even for high-order models.
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4. Discussion

Application of the iterative implementation of the SSS method produces stable solu-
tions with low relative reconstruction noise, high explained variance and low RMSE with a
stable weights vector estimate (∆xit < 0.1) after just five iterations. We note that the results
found may be specific to the specific array considered here. A key advantage of OPM-MEG
is that, unlike cryogenic-based systems, OPM arrays are easily reconfigurable. An analysis
like that presented above will be essential to assess the expected performance of the itera-
tive approach on a case-by-case basis. For example, we note that the spherical shell used
here to simulate the internal dipole signals (Figure 3a,b) does not represent the volume of a
typical brain within the array and that the incorporation of more realistic internal sources
may be useful before application to real data. By simulating relevant performance metrics,
one can assess an appropriate number of iterations to use for optimum performance. When
applied to real data (in which case the RMSE and explained variance cannot be estimated),
a stopping condition based on the change in the weights estimate could be implemented
by monitoring ∆xit for each iteration and stopping when a certain value is found.

Although our iterative approach was developed to overcome issues associated with
low channel counts, application of the SSS method to the rapidly developing field of
on-scalp MEG (including high-Tc SQUIDs [22] as well as OPMs) and other biomagnetic
measurements poses many opportunities for research. The optimisation and practical test-
ing of array design (no longer limited by the confines of a cryogenic dewar), exploitation of
triaxial sensing elements for the maximal separation of the internal and external subspaces
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(the average angle between the inner and outer subspaces for the 192-channel system
studied is ~60◦ compared to ~10◦ for a commercial 306-channel cryogenic system [23], an
increased subspace angle leads to improved shielding effects) and the introduction of a
moving sensor array are all key areas to investigate. As it is a spatial method, SSS requires
precise sensor calibration and accurate knowledge of the array geometry (to ensure the SSS
vectors can capture all parts of the measured data). In practice, an SSS-guided calibration is
often used to ensure optimal performance, but the operational principle of OPMs, and the
potential for many different array configurations means SSS-guided approaches may be
challenging to implement (as sensor calibration may vary depending on parameters, in-
cluding the density of atoms in the OPM vapour cell and the background field experienced
by the sensor). Methods based on the use of electromagnetic coils have been proposed
in mitigation [24]. All these issues will need to be addressed to fully realise the potential
of OPM-MEG.

5. Conclusions

Application of our iterative implementation of the SSS method to OPM-MEG systems
with low channel count substantially reduces the relative reconstruction noise compared to
the standard implementation. For our study, using a simulated 192-channel system, we
found that a stable estimate was obtained after just five iterations, with little dependency
on model complexity. Further study is needed to investigate the many array geometries
afforded by OPM-MEG and apply the method to experimental data.
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mdpi.com/article/10.3390/s23146537/s1, The MATLAB function used for the iterative implementation
of SSS.

Author Contributions: Conceptualization, N.H., R.B., M.J.B. and S.T.; Methodology, N.H. and S.T.;
Software, N.H., R.B. and S.T.; Validation, N.H., R.B. and S.T.; Formal analysis, N.H.; Investigation,
N.H.; Resources, N.H. and S.T.; Data curation, N.H.; Writing—original draft preparation, N.H.;
Writing—review and editing, M.J.B., R.B. and S.T.; Visualization, N.H.; Supervision, M.J.B., R.B. and
S.T.; Project administration, M.J.B., R.B. and S.T.; Funding acquisition, M.J.B., R.B. and S.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the UK Quantum Technology Hub in Sensing and Timing
(EP/T001046/1), and a Healthcare Impact Partnership Grant (EP/V047264/1) both funded by the
UK Engineering and Physical Sciences Research Council (EPSRC). Further funding was provided
by a National Institutes of Health grant (R01EB028772). S.T. acknowledges a National Institutes of
Health grant (R21EB033577) as well as the Bezos Family Foundation and the R. B. and Ruth H. Dunn
Charitable Foundation for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were acquired for this study. We acknowledge freely avail-
able code from Tim M. Tierney’s GitHub page, https://github.com/tierneytim/OPM (accessed on
20 November 2022) which was used to compute the SSS basis vectors.

Conflicts of Interest: M.J.B. is a director of Cerca Magnetics Limited, a spin-out company whose aim
is to commercialise aspects of OPM-MEG technology. N.H. and R.B. hold founding equity in Cerca
Magnetics Limited, and sit on the scientific advisory board. S.T. declares no competing interests.

