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Abstract: Vidos from a first-person or egocentric perspective offer a promising tool for recognizing
various activities related to daily living. In the egocentric perspective, the video is obtained from a
wearable camera, and this enables the capture of the person’s activities in a consistent viewpoint.
Recognition of activity using a wearable sensor is challenging due to various reasons, such as motion
blur and large variations. The existing methods are based on extracting handcrafted features from
video frames to represent the contents. These features are domain-dependent, where features that are
suitable for a specific dataset may not be suitable for others. In this paper, we propose a novel solution
to recognize daily living activities from a pre-segmented video clip. The pre-trained convolutional
neural network (CNN) model VGG16 is used to extract visual features from sampled video frames
and then aggregated by the proposed pooling scheme. The proposed solution combines appearance
and motion features extracted from video frames and optical flow images, respectively. The methods
of mean and max spatial pooling (MMSP) and max mean temporal pyramid (TPMM) pooling are
proposed to compose the final video descriptor. The feature is applied to a linear support vector
machine (SVM) to recognize the type of activities observed in the video clip. The evaluation of the
proposed solution was performed on three public benchmark datasets. We performed studies to
show the advantage of aggregating appearance and motion features for daily activity recognition.
The results show that the proposed solution is promising for recognizing activities of daily living.
Compared to several methods on three public datasets, the proposed MMSP–TPMM method produces
higher classification performance in terms of accuracy (90.38% with LENA dataset, 75.37% with ADL
dataset, 96.08% with FPPA dataset) and average per-class precision (AP) (58.42% with ADL dataset
and 96.11% with FPPA dataset).

Keywords: activities of daily living; convolutional neural network; egocentric vision; feature fusion;
optical flow

1. Introduction

Activities of daily living (ADL) are a type of activity performed daily and repetitively.
ADL relates to the personal tasks performed to sustain healthy living. The types of activity
include eating, food preparation, reading, and dressing. In the medical literature, ADL is
categorized according to its functional purpose. In the work by [1], a hierarchical division
of activities is used. At the highest level, ADL is divided into hygiene, food-related, and
entertainment. It is of interest to monitor a person’s ADL if they are afflicted by disease or
due to aging factors. Such factors cause ADL impairment that warrants close supervision
by doctors and their caretakers.

In smart homes, vision-based activity recognition is used to observe the person’s image
and predict their actions. This helps in several aspects, such as entertainment (playing
favorite music, turning on TV channel, turning on the Aircon), daily assistance (turning
on/off lighting, opening fridge, turning on the water heater, opening windows and doors,
watering the plants, notifications to feed pets), health care (medicine time alarms, elderly
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fall detection), and security and surveillance (attacker recognition). In a smart city, vision-
based activity recognition can also help to reduce the crime rate by detecting violent actions
and sending alarms to police. Additionally, notifying fatigued drivers by detecting their
actions can play a role in reducing car accidents. Furthermore, the detection of non-suicidal
self-injury based on the spatiotemporal features of indoor activities was another application
for human activity recognition [2].

The assessment of ADL is commonly performed in hospitals using standardized meth-
ods such as SCIM measure [3]. This procedure requires the caretaker to observe the patient
for a long duration to assess if a person can perform the activities. The ADL performance
is graded depending on the ability of the person to perform ADL independently, require
partial assistance, or require total continuous assistance. Such an assessment takes a long
time and is best performed at home so that the human behavior can be naturally observed.
In this paper, an effective algorithm to classify videos into a set of pre-defined daily living
activities is proposed. The system is capable of automatic video clip classification based
on ADL events and thus supports various video analytics for healthcare monitoring. This
contributes to more efficient patient monitoring and better diagnosis of a patient’s health
status, thus facilitating timely intervention and rehabilitation.

Egocentric vision study images acquired from a first-person or camera-wearer per-
spective compares the conventional third-person perspective where the image is captured
from an external observer. With the proliferation of small portable and wearable cameras,
it is now easy to collect a large number of egocentric videos. The video can be used for the
semantic understanding of the activities in a naturalistic setting. Egocentric video is useful
for many applications related to daily living analysis. It is easy to set up and involves
just wearing the camera. However, there are several inherent difficulties and challenges,
including continuously moving cameras that lead to motion blur problems. Algorithms
that rely on motion patterns are affected by unknown motion dynamics. In a realistic
scenario, background clutter and large variations in how the activity is executed pose large
intra-class variation. Additionally, an activity performed by numerous persons and in
various locations exhibits high variations. Furthermore, different activity classes also share
similar appearance patterns, and this leads to small inter-class variance. To address this
issue, robust features are needed to discriminate between different activity classes, and
these features should be invariant to intra-class variations.

Feature representation plays an important role in many classification tasks. Before a
data sample can be classified, each sample must be encoded with suitable features in a fixed
dimensional vector. This provides compact numerical representation of the data sample for
discriminating between different activity classes. Moreover, a good feature vector allows a
simpler classifier to predict accuracies with high generalization, whereas a weak feature
vector requires a more complex classifier. This paper studies visual feature representations
that are obtained from convolutional neural networks (CNNs). Such a network usually
performs well when it is trained with a large image dataset such as ImageNet [4]. To
overcome the lack of training samples, many methods use pre-trained CNN for image
and video classification. However, such studies in the egocentric video domain are still
limited. Egocentric video has unique properties due to the importance of objects that help to
predict activity being undertaken. Due to the difference in viewpoint, images in egocentric
perspective appear different from the images in the ImageNet dataset. This paper aims to
study the utility of features from pre-trained CNN for representing egocentric video frames.
A novel CNN-based feature extraction technique that incorporates spatial and temporal
pooling is proposed and evaluated. Features are extracted from individual video frames
by taking the activation of the last convolution layer. The extracted deep convolutional
feature vectors are aggregated with the use of average and max spatial pooling to obtain
the proposed MMSP feature. Finally, the MMSP frame feature is integrated with both max
and average temporal pooling as well. Experiment results highlight the strong performance
of the proposed solution.
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Even though there are recent CNNs, VGG network is still a popular deep learner
and widely used in many applications. It has shown superior performance at image
classification, and it is able to generalize well to the related tasks. VGG-16 is selected
because it can balance good performance and fewer parameters.

