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Abstract: Recognizing the affective state of children with autism spectrum disorder (ASD) in real-
world settings poses challenges due to the varying head poses, illumination levels, occlusion and
a lack of datasets annotated with emotions in in-the-wild scenarios. Understanding the emotional
state of children with ASD is crucial for providing personalized interventions and support. Existing
methods often rely on controlled lab environments, limiting their applicability to real-world sce-
narios. Hence, a framework that enables the recognition of affective states in children with ASD in
uncontrolled settings is needed. This paper presents a framework for recognizing the affective state
of children with ASD in an in-the-wild setting using heart rate (HR) information. More specifically,
an algorithm is developed that can classify a participant’s emotion as positive, negative, or neutral by
analyzing the heart rate signal acquired from a smartwatch. The heart rate data are obtained in real
time using a smartwatch application while the child learns to code a robot and interacts with an avatar.
The avatar assists the child in developing communication skills and programming the robot. In this
paper, we also present a semi-automated annotation technique based on facial expression recognition
for the heart rate data. The HR signal is analyzed to extract features that capture the emotional
state of the child. Additionally, in this paper, the performance of a raw HR-signal-based emotion
classification algorithm is compared with a classification approach based on features extracted from
HR signals using discrete wavelet transform (DWT). The experimental results demonstrate that the
proposed method achieves comparable performance to state-of-the-art HR-based emotion recognition
techniques, despite being conducted in an uncontrolled setting rather than a controlled lab environ-
ment. The framework presented in this paper contributes to the real-world affect analysis of children
with ASD using HR information. By enabling emotion recognition in uncontrolled settings, this
approach has the potential to improve the monitoring and understanding of the emotional well-being
of children with ASD in their daily lives.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition that limits social
and emotional skills, and as a result, the ability of children suffering from ASD to interact
and communicate is negatively influenced. The Centers for Disease Control and Prevention
(CDC) reports that 1 in every 36 children in the US is diagnosed with ASD. It can be difficult
to recognize the emotions of individuals with ASD, therefore making it hard to infer their
affective state during an interaction. However, new technological advancements have
proven to be effective in understanding the emotional state of children with ASD.

In recent years, wearable devices have been used to recognize emotions, detect stress
levels, and prevent accidents using behavioral parameters or physiological signals [1]. The
low cost and wide availability of wearable devices such as smartwatches have introduced
tremendous possibilities for research in affect analysis using physiological signals. An
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advantage of a wearable device, such as a smartwatch, is its ease of use in real-time
emotion recognition systems. There are many physiological signals that can be used for
emotion recognition, but heart rate is relatively easy to collect using wearable devices such
as a smartwatch, bracelet, chest belt, or headset. Nowadays, many manufacturers have
marketed smartwatches that can monitor heart rate employing photoplethysmography
(PPG) sensors or electrocardiograph (ECG) electrodes. Heart rate sensors in devices like
the Samsung Galaxy Watch, Apple Watch, Polar, Fitbit, and Xiaomi provide a reliable
instrument for heart-rate-based emotion recognition. Another significant aspect of using
heart rate signals for affect recognition is its direct linkage with the human endocrine system
and the autonomic nervous system. Thus, a more objective and accurate affective state of
an individual can be acquired by using heart rate information. In this work, the Samsung
Galaxy Watch 3 is employed to acquire the heart rate signal, as it is more comfortable
to wear for participants with ASD compared to wearing a chest belt or a headset. This
is especially important for those who are hypersensitive, a common experience of those
with ASD.

Previous research shows that heart rate changes with emotions. In Ekman et al. [2]
showed that heart rate had unique responses to different affective states. It was found that
heart rate increased during the affective states of anger and fear, and decreased in a state of
disgust. Britton et al. revealed that heart rate during a happy state is lower than heart rate
during neutral emotion [3]. Similarly, Valderas et al. found unique heart rate responses
when subjects were experiencing relaxed and fearful emotions [4]. Valdera’s experiments
showed that the average heart rate is lower in a happy mood as compared to a sad mood.

