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Abstract: This paper presents a novel approach to reducing undesirable coupling in antenna arrays
using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two
standard patch antenna cells with 0.07λ edge-to-edge distance were designed and fabricated to
operate at 2.45 GHz. A stepped-impedance resonator was applied between the antennas to suppress
their mutual coupling. For the first time, the optimum values of the resonator geometry parameters
were obtained using the proposed inverse artificial neural network (ANN) model, constructed from
the sampled EM-simulation data of the system, and trained using the particle swarm optimization
(PSO) algorithm. The inverse ANN surrogate directly yields the optimum resonator dimensions based
on the target values of its S-parameters being the input parameters of the model. The involvement
of surrogate modeling also contributes to the acceleration of the design process, as the array does
not need to undergo direct EM-driven optimization. The obtained results indicate a remarkable
cancellation of the surface currents between two antennas at their operating frequency, which
translates into isolation as high as −46.2 dB at 2.45 GHz, corresponding to over 37 dB improvement
as compared to the conventional setup.

Keywords: antenna design; artificial intelligence; isolation; resonator; mutual coupling; numerical
optimization; particle swarm optimization (PSO)

1. Introduction

Microstrip patch antennas have been widely used in the recent communication systems
due to their low cost and easy fabrication [1]. Utilization of patch antennas has grown
rapidly with the development of new application areas, such as wearable devices [2,3], 5G
communications [4–8], internet of things (IoT) [9,10], optical systems [11–13], biomedical
engineering [14–17] and multiple input multiple output (MIMO) systems [7,18–20].

High isolation between the elements of patch antenna arrays is an important consider-
ation, especially in the MIMO systems [21,22]. High mutual coupling (MC) between the
patch antennas decreases the efficiency and performance, particularly in terms of diversity
gain [23,24]. Over the past decade, several methods and decoupling structures have been
introduced to overcome this drawback. The recently proposed methods for MC reduction
in antenna arrays include, among others, utilization of defected ground structures and
resonators. In terms of design methodologies, the approaches based on artificial intelligence
methods and optimizations algorithms are worth noticing.
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In [25–29], defected ground methods were used to decrease MC between patch anten-
nas. Although these techniques were effective in MC suppression, they also increased the
complexity and the fabrication cost of antenna systems, as well as degraded the antenna
radiation patterns, none of which is desirable [30,31]. Furthermore, in defected ground ap-
proaches, a sufficiently large distance between the antenna elements has to be maintained,
which is detrimental from the geometrical flexibility standpoint [24].

Another type of structures that have been widely used to reduce MC between the
antenna cells, especially in the MIMO structures, are resonators [32,33]. Resonators have
been widely used in the structures of microwave devices to improve the functionality of
the components [34–36]. In [37], a meandered resonator was proposed to reduce mutual
coupling in the antenna array; the incorporation of the resonator resulted in shifting the
antenna operating frequency. A resonator implemented using the coupled lines was used
in [38] for increasing isolation between antennas. The advantage of this approach is that
coupled lines can create a wide suppression band, which may increase the isolation in
the structure over a broader frequency range. A resonator was incorporated in [39] with
a dollar-shaped structure. The solution proposed in [39] led to a large distance between
the antenna elements, which translates into an oversized overall structure. A related
approach is utilization of photonic crystals, which can be applied for higher frequency
operation [40–45]. This technique was recently used for designing high-isolation antenna
systems [46,47].