The contributions of this work are summarized as follows:

1. We evaluated and compared two different sets of features that can be obtained from
a pre-trained CNN, namely VGG16. The first feature set includes features from the
fully connected layer (fc7), and the second feature set includes features from the last
convolutional layer after pooling (fv-pool5).

2. We performed an ablation study to show the advantage of aggregating appearance
and motion features for daily activity recognition.

3. We proposed a fusion of two methods, including mean and max spatial pooling
(MMSP) and max mean temporal pyramid (TPMM) pooling to compose the final
video descriptor.

2. Related Works

The use of an egocentric perspective for video-based activity recognition has become
increasingly popular due to the widespread use of the wearable camera. The advancement
of camera technology resulted in smaller compact devices and longer battery lifespan. This
helps to facilitate the use of wearable cameras for activity recognition.

The typical activity recognition pipeline consists of a feature extraction phase followed
by classification phase. For example, Internet of Healthcare Things systems have extensively
emerged since the Industry 4.0 revolution [5]. They used accelerometers and gyroscope
sensors in smartphones to collect the data of handcrafted features obtained from the motion
and acceleration signal. Random Forest is used as the classifier to recognize actions. This
differs from vision-based activity recognition, where feature extraction is performed on
the video frames and is mainly characterized by the types of features used. The important
cues for egocentric video classification are the hand pose, objects used, visual features,
motion patterns, and gaze points of the scene. This differs from the conventional activity
classification from the third-person perspective. In this perspective, activity is observed by
an external observer and uses RGB with depth images [6] and skeleton information [7,8].

The activity recognition approaches can be categorized into techniques that use manual
feature engineering (handcrafted features) and the more recent methods that use features
learned from training data. To extract visual features, the manual feature extraction ap-
proach typically uses image-based heuristics that have been known to perform well in
image recognition task [9,10]. The same feature extraction technique is applied to extract
visual features from the video frames. Motion-based features are borrowed from the one
used in action recognition from a third-person perspective (TPR) [11,12]. However, the
major problem with the manual feature engineering approach is the need to customize
the feature design for different tasks, and this involves a large amount of manual trials
and human expertise. The feature-learning approach solves this problem by automatically
learning from the training data related to the vision task. This results in a feature vector
that is highly discriminative.

Early work on egocentric activity recognition uses handcrafted features adopted from
the technique used in the image recognition domain. One of the important works in
Daily Activity Recognition was conducted by Pirsiavash and Ramanan [1]. They proposed
a challenging dataset (ADL) that shows unscripted daily activities being performed by
multiple persons in various locations. To capture the notion that daily living activities are
object-based, the presence and absence of key objects are used as discriminative cues. The
visual features extracted from each video frame are based on object detection scores for a
few relevant objects. The objects are divided into active and passive categories: passive
objects appear in the video frame as contextual information while active objects are objects
that are manipulated when the activity is being performed by the camera wearer. The
use of separate active and passive object detectors is motivated by the distinctive change
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in appearance when the object is manipulated, and thus change from a passive to active
state and then back to a passive state. The object detection scores are aggregated in a
two-level temporal pyramid to exploit the temporal ordering of the features. This pioneer
work was further improved by [13], which proposed to learn via a boosting method the
spatiotemporal partitions of the pyramid that helped to discriminate the activities. This
compares to the earlier work by Pirsiavash and Ramanan [1] that assumed equally spaced
partitions for the temporal pyramid and did not use spatial partition. However, only a small
improvement was observed. This is due to the use of object detectors based on hand-crafted
features, which perform poorly on the unconstrained dataset. Another researcher [14] tried
to use the salient region predicted from the video frame in the ADL dataset. This salient
region attracted gaze points or human attention and thus might contain useful objects that
could help in discriminating the activities. Active and passive objects were detected and
further classified as salient or non-salient depending on the computed saliency score of the
detected regions. This led to a slight improvement in activity recognition and accuracy.

In the work proposed by González Díaz et al. [15], daily activity recognition was
performed by relying on an image classification score for a selected set of relevant ADL
objects. Object-centric representation was obtained based on the local SURF [16] features
aggregated using a Bag of Word method. This is different from the work proposed by Pirsi-
avash and Ramanan [1], which used a parts-based object detection method that required
exhaustive scanning of the whole video frame. Improved performance was observed when
a predicted scene category was used and when the aggregated feature was weighted by a
saliency map obtained from spatial, temporal, and geometric saliency measures.

Features from a deep convolutional neural network (CNN) pre-trained on a large
image dataset such as ImageNet have been shown to be useful as discriminative visual
features for many image classification problems [17]. In [18], the visual features were
obtained from the first fully connected layer of the CNN network. The model was trained
to perform object classification on the ILSVRC13 dataset. The recognition performance
using the CNN feature outperformed many state-of-the-art handcrafted feature methods
in many image classification problems. This shows that features from pre-trained CNN
on a large image dataset can be used as a powerful visual feature for different image
classification problems.

The CNN features have also been extended to be used for video classification tasks [19,20].
Jiang et al. [21] used the outputs of the seventh fully connected layer of the AlexNet model [22].
Karpathy et al. [23] used a CNN model that fused features obtained from different video
frames and predicted action categories in web-based videos. One interesting result shows
that single-frame model performance is comparable to multi-frame model. Zha et al. [24]
employed image-trained CNN features from the VGG model [25]. The output of the fully
connected and class softmax layer is used as a frame descriptor. Since the number of frames
in a video varies, uniform frame sampling was used. The video descriptor was obtained by
performing spatial and temporal pooling of the frame-based features.