Similarly, the field of robotics is opening many doors to innovate the treatment of
individuals with ASD. Motivated by their deficiencies in social and emotional skills, some
methods have employed social robots in interaction with children with ASD [5-7]. Promis-
ing results have been reported in the development of the social and emotional traits of
children with ASD while supported by social robots [8]. Similarly, in Taylor et al. [9,10]
taught children with intellectual disabilities coding skills using the Dash robot developed
by Wonder Workshop. In this paper, an avatar is used in a virtual learning environment
to assist children with autism (ASD) in improving communication skills while learning
science, technology, engineering, and mathematics (STEM) skills. In particular, the child
is given a challenge to program a robot, Dash™. Based on the progress and behavior of
the child, the avatar provides varying levels of support so the student is successful in
programming the robot.

Most emotion analysis studies of children with ASD use various stimuli to evoke
emotions in a lab-controlled environment. The majority of these studies have employed
pictures and videos to evoke emotions. However, in [11], Fadhil et al. report that pictures
are not the proper stimuli for evoking emotions in children with ASD. Although most
studies have used video stimuli, other research works have employed serious games [12]
and computer-based intervention tools [13]. In this work, a human-avatar interaction is
used in a natural environment where children with ASD learn to code a robot with the
assistance of an avatar displayed on an iPad.

The compilation of ground truth labels from the captured data is challenging, laborious,
and prone to human error. To tag the HR data according to emotions, many techniques
have been used in the literature. For instance, in [14], the study participants use an
Android application to record their emotions by self-reporting them in their free time.
Similarly, in [15,16], the HR signals are labeled by synchronizing the HR data with the
stimuli videos. Since the emotion label of the stimuli is known, the HR signals aligned
with those stimuli are tagged accordingly. The problem with this tagging process is that it
assumes the participants experience the emotion of the stimuli and that it is constant for all
participants. However, in Lei et al. [17] reveal that individuals experience varied emotions
to different stimuli.

The ground truth labeling process becomes even more challenging when the data
are collected from participants with ASD [18]. For these participants, it is very difficult to
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accurately determine their internal affective state, and due to the deficits in communication
skills in children with autism, the conventional methods for emotion labeling are difficult
to apply [18,19]. In this paper, a semi-automatic emotion labeling technique is presented
that leverages the full context of the environment in the form of videos captured during the
interaction of the participant with the avatar. An off-the-shelf facial expression recognition
(FER) algorithm, TER-GAN [20], is employed to produce an initial label recommendation
by applying FER on the video frames. Based on the emotion prediction confidence of the
FER algorithm, a human with knowledge of the full context of the situation decides the final
ground truth label. The FER algorithm classifies a video frame into seven classes, i.e., the
six basic expressions of fear, anger, sadness, disgust, surprise, and happiness, and a neutral
state. Similar to [14], these emotions are clustered into three classes: neutral (neutral),
negative (fear, anger, sadness, and disgust), and positive (happiness). After tagging the
children-avatar interaction videos, the classical HR and video synchronization labeling
technique is used to produce the ground truth emotion annotation of the HR signal.

After compiling the training and testing dataset, optimal features from the heart rate
signal are then extracted and fed to the classifier for emotion recognition. A comparison
between two different feature extraction techniques is also presented and experiments for
intra-subject emotion categorization and inter-subject emotion recognition are performed.
The main contributions of this paper are given below:

e To the best of our knowledge, this is the first paper that presents a wearable emotion
recognition technique using heart rate information as the primary signal from a smart
bracelet to classify the emotions of participants with ASD in real time.

¢ The dataset compiled for this study contains face videos and heart rate data collected
in an in-the-wild set-up where the participants interact with an avatar to code a robot.

* A semi-automated heart rate data annotation technique based on facial expression
recognition is presented.

*  The performance of a raw HR-signal-based emotion classification algorithm is com-
pared with a classification approach based on features extracted from HR signals using
discrete wavelet transform.