Although the development of appropriate antenna geometry, here, oriented towards
mutual coupling suppression, is essential, an appropriate adjustment of geometry param-
eters leading to superior performance, is just as important. Given the challenges related
to simultaneous optimization of multiple parameters, often in a global sense, and at the
level of costly full-wave electromagnetic (EM) analysis, efficient design methods are in high
demand. Recently, artificial intelligence (AI) methods have been widely applied in solving
engineering problems [48–55], especially for modeling and optimum design prediction
tasks. Also, deep ANNs and deep convolutional neural networks (CNNs) have been used
in engineering applications [56,57]. In particular, the AI methods have been utilized for
design of microwave components [58–60]. In [61,62], artificial neural networks (ANNs)
were used for optimization of the antenna structures. Rigorous optimization methods were
utilized to design both microwave components [63–66] and antenna structures [7,67–71].
In [67], the swarm intelligence (SI) algorithms operations were applied in a synthesis of the
linear antenna array. A hybrid particle swarm optimization (PSO) algorithm was utilized
in [68] to improve the bandwidth of an inverted-F antenna. In [72], ANN modeling was
used for reduction of mutual coupling in cross-dipole antenna for 2.2–2.7 GHz band. The
resonator plane in [72] was applied orthogonal to the antenna planes. However, the ob-
tained results in [72] showed that only 5.6 dB improvement was achieved in the mutual
coupling reduction with the presented method. In addition, recently, automated machine
learning or AutoML technique has been presented, which can provide low-code and no-
code machine learning. The AutoML technique can be used as effective surrogate models
to ease design and modeling of engineering problems [73–75].

In this paper, an artificial-intelligence-enabled technique for reducing undesirable
mutual coupling in antenna arrays is proposed. Our approach employs a resonator inserted
between closely spaced patch antennas, the dimensions of which are established using an
inverse neural network surrogate. The inverse ANN model is identified using sampled EM-
simulation data and the PSO algorithm that facilitates the surrogate training process and
ensures globally optimum setup of its hyper-parameters. Furthermore, utilization of the
inverse model with its inputs being the values of isolation and return loss parameters and
the outputs being the geometry parameters of the resonator allow us to avoid costly EM-
driven optimization of the circuit, as the optimum dimensions are directly retrieved from
the surrogate. The main contributions of this paper include: (a) presenting a new resonator
inserted between the antenna arrays, (b) proposing a new inverse ANN-PSO model to find
the optimum values of the resonator geometry parameters and (c) presenting a new design
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methodology based on the design inverse model, which can also be used to ease the design
processes of the other similar microwave devices. The presented approach is demonstrated
to significantly improve antenna element isolation (by 30 dB) for an exemplary setup of
two patch antennas operating at 2.45 GHz.

2. Antenna Isolation Improvement Using Resonators and Ai-Based Dimensioning

This section introduces the proposed approach to mutual-coupling reduction in an-
tenna arrays using resonators optimized by means of artificial intelligence techniques.
Section 2 outlines the overall methodology. In Section 3, we discuss a conventional antenna
structure used as an illustration example. Section 4 introduces the proposed resonator
circuit. The construction of the inverse ANN surrogate is elaborated on in Section 5, and
Section 6 describes the isolation-enhanced array structure.

The flowchart of the proposed design method for designing of the antenna array
featuring desired isolation and return loss is presented in Figure 1. As shown in the
figure, the design process consists of five steps. In Step 1, a conventional antenna array
without isolation enhancement is considered. In Step 2, a resonator will be introduced to
be incorporated between the antenna arrays. Step 3 can be divided into three sub-steps.
In Step 3.1, electromagnetic simulation data is acquired to render a raw artificial neural
network (ANN) model in Step 3.2. In Step 3.3, the optimization algorithm is employed
to carry out the neural network training (in particular, to assign the network weights and
bias levels), thereby ensuring its sufficient predictive power and making it suitable for
design purposes. Finally, in Step 4 and Step 5, the optimized inverse ANN model is utilized
to design the antenna array and to achieve the required levels of return loss and mutual
coupling at the target operating frequency.

Figure 1. The flowchart of the proposed antenna array design methodology involving inverse ANN
surrogates and numerical optimization. The framework allows for rendering antennas that operate at
the desired frequency and features the required levels of mutual coupling and return loss.
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3. Conventional Antenna Array Structure

In a conventional antenna array structure, when multiple antennas are placed close to
each other, they can influence each other’s performance due to electromagnetic coupling.
In a standard two-element antenna array, ideally, high isolation is desirable for ensuring
that the signals received or transmitted by one antenna have minimal impact on the other
antenna. High isolation helps to avoid interference between the antenna elements and
enables them to operate independently. The isolation in a conventional two-element
antenna array structure is not acceptable due to several factors.