The CNN features are also used for egocentric video classification. The processing
pipeline is similar to video classification for a third-person perspective. The major design
issues lie in the selection of different CNN features and the pooling of the frame to form
a video descriptor. To incorporate temporal dependencies within video frames, previous
techniques applied time series temporal pooling [26] and temporal pyramid of object
detection scores [1] to aggregate features to form a fixed-length representation of input
to be applied to the classifier. Efficient temporal pooling methods are crucial to preserve
salient temporal information from the video frames. Recent work by [27,28] showed that
detecting the region where object manipulation takes place is important. This is known
as the interactional image region where the activity is observed. The region frequently
shows the hand manipulating selected objects related to the activity. Encoding objects
and motion-based features from such a region has been shown to provide strong cues for
predicting ongoing activity. In the work by Zhou et al. [27], the foreground region related
to the activity was detected by combining hand segmentation, salient region detection
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from CNN convolutional features, and motion maps from the estimated optical flow field.
These three feature maps were stacked as a volumetric input sequence to the bounding box
regression network based on VGG-16 in order to predict the interactional region. Another
paper [28] directly trained an object detector of the Faster-RCNN-ResNet 101 model. The
object annotation from the ADL dataset was used. The detected object was tracked at 15 fps
and motion features were extracted from the detected object regions in 2 to 3 seconds of
video frames. The tracked motion is encoded as a boundary histogram feature (MBH) [11]
and a Histogram of Oriented Flow (HOF) [29]. The local motion features obtained from
the video were aggregated via Fisher vector encoding to form a final video descriptor for
activity classification. Another study employed fine-tuned YOLO-v4 for activity detection
and 3D-CNN for recognition using a UCF-Crime dataset [30].

A sensor data contribution analysis method based on status frequency-inverse fre-
quency was proposed for human activity. Spatial distance matrix for context-awareness of
cross-activities was found. Novel wide time–domain CNN (WCNN, a powerful parallel
feature extraction) was able to save time and produce good performance [31].

Although multiple methods that use CNN for video classification have been proposed,
there is still a lack of study on the use of convolutional features for content understanding in
egocentric videos. Most existing works used the fully connected layer to obtain video frame
features. This representation lacks spatial composition of the visual pattern. On the contrary,
features from the convolutional layer give filter activations at relative spatial locations of
the image. Additionally, these features are less biased to the concept used in ImageNet
dataset. Thus, they can be a useful generic feature for frame-based representation.

In this paper, the use of a pre-trained image CNN for extracting features from egocen-
tric video frame is studied. A new spatial pooling of the convolutional features extracted
from a pre-trained CNN is proposed and evaluated. Additionally, a temporal pyramid
method is proposed to aggregate the CNN features extracted from the sequence of adjacent
video frames. This differs from the work in [1] that requires a number of object detections
to be performed for each video frame. Using a bank of object detectors is time-consuming
and is sensitive to detection accuracy. Instead of running multiple object detectors, the
proposed method uses a pre-trained CNN to extract visual features from each frame, and
the features are pooled to form a fixed-length feature vector. The feature vector is used by
SVM for multi-class classification in a one-vs.-all configuration.

The organization of this paper is as follows: The introduction to the problem and the
data used is described in Section 3. Furthermore, the approaches of CNN-based feature
extraction, optical flow, and spatial and temporal pooling are also demonstrated in this
section. The description of the three public datasets is described in Section 4. Moreover,
Section 4 discusses the experiments conducted in this study and analyzes the results
by comparing the proposed method with state-of-the-art methods. Finally, in Section 5,
the outcome of this work is summarized to give the readers a glimpse into potential
improvements in the future.

3. Materials and Methods

In this section, we introduce the problem of activity recognition under study in this
work. Furthermore, the proposed method is discussed in detail.

3.1. Activity Recognition Problem

Egocentric vision studies images acquired from a first-person or camera-wearer per-
spective. The camera video can be used for a semantic understanding of the activities
in a naturalistic setting. However, there are several inherent difficulties and challenges,
including continuously moving cameras that lead to motion blur problems. Algorithms
that rely on motion patterns are affected by unknown motion dynamics. In a realistic
scenario, background clutter and large variations in how the activity is executed pose large
intra-class variations. Additionally, an activity performed by numerous persons and in
various locations exhibits high variations. Furthermore, different activity classes also share
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similar appearance patterns, and this leads to small inter-class variance. To address this
issue, robust features are needed to discriminate between different activity classes, and
these features should be invariant to intra-class variations. The proposed video features
are evaluated on several public datasets. Comparison with selected baseline methods was
performed in the video classification framework. Video classification with the proposed
features is evaluated on three publicly available benchmark datasets. These datasets are
chosen to evaluate the video features in a variety of scenes and activities performed by
different people. All the experiments were performed by leave one person out evaluation
protocol. The three datasets that have been used are briefly described in Section 4.1.

3.2. The Proposed Method

In this section, we will introduce our proposed framework for feature extraction
from egocentric video frames. First, we feed video frames into a pre-trained CNN model
and obtain the activations from the last convolutional layer. The feature from the video
frame is then post-processed with two types of local pooling operations, namely, average
pooling and max pooling. Local pooling is used to combine contributions from multiple
deep descriptors taken from the output of the convolution layer. The pooling operation
is applied to the feature maps at preselected spatial regions. The pooled feature vectors
from average and max pooling are concatenated to form the frame descriptor known as
MMSP feature. In order to incorporate motion information, optical flow field is extracted
from sampled video frames and is then converted to a motion image. The motion image
represents the direction and intensity of the optical flow motion in a visual form. The
MMSP feature is also extracted from the motion image and evaluated.

To classify the egocentric video clip into corresponding activity classes, the MMSP
feature from the sampled frames is extracted and aggregated. The frame features are
integrated into a single video descriptor with the use of both max and average pooling,
applied in a temporal pyramid scheme. The temporal pooling approach captures motion
information on a global and local scale. The final video clip descriptor is known as the
MMSP–TPMM feature.

3.2.1. Proposed Video Frame Feature (MMSP)

This section describes how the video frame feature (MMSP) is obtained. It is known
that the pre-trained image CNN activations from the last fully connected layer are an
effective visual descriptor [18] However, the activation from the fully connected layers does
not provide information on the spatial arrangement of the image parts. Such information is
essential for discriminating between different types of scenes and objects related to ADL.
Thus, features from the last convolutional layer are proposed. The features are obtained
from the activations of the pre-trained CNN model, namely, VGG16. The VGG16 model
has been pre-trained on the large ImageNet dataset used for the ILRSVRC 2014 competition
for predicting 1000 image categories.