*  The experimental results demonstrate that the proposed method achieves a compara-
ble performance to state-of-the-art HR-based emotion recognition techniques, despite
being conducted in an uncontrolled setting rather than a controlled lab environment.

The following presents the overall structure of the paper. The Section 2 of this paper
presents the related work in the domain of emotion recognition of kids with ASD. The
Section 3 describes the methods and the experimental details such as the demography of
participants, the in-the-wild real-time learning environment, the interaction of a child with
an avatar, the semi-automatic emotion labeling process, the feature extraction techniques,
and the emotion recognition step. The Section 4 presents the results of the experiments and
discusses and compares the results with the state-of-the-art emotion recognition techniques
using heart rate information. The Section 5 presents the conclusions, and the Section 6 is
about the limitations and the future research work.

2. Related Work

Many techniques have been proposed in the last few decades to recognize human
emotions employing different modalities such as facial expressions [21-23], speech sig-
nals [24,25], and physiological signals [26]. Here, the primary objective of the application
of emotion recognition is to aid either an automated system or a human-in-the-loop with
regard to a participant’s emotions during interactions within some scenario (typically a
learning environment). Each control system (automated or human) uses these emotional
data to direct the interactions of virtual characters or even to alter the environment during
an experience.

Emotion recognition has also been applied by many researchers to improve the in-
teraction of children with ASD and social robots [18,27-29]. Different modalities, such as
facial expressions [29-39], body posture [30,40], gestures [41], skin conductance [11,19],
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respiration [42], and temperature [43], have been used to perform emotion analysis for chil-
dren with ASD. Heart rate is also used to recognize the emotions of children with ASD, but
these methods use HR as an auxiliary signal that is combined with other modalities such as
skin conductance [19] or with body posture [30]. In this paper, an emotion classification
technique is developed that uses HR as the primary signal.

Table 1 summarizes the studies on the emotion recognition of participants with ASD.
Many of these techniques are complex and not suitable for applications in the real world.
In this paper, an emotion classification technique is presented that uses HR as the primary
signal leveraging a wearable smartwatch.

Table 1. Summary of research on emotion recognition of ASD participants using various sensors.

Subject

Ref. Related Work Signal Type Number Stimulation Materials Performance
Imitation of facial o
[39] Grossard et al. Video 36 expressions of an avatar Acctﬁzacy. 6si(413;;(r;e1)1tral,
presented on the screen ppy, sad, angry
Entropy score: (happiness:
[32] Coco et al. Video 5 Video 1776, fear: 1574, sadness:
1644)
[40] Marinoiu et al. Body posture - Robot—assmfced therapy RMSE: (valence: 0.099,
videos sessions arousal: 0.107)
F-Measure: (angry: 95.1%,
[41] Kumar et al. Gesture videos 10 Unknown fear: 99.1%, happy: 95.1%,
neutral: 99.5%, sad: 93.7%)
[28] Liuetal Skin 4 Computer tasks Accuracy: 82%
U ’ conductance P y:osso
Accuracy: (low/positive vs.
. - low /negative: 84.5% and
[42] Sarabadani et al. Respiration 15 Images high/positive vs. high
negative: 78.1%)
Temperature
[43] Rusli et al. (thermal 23 Video Accuracy: 88%
imaging)
3. Methods

3.1. Subject Information

A total of nine children (6 male and 3 female), aged 8 to 11 years old, who met the
criteria for ASD were recruited for this paper. Written parental consent and student assent
were acquired from each child prior to participation. All of the procedures were approved,
and both university and school district Institutional Review Board (IRB) approval for the
study were obtained. All participants in our studies were clinically diagnosed with ASD in
their school setting, and it was required that their primary language be English. Further
documentation beyond that was not requested as they were receiving services under the
Individualized Education Program with the label ASD.