The antennas in a conventional array are typically placed in close proximity to each
other. When antennas are close together, the generated electromagnetic fields can interact
with each other, leading to mutual coupling. The proximity increases the likelihood
of coupling and reduces isolation. Also, the antennas in an array structure can scatter
electromagnetic waves. When one antenna scatters waves, they can reach the neighboring
antenna and couple with it, causing interference. This scattering phenomenon further
reduces isolation. The mutual coupling is often frequency-dependent. The level of coupling
between antennas can vary with the operating frequency, resulting in different levels of
isolation at different frequencies.

Figure 2 shows the structure of the standard two-element antenna array, and Figure 3
shows the full-wave electromagnetic (EM) simulation results. It can be noted that the
element isolation is only about 9 dB at the operating frequency of 2.45 GHz. The array
structure is designed and implemented on Rogers RO4003C substrate. The standard
antenna array works at 2.45 GHz; the corresponding guided wavelength is λ = 74.8 mm.
Consequently, the absolute element distance of 5.8 mm corresponds to 0.07λ. As seen in
Figure 3, the primitive antenna array without resonator provides 30 MHz bandwidth from
2.435 to 2.465 GHz, which in this band, S11 is less than 10 dB.
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Figure 2. Geometry of the typical two-element antenna array with 0.07λ distance between two patch 
antennas (λ being the wavelength corresponding to the operating frequency of 2.45 GHz).  All di-
mensions are indicated in millimeter (mm) unit in the antenna array layout. 

Figure 2. Geometry of the typical two-element antenna array with 0.07λ distance between two
patch antennas (λ being the wavelength corresponding to the operating frequency of 2.45 GHz). All
dimensions are indicated in millimeter (mm) unit in the antenna array layout.
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the electromagnetic waves. These teeth act as resonant elements, causing the incident 
waves to reflect and interfere with each other. This interference helps in canceling out the 
mutual coupling effects between the antenna elements. Moreover, the arrangement of the 

Figure 3. EM-simulated S-parameters of the standard two-element antenna array with 0.07λ distance
between two patch antennas. In this figure, the solid line indicates the S12 parameter, which indicates
the isolation factor between two antenna arrays. Also, the dashed line indicates the S11 parameter,
which shows the return loss of the antenna array.

4. Design and Analysis of Isolation Enhancement Resonator

In order to increase the isolation between the antenna elements, an isolation-enhancement
resonator is proposed, which is shown in Figure 4. The resonator includes two long high-
impedance lines, and two types of long and short teeth, which are repeated along the
main resonator lines. The geometry parameters of the proposed resonator, marked in
Figure 4, are essential to obtaining the desired isolation and return loss for the antenna
array elements.
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Figure 4. Parameterized geometry of the proposed isolation-enhancement resonator. The teeth
lengths of the proposed isolation-enhancement resonator are shown with LT1, and LT2, which are
corresponding to tooth 1 and tooth 2 in the resonator, respectively.

The applied long high impedance lines in the proposed isolation-enhancement res-
onator act as impedance transformers. When the signal propagates through these lines, the
impedance is transformed, leading to a significant change in the impedance seen by the
antenna elements. By appropriately designing the impedance transformation, the resonator
can effectively decouple the antenna elements, reducing the mutual coupling. Also, the
utilized long and short teeth along the main resonator lines serve to reflect and absorb the
electromagnetic waves. These teeth act as resonant elements, causing the incident waves to
reflect and interfere with each other. This interference helps in canceling out the mutual
coupling effects between the antenna elements. Moreover, the arrangement of the long
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and short teeth in the resonator creates a spatial distribution of currents. This distribution
results in cancellation of the current components responsible for mutual coupling.