The VGG16 CNN image model has 16 layers. It contains thirteen convolutional
layers and three fully connected layers. The convolutional layers are arranged into five
blocks. Each block consists of a sequence of 3 × 3 convolutional operations on the input
feature maps. The block diagram in Figure 1 shows the sequence of convolutional layers,
interleaved with pooling layers after each block. The convolutional features were obtained
from the Pool5 layer. For each input image, the Pool5 layer emits a stack of 512 feature
maps with 7 × 7 spatial dimensions. The feature maps are illustrated in Figure 2. The
feature maps represent the 512 filter activations at various spatial locations of the image.
The activations are organized as 7 × 7 cells, and each cell at location (i, j), i, j ∈ [1, 7]
consists of a 512-dimensional deep convolutional feature x(i, j) ∈ R512.
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Stacking the convolutional feature to form a single vector as a video frame descriptor
will produce a vector with a high dimension of 25,088 (512× 49). In the proposed technique,
the large dimensional vector space is reduced by using spatial pooling at multiple fixed
regions of the feature maps. The local pooling regions are shown in Figure 3. The pooling
regions are selected to cover the five major spatial areas, namely the center, top left, top
right, bottom left, and bottom right areas. The series of Equations (1)–(15) shown in
Table 1 explain the heuristic method used to extract visual features from the input video
frames. The mean and max pooling operations are applied to the specified regions in
Figure 3 with the use of Equations (1)–(12). Equations (13) and (14) are then applied
to concatenate the resulting feature vectors. The final video frame descriptor known as
MMSP is obtained by concatenating the result of both mean and max pooling operations,
as shown in Equation (15). Pooling is performed element-wise for each channel and thus
produces one convolutional feature vector with 512 dimensions for each pooling region.
This effectively captures the representative features for each filter channel and reduces the
number of convolutional feature vector from 49 to 12. The total dimension of the MMSP
video frame feature vector is 6144 (12 × 512).
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Table 1. A set of equations used to extract visual features from the input video frames utilizing
heuristic method.

f0 = 1
49

7
∑

i=1

7
∑

j=1
x(i, j) (1)

f1 = 1
9

5
∑

i=3

5
∑

j=3
x(i, j) (2)

f2 = 1
9

4
∑

i=1

4
∑

j=1
x(i, j) (3)

f3 = 1
9

4
∑

i=1

7
∑

j=4
x(i, j) (4)

f4 = 1
9

7
∑

i=4

4
∑

j=1
x(i, j) (5)

f5 = 1
9

7
∑

i=4

7
∑

j=4
x(i, j) (6)

f6 = max
i∈[1,7], j∈[1,7]

{x(i, j)} (7)

f7 = max
i∈[3,5], j∈[3,5]

{x(i, j)} (8)

f8 = max
i∈[1,4], j∈[1,4]

{x(i, j)} (9)

f9 = max
i∈[1,4], j∈[4,7]

{x(i, j)} (10)

f10 = max
i∈[4,7], j∈[1,4]

{x(i, j)} (11)

f11 = max
i∈[4,7], j∈[4,7]

{x(i, j)} (12)

fmean = [f0, f1, . . . f5 ]T (13)

fmax = [f6, f7, . . . f11 ]T (14)

fmmsp =
[

fmean,fmax

]
(15)
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The description of each equation in Table 1 used to extract visual features from the
input video frames utilizing heuristic method is as follows:

Equation (1) performs spatial average pooling by averaging all 49 convolutional
feature vectors in an element-wise manner to produce a single 512-dimensional feature
vector. The region covers the whole image and is indicated in Figure 3a.

Equation (2) performs spatial average pooling by averaging the middle spatial region
convolutional feature vectors, as indicated in Figure 3b.

Equation (3) performs spatial average pooling by averaging the top left spatial region
convolutional feature vectors, as indicated in Figure 3c.

Equation (4) performs spatial average pooling by averaging the top right spatial region
convolutional feature vectors, as indicated in Figure 3d.

Equation (5) performs spatial average pooling by averaging the bottom left spatial
region convolutional feature vectors, as indicated in Figure 3e.

Equation (6) performs spatial average pooling by averaging the bottom right spatial
region convolutional feature vectors, as indicated in Figure 3f.

Equations (7)–(12) similarly applied spatial max pooling in the mentioned regions
described in Figure 3. Equations (13)–(15) combine the result from previous equations in
order to obtain the final MMSP video frame descriptor.

In this study, the activity motion pattern is represented by dense optical flow pattern.
Optical flow is the perceived motion of objects in a visual scene. In order to obtain the flow
image, the dense optical method [32] is converted to an image representation in order to
obtain the flow image [33]. The image hue value represents the direction of motion, and
the saturation intensity value represents the magnitude of motion.

The VGG16 CNN model is used to extract the visual features from the motion image.
Figure 4 shows sample visual frames and their corresponding flow image obtained from
dense optical flow estimation. It can be observed that strong motion detected in the frame
corresponds to the foreground region. The MMSP frame feature is applied to the flow
image as well. The fusion of features from frame image and flow image gives a total
dimension of 12,288 dimensions (6144 × 2).
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Previous research by [34] has shown that aggregating the CNN convolutional features
by average and max pooling leads to the best accuracy in fine-grained image classification
when compared to other feature aggregation techniques. Average pooling combines the
contribution from all features in the selected spatial area, and max pooling only chooses the
feature with the strongest activation. Strong activation indicates the presence of objects in
the represented locations. Average pooling considers objects placed at different locations in
the scene, and max pooling considers the most prominent object in the scene. Our proposed
method uses multiple fixed local regions, whereas Wei et al. [34] only used one most salient
region for the max and average pooling. By performing regional spatial pooling, object
representation located at different positions can be captured.