References
1. Cohen, D. Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha Rhythm Currents. Science 1968, 161,

784–786. [CrossRef] [PubMed]
2. Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography Theory, Instrumentation, and

Applications to Noninvasive Studies of the Working Human Brain. Rev. Mod. Phys. 1993, 65, 413–497. [CrossRef]
3. Baillet, S. Magnetoencephalography for Brain Electrophysiology and Imaging. Nat. Neurosci. 2017, 20, 327–339. [CrossRef] [PubMed]
4. Rampp, S.; Stefan, H.; Wu, X.; Kaltenhäuser, M.; Maess, B.; Schmitt, F.C.; Wolters, C.H.; Hamer, H.; Kasper, B.S.; Schwab, S.; et al.

Magnetoencephalography for Epileptic Focus Localization in a Series of 1000 Cases. Brain 2019, 142, 3059–3071. [CrossRef]

https://www.mdpi.com/article/10.3390/s23146537/s1
https://www.mdpi.com/article/10.3390/s23146537/s1
https://github.com/tierneytim/OPM
https://doi.org/10.1126/science.161.3843.784
https://www.ncbi.nlm.nih.gov/pubmed/5663803
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1038/nn.4504
https://www.ncbi.nlm.nih.gov/pubmed/28230841
https://doi.org/10.1093/brain/awz231


Sensors 2023, 23, 6537 11 of 11

5. Taulu, S.; Kajola, M. Presentation of Electromagnetic Multichannel Data: The Signal Space Separation Method. J. Appl. Phys. 2005,
97, 124905. [CrossRef]

6. Taulu, S.; Simola, J.; Kajola, M. Applications of the Signal Space Separation Method. October 2005, 53, 3359–3372. [CrossRef]
7. Brookes, M.J.; Leggett, J.; Rea, M.; Hill, R.M.; Holmes, N.; Boto, E.; Bowtell, R. Magnetoencephalography with Optically

Pumped Magnetometers (OPM-MEG): The next Generation of Functional Neuroimaging. Trends Neurosci. 2022, 45, 621–634.
[CrossRef] [PubMed]

8. Schofield, H.; Boto, E.; Shah, V.; Hill, R.M.; Osborne, J.; Rea, M.; Doyle, C.; Holmes, N.; Bowtell, R.; Woolger, D.; et al. Quantum
Enabled Functional Neuroimaging: The Why and How of Magnetoencephalography Using Optically Pumped Magnetometers.
Contemp. Phys. 2023, 63, 161–179. [CrossRef]

9. Gutteling, T.P.; Bonnefond, M.; Clausner, T.; Daligault, S.; Romain, R.; Mitryukovskiy, S.; Fourcault, W.; Josselin, V.; Le Prado,
M.; Palacios-Laloy, A.; et al. A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4He OPMs—First
Applications in Healthy Volunteers. Sensors 2023, 23, 2801. [CrossRef]

10. Tierney, T.M.; Levy, A.; Barry, D.N.; Meyer, S.S.; Shigihara, Y.; Everatt, M.; Mellor, S.; Lopez, J.D.; Bestmann, S.; Holmes, N.; et al.
Mouth Magnetoencephalography: A Unique Perspective on the Human Hippocampus. Neuroimage 2021, 225, 117443. [CrossRef]

11. Hill, R.M.; Boto, E.; Rea, M.; Holmes, N.; Leggett, J.; Coles, L.A.; Papastavrou, M.; Everton, S.K.; Hunt, B.A.E.; Sims, D.; et al.
Multi-Channel Whole-Head OPM-MEG: Helmet Design and a Comparison with a Conventional System. Neuroimage 2020, 219,
116995. [CrossRef] [PubMed]

12. Holmes, N.; Leggett, J.; Boto, E.; Roberts, G.; Hill, R.M.; Tierney, T.M.; Shah, V.; Barnes, G.R.; Brookes, M.J.; Bowtell, R. A Bi-Planar
Coil System for Nulling Background Magnetic Fields in Scalp Mounted Magnetoencephalography. Neuroimage 2018, 181, 760–774.
[CrossRef] [PubMed]

13. Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al.
Moving Magnetoencephalography towards Real-World Applications with a Wearable System. Nature 2018, 555, 657–661.
[CrossRef] [PubMed]

14. Seymour, R.A.; Alexander, N.; Mellor, S.; O’Neill, G.C.; Tierney, T.M.; Barnes, G.R.; Maguire, E.A. Using OPMs to Measure Neural
Activity in Standing, Mobile Participants. Neuroimage 2021, 244, 118604. [CrossRef]

15. Feys, O.; Corvilain, P.; Aeby, A.; Sculier, C.; Holmes, N.; Brookes, M.; Goldman, S.; Wens, V.; De Tiège, X. On-Scalp Optically
Pumped Magnetometers versus Cryogenic Magnetoencephalography for Diagnostic Evaluation of Epilepsy in School-Aged
Children. Radiology 2022, 304, 429–434. [CrossRef] [PubMed]