3.2. Interaction of Children with Avatar

Each child is given a task to program a robot, and the avatar interacts with the child to
assist in completing this task. During this process, the children will not only learn STEM
skills but will also develop a relationship with the virtual avatar through communication.
The avatar interacts with the child using an iPad. The time duration of these sessions varies
depending on the speed of task completion by the children. Table 2 shows the time of
interaction of each child with the avatar to complete the given task.
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Table 2. Duration of the completion of the given task by the participants (seconds).

P1 P2 P3 P4 P5 P6 P7 P8 P9
828's 846 s 786's 540 s 660 s 480 s 583 s 611s 779 s

Due to the nature of the task and the interaction with the avatar, the children experience
different emotions at various stages of the session. For instance, the child often becomes
happy or surprised when the steps to program the robot are completed. Similarly, the child
often feels sad or angry when the robot Dash fails to move based on the child’s intent. The
videos of these sessions are recorded, where each frame contains the face of the participant,
the window containing the avatar, the window showing the robot Dash, and the audio of
the interaction between the child and the avatar, as shown in Figure 1. Each child wears a
Samsung Galaxy 3 smartwatch that collects heart rate information. To transmit the heart
rate data in raw form in real time, a smartwatch application was developed using the Tizen
OS. Figure 2 shows the Samsung Galaxy watch with the Tizen-based real-time heart rate
transmitting app, and the desktop app to receive the heart rate information.

Y System IP ‘ Heart Rate: 71.0

192.168.0.21

Machine Port Average Heart

77.4
Rate:

4

K‘. =1

£

Date: 03/01/2023

Time: 13:25:56

Figure 2. The Tizen-based real-time heart rate transmitting app and the desktop app to receive the
heart rate information.

3.3. Semi-Automated Emotion Annotation Process

The heart rate data are aligned with the videos of the children working with the
avatar to complete the given task. To label the heart rate data, a semi-automated emotion
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classification algorithm based on facial expression recognition is developed. Figure 3
shows the flow diagram of the semi-automated emotion annotation process. During this
annotation process, the off-the-shelf TER-GAN [20] FER model is leveraged, using added
parameters to classify two more emotions, i.e., neutral and contempt, and fine-tuned on
the in-the-wild AffectNet dataset [44]. Each video is divided into clips containing 7 video
frames, where 1y is the multiplication of the frame rate of the video and the time segment
corresponding to the window size. The frame rate of the videos in the dataset is 25 fps. For
the window size of two seconds, the value of 1 is n = 25 x 2 = 50. Then, the video clip is
inputted to the FER model frame by frame to obtain a representative frame for the entire
video clip, and the length of the video clip is synchronized with the transmission frequency
of the heart rate sensor of the smartwatch. The representative frame is chosen based on
two criteria: (1) the label of the representative frame should be the most frequent label,
and (2) the prediction confidence of the frame should be the highest in the frequency list.
After automatically obtaining the representative frame and its emotion label, the algorithm
decides whether or not to employ a human annotator based on the confidence of the model
predicting the emotion label. If the confidence value is lower than a threshold, then the
human annotator steps in, and after analyzing the full context of the situation, the final
label of the representative frame is assigned. Since the heart rate is aligned with the video
data, the emotion label of the video is assigned to the corresponding heart rate data. In
this paper, emotions are categorized into three classes: neutral, positive, and negative.
Therefore, the heart rate data are clustered into these three groups.

Video Clip l
Emotion
confidence >
TER-GAN (FER) threshold?
Yes [ No
| ! 1
List of most )
£ Emotion label of Human
requent
. the frame Annotator
emotion label

|
Frame with the
highest Emotion label of
confidence heart rate data

Figure 3. The flow diagram of the semi-automated emotion annotation process.

3.4. Feature Extraction

The performance of the emotion classifier depends on the quality of the features extracted
from the heart rate signal. As mentioned above, one of the main goals of this paper is to provide
real-time support to a human puppeteer or automated system by classifying the emotion of a
child based on heart rate information. Given this goal, the motivation is to avoid delays in the
real-time processing of the heart rate signal. As such, experiments are conducted with three
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different time windows (five seconds , three seconds, and two seconds). Therefore, the heart
rate data are obtained in the form of vectors:

V= (ht— (1)) he—(n—2)),- - - t) €]

* i represents heart rate at time ¢.
*  n corresponds to the length of the time window.