3.2.2. Proposed Video Clip Feature (MMSP–TPMM)

Videos contain a different number of frames in a sequence of different lengths. To
encode the video frames, temporal pooling of the individual MMSP frame features is
used. Recent work on video classification showed that not all frames are needed, and
only a small number of relevant frames in 1.5 s period are sufficient [35]. The CNN
features from individual frames can be aggregated by a few standard approaches, namely,
average pooling, max pooling, and temporal pyramid pooling. The mean pooling method
aggregates the contribution of all frames by taking the average value from all video frames.
The max pooling method chooses the feature from the frame with maximum signal strength.
The definition of the proposed temporal pyramid max–min (TPMM) pooling is described
as follows:

Let T j,k denote the temporal segment number j, j ∈
{

1, . . . , 2k−1
}

in the temporal
pyramid level k, k ∈ {1, 2} for a two-level pyramid. Consider a set of consecutive frames in
the video clip Vi =

{
f1, f2 , . . . , fNi

}
, where Ni represents the number of selected frames

in the video clip Vi and ft denotes the f mmsp feature for the video frame t, t ∈ [1, Ni ].
To convert a sequence of frame features into a single feature vector as video descriptor,

temporal pyramid pooling is proposed. Figure 5 illustrates the temporal pyramid pooling
scheme used. The temporal pooling operation is defined in Equations (16)–(19), and the
concatenate is the result of mean and max pooling to form the video clip descriptor. Two
levels of temporal scale are used. In the first level T1,1, temporal max pooling is performed
over the whole video clip. In the second level, the video clip is divided into two equal
segments, and temporal mean pooling is applied to each segment. The frame division into
corresponding temporal segments in the scheme is detailed as T1,1 = [1, Ni] , T1,2 =

[
1, Ni

2

]
,

and T2,2 =
[

Ni
2 + 1, Ni

]
. The video clip descriptor is defined as gMMSP−TPMM in Equation

(19) and named MMSP–TPMM video feature. The L2 normalization is applied to the video
features before being applied to the SVM multi-class classifier. The process flow for the video
clip feature extraction is shown in Figure 6.

g0
max(Vi) = max

t∈[1,Ni ]
ft (16)

g1
mean(Vi) =

1
(N i/2)∑t∈[1,Ni/2] ft (17)

g2
mean(Vi) =

1
(N i/2)∑t∈[ Ni

2 +1, Ni ]
ft (18)

gMMSP−TPMM =
[

g0
max(Vi) , g1

mean(Vi), g2
mean(Vi)

]
(19)

Indeed, we used VGG16 without fully connected layers, and as a result, it has few
parameters. We replaced fully connected layers using a linear support vector machine
(SVM). The feature vector is applied to SVM classifier for multi-class classification. The
reason for this replacement is not only to increase speed but also to enhance performance
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because the features of fully connected layer (fc7) are more biased towards the prediction
of the 1000 categories of ImageNet dataset.

Sensors 2023, 22, x FOR PEER REVIEW 11 of 22 
 

 

To convert a sequence of frame features into a single feature vector as video 
descriptor, temporal pyramid pooling is proposed. Figure 5 illustrates the temporal 
pyramid pooling scheme used. The temporal pooling operation is defined in Equations 
(16)–(19), and the concatenate is the result of mean and max pooling to form the video clip 
descriptor. Two levels of temporal scale are used. In the first level 𝑇 ,  , temporal max 
pooling is performed over the whole video clip. In the second level, the video clip is 
divided into two equal segments, and temporal mean pooling is applied to each segment. 
The frame division into corresponding temporal segments in the scheme is detailed as 𝑇 , = [1,𝑁 ] ,𝑇 , = 1, ,𝑎𝑛𝑑 𝑇 , = 1,𝑁 . The video clip descriptor is defined as 𝑔   in Equation (19) and named MMSP–TPMM video feature. The L2 
normalization is applied to the video features before being applied to the SVM multi-class 
classifier. The process flow for the video clip feature extraction is shown in Figure 6. 𝑔 (𝑉 ) =  max∈[ , ]𝑓  (16)

𝑔 (𝑉 ) =  1(𝑁 /2) 𝑓∈[ , / ]  (17)

𝑔 (𝑉 ) =  1(𝑁 /2) 𝑓∈[ , ]  (18)

𝑔 = [𝑔 (𝑉 ) ,𝑔 (𝑉 ),𝑔 (𝑉 )] (19)

 
Figure 5. The diagram shows the division of frames in a video clip i with length Ni. In the first level 
pyramid T1,1, max pooling is applied over all the frames in the video clip, based on Equation (16). In 
the second level pyramid, the video frames are divided equally into two temporal segments T1,2 and 
T2,2. The mean pooling operation is applied to the first half and second half of the video frames in 
the given segment (Equations (17) and (18)). 

Figure 5. The diagram shows the division of frames in a video clip i with length Ni. In the first level
pyramid T1,1, max pooling is applied over all the frames in the video clip, based on Equation (16). In
the second level pyramid, the video frames are divided equally into two temporal segments T1,2 and
T2,2. The mean pooling operation is applied to the first half and second half of the video frames in the
given segment (Equations (17) and (18)).
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The dimension of the video feature produced by Equation (19) is fixed for every video
dataset and includes 18,432 (6144 × 3) for a single modality. In the case where features
from both spatial images and flow images are used, the dimension for the video feature
will be doubled (18,432 × 2).

4. Experiments and Results

In this section, a description of the three public datasets is highlighted. Additionally, we
discuss the experimental setup of the conducted experiments. Furthermore, the performance
metrics used for evaluation are described. Finally, the experimental results of the proposed
method are demonstrated to show the superior performance of the proposed solution.

4.1. Datasets Overview

The proposed video features are evaluated on several public datasets. A comparison
with selected baseline methods was performed in a video classification framework. Video
classification with the proposed features is evaluated on three publicly available benchmark
datasets. These datasets are chosen to evaluate the video features in a variety of scenes and
activities performed by different people. All the experiments were performed with the use
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of leave one person evaluation protocol. The three datasets that have been used are briefly
described as follows:

1. Activity of Daily Living (ADL) dataset [1]: The dataset contains activities performed
by 20 people in their own homes. A camera was worn on the chest, and videos were cap-
tured at 30 frames per second with a 170-degree viewing angle and with a high-definition
resolution setting (1280 × 960). Each person recorded the video for roughly 30 min. Thus,
the total frames per video clip are 30 × 60 × 30 = 54,000. Activities were performed freely
without being scripted. The unconstrained video capture condition resulted in a wide
diversity in the captured video in both the scenes and objects used in the activities. This
makes the video clip classification more challenging when compared with other egocentric
video dataset. For benchmarking with the experiment setup in [1], 18 activities by 13 people
(persons 7–20) from the ADL dataset were selected for experimental evaluation. The sum-
mary of the activities used in the video classification experiment is shown in Table 2. It can
be observed that the distribution of the video classes is imbalanced. The activity duration
and number of video clips for the class differ significantly.