The architecture of the considered array antenna with the resonator incorporated in
between the elements has been shown in Figure 5. As elaborated on in the previous section,
the proposed inverse ANN surrogate can estimate the resonator parameters based on the
desired values of isolation and return loss.
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5. Inverse ANN Surrogate: Architecture and Identification

In this section, we discuss the inverse ANN surrogate employed to facilitate the
optimization process of the antenna array of Section 4. As mentioned in the previous
section, the appropriate adjustment of dimensions of the proposed isolation-enhancement
resonator is important to ensuring the acceptable isolation level. At the same time, direct
optimization of the system at the EM-simulation level of description is a computationally
expensive endeavor. In order to alleviate this difficulty, an inverse ANN surrogate is
proposed, which is constructed to predict the resonator parameters based on the desired
values of isolation and return loss. The architecture of the proposed inverse ANN model
has been illustrated in Figure 6. It can be observed that the desired values of isolation and
return loss are the input arguments of the surrogate. Using these, the inverse surrogate
predicts the resonator parameters, which are the length of the resonator (LR), the length of
tooth 1 (LT1) and the length of tooth 2 (LT2). Also, the MATLAB R2021b software is used to
simulate the proposed inverse ANN model.

In this work, among available architectures [76], we utilize a feedforward multi-layer
perceptron (MLP) [77] as the underlying structure of the inverse ANN surrogate. It is the
most common type of ANN, which is suitable for our purposes.

There are several reasons that MLP feedforward network is presented in the proposed
approach. A feedforward MLP network is a type of ANN commonly used for modeling
complex relationships and solving various machine learning tasks. It includes multiple
layers of interconnected artificial neurons, where information flows in one direction, from
the input layer through hidden layers to the output layer. Mutual coupling in antenna
arrays often involves complex nonlinear relationships; so, MLPs are capable of modeling
nonlinear relationships due to their ability to introduce nonlinearity through activation
functions in the hidden layers. This enables the MLP to capture the complex dependencies
between the antenna elements and the resulting coupling effects. Also, after the training
process, an MLP can generalize its learned knowledge to unseen data. This means that
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it can accurately predict the mutual coupling effects for antenna array configurations
that were not present in the training dataset. This generalization capability allows the
MLP to serve as a surrogate model for mutual coupling reduction, providing accurate
predictions and insights for a wide range of antenna array scenarios. Therefore, MLPs can
be computationally efficient for predicting mutual coupling effects, compared to complex
numerical simulations or analytical models.
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As mentioned, the presented neural network contains several layers with the neurons
interconnected with those of other layers. The network weights are adjusted during the
training process. The most widespread training approach is the back propagation algorithm
(BPA) [76], which modifies the weights of each layer of the MLP based on the approximation
error of the model. However, BPAs suffer from several disadvantages, including a risk of
getting stuck in a local optimum, as well as slow convergence. Here, the particle swarm
optimization (PSO) algorithm [78] is chosen for optimizing the weight and the bias values
of the ANN. Table 1 summarizes the parameters of the proposed inverse ANN surrogate.

Table 1. The summarized parameters of the proposed inverse ANN surrogate.

Parameters Details

Neural network Feed Forward
Training algorithm PSO

Number of neurons in the input layer 2
Number of neurons in the hidden layer 10-10

Swarm particles in PSO 500
Number of neurons in the output layer 3

Number of iterations or generations 2000
Activation function tansig

PSO, developed in 1995 [78], mimics the social mechanisms, for instance, of a flock of birds
(referred to as particles in the nomenclature of PSO). The PSO method is a population-based
evolutionary method and has been demonstrated successful in ANN model training [79,80]. In
the applied PSO algorithm for the proposed method, the two main search mechanisms include
biasing of the particle relocation towards the globally best position identified by the swarm as
well as locally best position remembered by each particle. PSO algorithm explores the entire
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search space and has the ability to escape local optima. In contrast, BPA is a local optimization
algorithm that adjusts the weights based on the local gradient information. The PSO global
optimization capability makes it suitable for finding better solutions in complex and non-
convex optimization problems, such as training an MLP for mutual coupling reduction. PSO
considers a balance between exploration and exploitation during the optimization process.
It uses both the personal best and global best information to update the particles positions,
allowing them to explore the search space, while also exploiting the information from the
best-performing particles. This ability helps PSO in effectively searching for optimal solutions
and avoiding premature convergence. In contrast, The BPA local gradient-based updates may
sometimes lead to convergence to suboptimal solutions.