Features from the heart rate signal are then extracted for each time interval.

Discrete Wavelet Transform

Wavelet transform is widely used in signal processing applications to analyze signals
in the time-frequency domain. This mathematical tool is also used in many research works
to analyze heart rate data [8,45,46]. The discrete wavelet transform (DWT) is preferred over
conventional signal analysis techniques in decomposing the waves into an optimal resolution,
both in time and frequency. Thus, there is no requirement that the signal be stationary. Due
to these desirable properties, DWT is frequently used in many research works to perform
time-scale analysis, signal compression, and signal decomposition.

DWT filters decompose a signal into two bands at any particular level, i.e., approxima-
tions and detail bands of a signal. The approximations (A) correspond to the low-frequency
components of the signal at a high resolution. The details (D) are high-frequency components
of the signal at a lower resolution. During the sub-sampling process, the components of a
signal are divided by 2 for multi-resolution analysis, as shown in Figure 4. The pre-processed
heart rate data are inputted to the DWT decompositions. This multi-scale DWT decomposition
is also called sub-band coding. The sub-sampling at every scale decomposes a signal into
half the number of samples. Figure 5 shows the multiscale decomposition of a signal into
sub-bands at various levels. In this paper, DWT features are extracted for emotion recognition
by decomposing the heart rate signal using the Haar wavelets. The segments extracted from
the signal using a window size of 2 s are fed to the DWT to extract the features. The Python
PyWavelets [47] library is used to implement the DWT-based feature extraction algorithm.

S

—\ Filters /_

Low Pass Filter High Pass Filter

A 4 v

A D

Figure 4. The low-pass and high-pass filtering of the DWT.
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Figure 5. Discrete wavelet transform sub-band coding.

3.5. Emotion Recognition

After extracting DWT features from the heart rate signal, three different classifiers are
used to recognize emotions. SVM, KNN, and random forest (RF) [48] classifiers are used for
intra-subject and inter-subject classification. Intra-subject emotion classification is performed
when the heart rate data from the subject are acquired individually, and then the classifier is
trained and tested on the same data, whereas in inter-subject emotion recognition, the heart
rate data are collected from all participants rather than individually, and are used for the
training and testing of the recognition modal. All of the experiments were performed using a
ten-fold cross-validation method. For comparison purposes, similar to [16], experiments are
also conducted using the heart rate data as the input feature to the classifiers. Figure 6 shows
the heart rate signals of three different participants in the negative, positive, and neutral states.

The classification accuracy of the three classifiers is calculated using the
following formula:

TP+ TN @
TP+ TN+ FP+FN

where TP represents true positive, TN denotes true negative, FP stands for false positive,
and FN is the abbreviation of false negative [16].

Accuracy =
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Negative Positive Neutral

Heart rate (bpm)
Heart rate (bpm)
Heart rate (bpm)

Figure 6. The heart rate signals of three different participants in the negative, positive, and neutral states.

4. Results and Discussion

Summary statistics of the heart rate data acquired during the interactions of children
with the avatar are shown in Figure 7. Figure 7 shows the average heart rate, the minimum
heart rate, and the maximum heart rate of all participants. As can be seen during the
completion of tasks and the interaction with the avatar, the participants go through a range
of heart rate activities. Figure 8 shows the maximum, minimum, and average beats per
minute of all nine participants. The average heart rate of all nine participants is 96.8 BPM,
while the maximum heart rate is 124 BPM (Participant 6) and the minimum heart rate is
62 BPM (Participant 1).

S ~
b 5:1 o
N b
A 22}
. s g F
o o —
= =
o & N 5
1001~ g 9 9 8 5
> N
o~ o~
— ~ ~
80 5 o
04
I
60
40—
20~
1 2 3 4 5 6 7 8 9

Participants ~ Avg m Max © Min
Figure 7. Average, minimum, and maximum heart rate of all participants.