Table 2. Summary of Activity of Daily Living (ADL) dataset statistic used for video classification evaluation.

No. Activity Type Number of
Clips

Average
Number of

Frames Per Clip

Average Video
Clip Duration (s)

1 ‘combing hair’ 7 896 29.9

2 ‘make up’ 3 1350 45.0

3 ‘brushing teeth’ 10 2613 87.1

4 ‘dental floss’ 2 1065 35.5

5 ‘wash hands/face’ 25 734 24.5

6 ‘dry hands/face’ 31 234 7.8

7 ‘laundry’ 10 5304 176.8

8 ‘washing dishes’ 23 2216 73.9

9 ‘making tea’ 14 1948 64.9

10 ‘making coffee’ 4 4748 158.3

11 ‘drinking water/bottle’ 13 1260 42.0

12 ‘drinking water/tap’ 2 435 14.5

13 ‘making cold food/snack’ 6 1925 64.2

14 ‘vacuuming’ 5 3204 106.8

15 ‘watching tv’ 16 5312 177.1

16 ‘using computer’ 16 3932 131.1

17 ‘using cell’ 10 1209 40.3

18 ‘reading book’ 6 4690 156.3

2. Life-logging egocentric activities (LENA) dataset [36]: The dataset was prepared with
activities performed by 10 people. Each person was asked to perform 13 different activities,
and each activity was repeated twice. This yields a total of 260 video clips, and each of the
videos was annotated with a single activity label. The duration of the video clips in this
dataset is 30 s, and they were recorded at 30 frames per second with downscaled resolution of
430 × 240. Each video clip has 30 × 30 (900) frames. The videos were recorded with the use
of a special augmented spectacle known as Google Glass. The dataset is organized into two
levels. The top level shows the general activity types, and each contains a set of more specific
activities. The distribution of the activities in this dataset is shown in Table 3.
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Table 3. Summary of videos in LENA dataset.

Top Level Second Level Number of Videos

Motion

Walk straight 20

Walk back and forth 20

Walk up and down 20

Running 20

Social interaction
Talk on the phone 20

Talk to people 20

Office work

Watch videos 20

Use Internet 20

Write 20

Read 20

Food
Eat 20

Drink 20

Housework Housework 20

3. First-Person Personalized Activities (FPPA) dataset [37]: This dataset contains
586 videos recorded by five subjects with a Go-Pro camera mounted on the head. Two of
the subjects live in separate homes, and three subjects share the same home. The scene is
less diverse when compared to the ADL dataset since three of the persons share the same
home. Each video lasted for approximately 10 s and was recorded at 30 frames per second
with a resolution of 1280 × 720. Each video clip has 10 × 30 (300) frames. A total of five
activities were prepared, namely, drinking water, putting on shoes, using the refrigerator,
washing hands, and putting on clothes. As shown in Table 4, the activities in the dataset
have a balanced distribution.

Table 4. Video categories in FPPA dataset.

No. Categories Number of Samples

1 Drinking water 116

2 Putting on clothes 108

3 Putting on shoes 113

4 Using the refrigerator 132

5 Washing hands 117

4.2. Experiment Setup

The performance of the proposed solutions was evaluated by conducting four different
experimental scenarios. The ADL dataset is the main benchmark for performance validation.
All experiment codes were implemented using MATLAB software and the deep-learning tool
from MatConvNet [38]. The description of each experiment is listed in the following section.

Four different experiments were implemented to evaluate the proposed MMSP–TPMM
features. The effectiveness of the video feature configurations for capturing spatial, tem-
poral, and motion patterns was assessed. The proposed features were used for egocentric
video classification tasks and utilized the datasets described in Section 3.1. Experiments
were conducted to measure the performance of the proposed MMSP–TPMM video descrip-
tor against alternative feature settings and a temporal pooling strategy. In addition, the
benefit of fusion with both appearance and motion flow images was evaluated. The linear
support vector machine (SVM) with a one-vs.-all multi-classification method was used as
the classifier. The Liblinear software from [39] was used with the SVM misclassification
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cost parameter C set to 1. It was found through multiple trials that SVM was not sensitive
to the value of C, and the value C = 1 gave consistent satisfactory results.

4.3. Performance Metrics

Activity class prediction performance was measured based on multi-class classification
accuracy and average per-class precision (AP). The evaluation was performed with leave
one person out (LOPO) cross-validation scheme. The video clips left out were used for
testing, and all the remaining video samples were used for training. This was repeated
to ensure each person in the dataset was left out for validation of the trained classifier.
The confusion matrix entry Cij was populated for each classified test sample. The row of
the matrix refers to the ground truth label while the column is the predicted class. Each
entry Cij stores the number of samples with the predicted class j, but the actual class is
i. Let N be the number of validated samples and Nc the total number of classes used.
The overall accuracy is computed by Equation (20), which shows the ratio of correct class
predictions over the number of validation samples used. The multi-class classification
scheme can be formulated as a binary classification for each class in the validation set. This
is achieved via a one-vs.-all classification scheme. The precision shows the ratio of correct
positive class predictions for the target class over the total positive predictions made, as
shown in Equation (21). Thus, the precision for each class j, Pre(j), can be calculated as in
Equation (22). The average per-class precision AP is computed as seen in Equation (23):

Accuracy (%) = 100×∑Nc
i=1 Cii/N (20)

Precision (%) = 100× TP
TP + FP

(21)

Pre(j)(%) = 100×
Cjj

∑Nc
i=1 Cij

(22)

AP (%) =
100
Nc

∑Nc
j=1 Pre(j) (23)

4.4. Results and Discussion

In this section, the description of each experiment is discussed. Furthermore, the
performance metrics of the proposed method and the comparison with state-of-the-art
methods are highlighted in detail.