16. Hill, R.M.; Boto, E.; Holmes, N.; Hartley, C.; Seedat, Z.A.; Leggett, J.; Roberts, G.; Shah, V.; Tierney, T.M.; Woolrich, M.W.; et al. A
Tool for Functional Brain Imaging with Lifespan Compliance. Nat. Commun. 2019, 10, 4785. [CrossRef]

17. Iivanainen, J.; Stenroos, M.; Parkkonen, L. Measuring MEG Closer to the Brain: Performance of on-Scalp Sensor Arrays.
Neuroimage 2017, 147, 542–553. [CrossRef]

18. Boto, E.; Bowtell, R.; Krüger, P.; Fromhold, T.M.; Morris, P.G.; Meyer, S.S.; Barnes, G.R.; Brookes, M.J. On the Potential of a New
Generation of Magnetometers for MEG: A Beamformer Simulation Study. PLoS ONE 2016, 11, e0157655. [CrossRef]

19. Tierney, T.M.; Mellor, S.; O’Neill, G.C.; Timms, R.C.; Barnes, G.R. Spherical Harmonic Based Noise Rejection and Neuronal
Sampling with Multi-Axis OPMs. Neuroimage 2022, 258, 119338. [CrossRef]

20. Nurminen, J.; Taulu, S.; Okada, Y. Effects of Sensor Calibration, Balancing and Parametrization on the Signal Space Separation
Method. Phys. Med. Biol. 2008, 53, 1975–1987. [CrossRef]

21. Rhodes, N.; Rea, M.; Boto, E.; Rier, L.; Shah, V.; Hill, R.M.; Osborne, J.; Doyle, C.; Holmes, N.; Coleman, S.C.; et al. NeuroImage
Measurement of Frontal Midline Theta Oscillations Using OPM-MEG. Neuroimage 2023, 271, 120024. [CrossRef] [PubMed]

22. Pfeiffer, C.; Ruffieux, S.; Jonsson, L.; Chukharkin, M.L.; Kalabukhov, A.; Xie, M.; Winkler, D.; Schneiderman, J.F. A 7-Channel
High-Tc SQUID-Based on-Scalp MEG System. IEEE Trans. Biomed. Eng. 2019, 67, 1483–1489. [CrossRef] [PubMed]

23. Nurminen, J.; Taulu, S.; Nenonen, J.; Helle, L.; Simola, J.; Ahonen, A. Improving MEG Performance with Additional Tangential
Sensors. IEEE Trans. Biomed. Eng. 2013, 60, 2559–2566. [CrossRef]

24. Iivanainen, J.; Borna, A.; Zetter, R.; Carter, T.R.; Stephen, J.M.; McKay, J.; Parkkonen, L.; Taulu, S.; Schwindt, P.D.D. Calibration
and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils. Sensors 2022, 22, 3059. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1063/1.1935742
https://doi.org/10.1109/TSP.2005.853302
https://doi.org/10.1016/j.tins.2022.05.008
https://www.ncbi.nlm.nih.gov/pubmed/35779970
https://doi.org/10.1080/00107514.2023.2182950
https://doi.org/10.3390/s23052801
https://doi.org/10.1016/j.neuroimage.2020.117443
https://doi.org/10.1016/j.neuroimage.2020.116995
https://www.ncbi.nlm.nih.gov/pubmed/32480036
https://doi.org/10.1016/j.neuroimage.2018.07.028
https://www.ncbi.nlm.nih.gov/pubmed/30031934
https://doi.org/10.1038/nature26147
https://www.ncbi.nlm.nih.gov/pubmed/29562238
https://doi.org/10.1016/j.neuroimage.2021.118604
https://doi.org/10.1148/radiol.212453
https://www.ncbi.nlm.nih.gov/pubmed/35503013
https://doi.org/10.1038/s41467-019-12486-x
https://doi.org/10.1016/j.neuroimage.2016.12.048
https://doi.org/10.1371/journal.pone.0157655
https://doi.org/10.1016/j.neuroimage.2022.119338
https://doi.org/10.1088/0031-9155/53/7/012
https://doi.org/10.1016/j.neuroimage.2023.120024
https://www.ncbi.nlm.nih.gov/pubmed/36918138
https://doi.org/10.1109/TBME.2019.2938688
https://www.ncbi.nlm.nih.gov/pubmed/31484107
https://doi.org/10.1109/TBME.2013.2260541
https://doi.org/10.3390/s22083059
https://www.ncbi.nlm.nih.gov/pubmed/35459044

	Introduction 
	Theory 
	The SSS Method 
	SSS with OPM-MEG 
	An Iterative Approach 

	Simulation Study 
	Methods 
	Reconstruction Noise 
	Source Separation 

	Results 

	Discussion 
	Conclusions 
	References