The emotion recognition results of both the intra-subject and the inter-subject data
using DWT and heart rate features employing SVM, KNN, and RF classifiers are discussed
in the following paragraphs. Experiments are performed using three different window
sizes, and it is found that a window size of two seconds enhances the performance of the
algorithm in terms of both accuracy and speed, which facilitates the real-time application
of the emotion recognition technique.

The intra-subject classification accuracies of the three classifiers using DWT features
are shown in Figure 9. In the case of SVM, the highest accuracy of 100% is obtained from
Participant 6, and the lowest recognition accuracy of 40.1% is obtained from Participant 4.
For KNN, Participant 6 obtains the highest accuracy of 100%, and Participant 3’s emotion
recognition accuracy of 51.4% is the lowest. In the case of RF, the highest accuracy of
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99.5% is obtained from Participant 6, and the lowest accuracy of 39.2% is obtained from

Participant 9.
96.8
All Subjects 124
62
0 20 40 60 80 100 120
Avg Max Min

Figure 8. The average, minimum, and maximum heart rate of all participants collectively.
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Figure 9. The intra-subject classification accuracy using DWT features.

Similarly, the intra-subject classification accuracy of the three classifiers using HR data
is shown in Figure 10. In the case of SVM, the highest accuracy of 100% is obtained from
Participant 6, and the lowest recognition accuracy of 29.7% is obtained from Participant
1. In the case of KNN, Participant 5 obtains the highest accuracy of 100%, and Participant
2’s emotion recognition accuracy of 32.1% is the lowest. For RF, the highest accuracy of
99.2% is obtained from Participant 6, and the lowest accuracy of 35.6% is obtained from
Participant 1.
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Figure 10. The intra-subject classification accuracy using HR.

The emotion recognition accuracy using the DWT features for inter-subject classifica-
tion employing SVM, KNN, and RF is shown in Table 3. The highest emotion recognition
accuracy among all three classifiers, with a window size of 2 s, is obtained with SVM, and
the average accuracy of the ten-fold cross-validation is 39.8%. The recognition accuracy for
the window size of three and five seconds is 39.8% and 39.9%, respectively, and since the
window size of five has a less significant impact on the average accuracy with a lagging
overhead, we set the window size to two seconds to facilitate the real-time application of
the proposed method. The emotion classification accuracy produced by KNN and RF is
33.4% and 35.7%, respectively, using a window size of two seconds. Similarly, the highest
classification accuracy of 38.1% is obtained using SVM with the heart rate signal as an input
feature, while RF produces the lowest recognition accuracy of 31.9%, as shown in Table 4.
Hence, this comparison indicates that a slightly better performance in emotion recognition
can be achieved by using DWT-based features. Figure 11 shows the confusion matrix
of experiments performed with DWT features and raw heart rate signal, while Table 4
shows the average precision, average recall, and F1 score of the experiments with the
DWT features and the HR signal. Similarly, comparing the intra-subject and inter-subject
recognition accuracy, it can be seen that the inter-subject emotion detection task is much
more difficult than the intra-subject emotion classification due to the variation present in
heart rate data for each individual.

Table 3. The inter-subject classification accuracy of all participants using SVM, RF and KNN.

Features SVM RF KNN
DWT features 39.8% 35.7% 33.4%
HR signal 38.1% 31.9% 36.7%




Sensors 2023, 23, 6572

12 of 16

Table 4. The average precision, average recall and F1 Score of the experiments with DWT features

and HR signal.
Features Average Precision Average Recall F1 Score
DWT features 0.399 0.397 0.398
HR signal 0.382 0.381 0.381
Nu Pos Neg Nu Pos Neg
=] =
3 3 1200
g 793 5 712
o)) o 600
@ [}
> 901 678 895 > 916 675 883
a b

Figure 11. (a). The confusion matrix of the experiment performed with DWT features. (b). The
confusion matrix of the experiment performed with the raw heart rate signal. ‘Neg’ stands for the
negative class, ‘Pos’ represents the positive class, and ‘Nu’ stands for the neutral class.