4.4.1. Experiment 1: Video Frame Feature Evaluation

The first experiment evaluates the proposed video frame appearance feature, described
as the MMSP feature. Videos from the ADL dataset are used for evaluation, and motion
information is not used. The MMSP feature is compared with the feature obtained from the
last fully connected layer before the classification layer of the pre-trained VGG-16 model.
The feature is simply named fc7. The fully connected layer fc7 has a dimension of 4096 and
is applied to L2 normalization before classification. Comparison with the concatenation
of the features from the Pool5 convolutional layer (fv-pool5) without the proposed spatial
pooling method is performed as well. This yields a feature size of 25,088 (49 × 512). To
obtain the final video descriptor, all the video frame features are pooled by temporal max
pooling to aggregate features from all frames in the video clip. The VGG16 CNN model was
able to extract the features at an approximate time of 0.25 s per frame using the Graphical
Processing Unit (GPU) Nvidia RTX3060. The total time to extract the feature from the
whole video depends on the number of frames in the video. So, the total time = number of
frames × 2 (frame + flow image) × 0.25 (time of feature extraction per frame).

The performance of the video descriptor is evaluated in the video classification task.
Classification accuracy and average precision are used as performance metrics. The baseline
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result for the ADL dataset was reported by [1]. The cited approach used an object detection
score as a feature. The fusion between MMSP and fc7 feature is used for comparison. The results
of the video classification performance of the compared frame features are shown in Table 5.

Table 5. Multi-class classification accuracy for egocentric activity recognition on ADL dataset. The
pretrained deep CNN model VGG16 is used for feature extraction.

Method Accuracy (%) AP (%)

Bag-of-objects + Active object model [1] 36.95 36.31

Fully connected layer fc7 (Dimension = 4096) 59.11 42.79

Stacking fv-pool5 convolutional feature
(Dimension = 25,088) 62.07 47.40

Proposed MMSP feature (Dimension = 6144) 66.50 51.05

MMSP feature + fc7 67.00 51.40

The first experiment results on the ADL dataset in Table 5 show a significant improve-
ment of the CNN frame features (fully connected and convolutional) when compared
with the baseline method [1] that used object detection scores. The object detector used
the deformable part models with SVM [40]. The model was trained with 24 ADL-related
object categories, with roughly 1200 training instances per category. The MMSP features
gave higher accuracy and average per-class precision when compared to the fc7 feature
and by stacking the fv-pool5 features. This shows that MMSP features effectively capture
important object representation in the egocentric scene even though the feature dimension
is much lower (6144 compared to 25,088).

The CNN model (VGG16) has been trained on the large ImageNet dataset for the
ILSVRC 2014 image classification challenge. The types of images are mainly web and
photographic images. The fully connected layers provide a feature activation that is
more tuned to the images found on the Internet. In this type of image, the object is
prominently visible and covers a significant portion of the image. The fully connected layer
combines the convolutional feature to discriminate between the 1000 classes of images
in the ILSVRC 2014 challenge dataset. Thus, the fc7 feature is more biased towards the
prediction of the 1000 class categories. In an egocentric video, the appearance of the object
is smaller, and typically, there are multiple objects present in the scene. These object-
like features are localized and represented as convolutional features. The convolutional
features encoded with the MMSP method have higher performance since they provide
a semantically richer representation by fusing the max and mean spatial pooling. Good
classification results suggested that the MMSP feature can provide a more discriminative
visual pattern representation for ADL activities in the egocentric video.

4.4.2. Experiment 2: Evaluation on Temporal Pooling Methods

In experiment 2, the benefit of the proposed temporal pooling method is evaluated.
All frames used the MMSP features, and video sequences are down-sampled to one frame
per second. The proposed TPMM pooling method is used for temporal pooling, and the
resulting video descriptor is named MMSP–TPMM. The TPMM pooling is compared with
the max and mean pooling approaches. In addition, the temporal pooling method by [26]
is implemented and tested for comparative assessment. The pooling method is known as
Pooled Time Series (PoT), where a sequence of frame features is represented as a multi-
variate time series. In the PoT method, a combination of four pooling operators is used, and
these include the max, sum, gradient sum, and gradient count. The gradient sum computes
the sum of the number of positive and negative increments of the time series, whereas the
gradient count computes the total count of positive and negative increments. The details of
the formulation of the pooling operators can be found in [26]. Classification performance
on the ADL dataset is shown in Table 6.
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Table 6. Evaluation of proposed temporal pooling method on ADL dataset. The MMSP feature is
used as frame feature.

Method Accuracy (%) AP (%)

Pooled Time Series (PoT) [26] 64.04 47.74

Mean temporal pooling 59.11 44.11

Max temporal pooling 66.50 51.05

MMSP–TPMM feature (ours) 68.97 51.92

In the second experiment, the results listed in Table 6 show the benefit of the temporal
multi-scale approach used in TPMM pooling. The use of max mean temporal pyramid
pooling exceeded the performance of using either max or mean pooling alone over the
entire video clip. This shows the complementary effect of both max and mean pooling
methods when used in a multi-scale temporal arrangement. A single max temporal pooling
operator itself can outperform the more complex Pooled Time Series (PoT) method. This
implies a high redundancy among the MMSP frame features in the video clip. Additionally,
a max pooling operator can capture the features from the most important frame.

4.4.3. Experiment 3: Evaluation on Multimodal Video Features

The third experiment measured the impact of using both motion flow images and video
frame images in the egocentric video classification performance. The same video frame
encoding with the MMSP feature and TPMM for temporal pooling of the video frames
feature is used (MMSP–TPMM). The MMSP–TPMM video descriptor utilized features from
both frame appearance and flow image that are concatenated in an early fusion setting.
Frame rates of 1 fps and 10 fps are used to study the effect of frame rate. Classification
performance on the ADL dataset is shown in Table 7.

Table 7. Evaluation of ADL dataset with appearance image and optic flow image.

1 fps Frame Rate 10 fps Frame Rate

Method Accuracy (%) AP (%) Accuracy (%) AP (%)

MMSP–TPMM on motion flow
image (feature B) 59.11 43.04 58.62 43.78

MMSP–TPMM on video frame
(feature A) 68.97 51.92 69.95 53.13

Early fusion of features A and B by
feature concatenation 75.37 58.42 73.4 58.19

We conducted an ablation study to demonstrate the effect of removing either ap-
pearance or flow features using the ADL dataset. The results in Table 7 show that frame
appearance features perform better than the flow image features. This is due to the view
of objects that strongly correlate with the activity. Both used MMSP features and TPMM
temporal pooling. On the other hand, the fusion of flow and appearance images encoded
with MMSP–TPMM features as a video descriptor has been found to produce the best video
classification results. The result shows that the temporal video patterns are well captured
by the proposed method. Interestingly, the performance is consistent for both a low frame
rate of 1 fps and a higher frame rate of 10 fps.

Next, we compare our solution with several methods used for egocentric video classi-
fication on the ADL dataset. The proposed MMSP–TPMM method with a fusion of both
appearance and flow images yielded the best results in terms of the average precision score
when compared to several compared methods. The details of the comparison are shown in
Table 8. The second best method in terms of performance is by [28]. They employed the
Faster-RCNN method to detect a set of objects and encode detected object movement with
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MBH (motion boundary histogram) features. This is followed by the aggregation of the
local features by Fisher encoding to obtain the final video descriptor. Compared to them,
we use convolutional features to represent the latent concepts in the video frames. The
frame features are then aggregated via temporal pyramid pooling.

Table 8. Comparative evaluation of ADL dataset for activity classification.

Methods AP (%)

Bag-of-Micro-Actions with MBH [28] 57.14

CNN Object and motion feature [27] 55.20

Boost-RSTP + OCC [13] 38.70

Bag-of-objects + Active object model [1] 36.31

MMSP–TPMM pooling (ours) 58.42

4.4.4. Experiment 4: Evaluation on LENA and FPPA Dataset

Additional experiments on the LENA and FPPA datasets were performed to assess if
the good results obtained in the ADL dataset can be replicated in different datasets. The
proposed method of the MMSP–TPMM feature on both appearance and flow image was also
evaluated on the LENA and FPPA datasets. The reported classification accuracies using the
handcrafted features of Histogram of Oriented Flow (HOF), Histogram of Oriented Gradient
(HOG), Motion Boundary Histogram (MBH), and trajectory features were compared. The
results are shown in Table 9. We perform a comparison with the results reported in [36] that
used handcrafted features for activity representation. The LOPO cross-validation evaluation
method is applied. Frame feature temporal pooling is evaluated on the FPPA dataset.

Table 9. Average multi-class classification accuracy of LENA dataset with MMSP–TPMM features for
video classification results was compared with handcrafted features reported in [36].

Methods Average Accuracy

HOF [36] 84.00%

HOG [36] 77.42%

MBH [36] 82.46%

Trajectory [36] 84.50%

Combined HOG, HOF, MBH, and Trajectory [36] 84.23%

MMSP–TPMM pooling (Ours) 90.38%

The experiments’ results in Tables 9 and 10 confirm the benefit of the proposed MMSP–
TPMM features. It outperformed the handcrafted features in the LENA dataset and PoT
features in the FPPA dataset. Here, the PoT method was applied to MMSP frame features.
Video prediction performance in terms of multi-class classification accuracy and average
precision was significantly higher in the LENA and FPPA datasets when compared to the
ADL dataset. This is due to the more constrained scene and lower image diversity in these
two datasets.

Table 10. Average multi-class classification accuracy on FPPA dataset.

Methods Average Multi-class
Accuracy

Average Per-Class
Precision

MMSP–TPMM (Appearance only) 92.83% 92.93%

Point of time series (PoT) [26] 94.54% 94.59%

MMSP–TPMM
(Appearance and motion, ours) 96.08% 96.11%
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5. Conclusions

In this paper, a novel fusion method was proposed to aggregate appearance and
motion features and then combine mean and max spatial pooling (MMSP) with max mean
temporal pyramid (TPMM) pooling to compose the final video descriptor. We targeted
egocentric videos that involve activities of daily living. In such activities, the manipulation
of objects is an important cue. The feature representation is designed to capture generic
visual patterns that represent the fine-grained object parts and the spatial arrangement of
these parts in the image. To extract motion, the technique of converting an optical flow
field into an image representation is used. The pre-trained CNN (VGG16) is utilized to
extract visual features for both video frames and optical flow images. The spatial and
temporal redundancies of visual contents in the egocentric video are exploited by using
mean and max spatial pooling (MMSP) for the frame features and max mean temporal
pyramid (TPMM) pooling for the video clip. The proposed video descriptor MMSP–TPMM
is evaluated in several experiments on three public benchmark datasets. Additionally,
comparisons with alternative feature configurations and handcrafted feature methods are
made. All the results show improvement in activity classification performance when the
proposed solution is used. The fusion of frame appearance and motion features also shows
classification performance enhancement, even though the egocentric video is unstable.

Although the proposed method for video features works well when compared to
competing methods, there are several limitations. Firstly, the max pooling method will only
take the maximum value of the feature over a fixed spatial region. If there are multiple
features that are highly activated, only the feature with the maximum value will be taken.
This will ignore contributions from other features. For the case of mean pooling, the average
value of the feature is influenced by non-important background objects. This will reduce the
discrimination strength of the feature. The pooling region is fixed at various spatial regions
for the frame feature, and only three different fixed temporal regions are used. A more
adaptive temporal pooling scheme may yield a higher discriminative video descriptor.

Given the efficiency of the proposed method, the current limitation is that the model
should run on a powerful machine with a large RAM size to consider the model’s parame-
ters and with GPU to obtain high-speed inference. In other words, the current method in
its current status cannot run on an embedding system such as a Smartphone with limited
RAM and a small processing unit. For future work, we propose replicating the same
approach with more computationally efficient CNNs, such as MobileNet or EfficientNetB0,
to balance accuracy and inference speed so that we can run the proposed method on an
edge-computing IOT for real use of ADL system. Furthermore, we plan to improve the
performance of the solution by training a recent pre-trained vision transformer to evaluate
their abilities to focus more attention on the targeted objects.

Additionally, employing the proposed method in other real-life applications, such as
medical image analysis, can contribute to improving the analysis performance by enhancing
the detection of lung cancer tumors in CT scan imaging, considering the motion that needs
to be estimated and corrected [40].
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