Comparison with Related Studies

The emotion recognition results are compared with the state-of-the-art HR-based
emotion classification techniques in Table 5. As shown in the table, the highest recognition
accuracy of 84% is obtained by [15], while the second highest accuracy of 79% is produced
by the emotion recognition technique proposed in [15]. As reported in [16], the experimental
protocol and details of the heart rate data used for the validation of these techniques are
not explained in these papers. It is not known whether their emotion recognition algorithm
is validated using the intra-subject HR data or the inter-subject HR data. Therefore, a
better comparison of the classification accuracy of the technique presented in this paper
can be performed by comparing the intra-subject recognition accuracy of 100% with the
intra-subject classification accuracy in [16], which is also 100%. Similarly, the inter-subject
recognition accuracy of the technique proposed in this paper is comparable to the inter-
subject classification accuracy of the technique proposed in [16], despite the fact that the
algorithm developed in this paper is trained and validated with the in-the-wild HR dataset
obtained during the real-time interaction of the participant with an avatar without well-
defined external stimuli and a constant lab environment. Another reason for the slightly
lower recognition accuracy of the technique presented in this paper is that the number
of participants in this study is nine, while the emotion recognition algorithm in [16] was
trained and tested using a dataset of twenty participants. Note that it is common to
have small samples when working with children diagnosed to be on the spectrum versus
other populations.
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Table 5. Comparison with other HR-based emotion recognition techniques.

Author Participants Stimuli Classifer No. Classes Accuracy
China Emotional Gradient boosting o
Shu etal. [15] % Video Stimuli (CEVS) decision tree 3 84%
. . 100% for intra-subject
Bulagang et al. [16] 20 Virtual reality (VR) SVM, KNN, RF 4 and 46.7% for
360° videos . .
inter-subject
Nguyen et al. [14] 5 Android application SVM 3 79%

Ours

Real-time interaction 100% for intra-subject
9 . SVM, KNN, RF 3 and 39.8% for
with avatar . .
inter-subject

5. Conclusions

The main objective of this paper is to develop a real-time heart-rate-based emotion
classification technique to recognize the affective state of children with ASD while they
interact with an avatar in an in-the-wild setting as opposed to a lab-controlled environment.
A semi-automated emotion annotation technique based on facial expression recognition is
presented for tagging the heart rate signal. The emotion labels obtained from the proposed
tagging method are then grouped into three clusters: positive, negative, and neutral
emotions. To classify the affective mood of a child with ASD into three emotional states,
two sets of features are extracted from the HR signal using a window size of two seconds,
and the effectiveness of these two sets of features is evaluated on three classifiers, namely,
SVM, KNN, and RE. Two types of HR datasets are also compiled, i.e., an intra-subject
dataset and an inter-subject dataset. The experimental results show that the classification
accuracy obtained by extracting DWT and HR features from the intra-subject dataset is
higher than the recognition accuracy of the inter-subject HR dataset. The experiments
performed using the inter-subject HR dataset produce the highest emotion recognition
accuracy by using the DWT features with SVM, which is comparable to the state-of-the-art
inter-subject HR-based emotion classification technique. The variation in heart rate due to
individual differences present in the inter-subject dataset contributes to lower recognition
accuracy, as observed when using other HR-based emotion recognition techniques.

6. Limitations and Future Work

The semi-automated heart rate signal annotation technique involves human interfer-
ence when the face video frames contain head poses that vary too far from the frontal face
position. Similarly, the quality of the heart rate signal deteriorates with too frequent hand
movements due to the addition of movement noise.

In our future work, the heart rate signal will be fused with the facial expression
information using multi-modal deep-learning-based emotion representation techniques.
The fusion of eye gaze and heart rate information for multi-modal emotion recognition will
also be included in this extended work.
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