The flowchart of the proposed inverse ANN model is illustrated in Figure 7. At first
step, the structure of the network, the hidden layer numbers and the neuron numbers are
considered due to the input and output parameters and the problem conditions. In the
proposed inverse ANN model, by changing the input and output parameters, a new ANN
model is presented in which the output parameters of the antenna are the input of the ANN
model. This method can significantly help the designers to design the antenna with desired
output parameters using the proposed inverse ANN model. In the next steps, the weights
and biases of the inverse ANN are defined randomly, and then, as explained in the flow
chart, these values will be calculated by using the PSO optimization algorithm. Finally,
after reaching desired accuracy, the inverse ANN model will be created. In addition, the
pseudo-code algorithm of the presented method is described in Algorithm 1.

Algorithm 1 Pseudo-code of the presented method

1: Load data as Excel file; Data = xlsread (‘Data_Antenna.xlsx’)
2: Set X and Y as inputs and outputs vectors
3: Normalize the input and output vectors as XN and YN
4: Set test and train Data with desired ratio as Xtr, Xts, Ytr, and Yts
5: Define feed forward inverse ANN network and define activation functions and

network parameters
6: Call TrainUsing_PSO function to find the weight and biases of the feed forward inverse

ANN network
7: Set best cost function as output of function and Xtr and Ytr as inputs
8: Define total number of undefined parameters of wights and biases in the inverse

ANN network
TotalNum = IW_Num + LW_Num + b1_Num + b2_Num

9: Set swarm size and maximum iteration as 500 and 2000 for the PSO algorithm
10: Define cognition coefficient as C1 = 2 and social coefficient as C2 = 4 − C1
11: For p = 1: SwarmSize
12: Initialize the particle Position, Cost, Velocity, Best.Position and Best.Cost
13: For p = 1: MaxIteration
14: Update the particle Position, Cost, Velocity, Best.Position and Best.Cost
15: For each particle, compare its new objective function value with its personal best value
16: If the new value is lower, update the personal best position and value accordingly
17: Compare the objective function value of each particle with the current global best value
18: If a particle value is lower, update the global best position and value accordingly
19: Return the best cost function and best values of weights and biases
20: Simulate the trained network with train data and obtain the train output data of network

YtrNet = sim(Network, Xtr);
21: Simulate the trained network with test data and obtain the test output data of network

YtsNet = sim(Network, Xts)
22: Calculate the MRE error for train output data of network

MREtr = mean(abs((Ytr − YtrNet)/Ytr))
23: Calculate the MRE error for test output data of network

MREts = mean(abs((Yts − YtsNet)/Yts))
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Figure 8 illustrates the training process and predictive power of the inverse ANN. The
training data has been acquired using ADS 2022 software and electromagnetic simulations.
Subsequently, the data is used to train the presented model as an inverse ANN surrogate. It
can be observed that the model is capable of predicting the resonator dimensions with the
accuracy acceptable for design purposes. The summary of the modeling errors has been
provided in Table 2.
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Table 2. Predictive power of the inverse ANN surrogate.

Error
Network Output

LT2 (mm) Test LT1 (mm) LR (mm)

Testing Data Training Data Testing Data Training Data Testing Data Training Data

11.8512 8.5994 4.2422 3.3419 1.2651 1.2824 MRE

6. Antenna Array with Mutual Coupling Reduction

In this section, we consider two specific array examples illustrating the design method-
ology introduced in the earlier sections.

6.1. Example I

In this example, the design goals concerning the required values of element isolation
and matching, are set to |S21| = −30.7 dB, and |S11| = −33.1 dB. Figure 9 shows a compar-
ison between the performance parameters predicted by the inverse ANN surrogate and the
EM-simulated ones. The agreement between the two data sets is excellent, demonstrating
that the inverse model is indeed a relevant design tool. The isolation and return loss,
obtained by using EM simulation, based on the predicted values by inverse ANN model
are |S21| = −29.2 dB and |S11| = −30.4 dB, respectively.

6.2. Example II

In the second example, the higher attenuations of |S21| = −44.8 dB and |S11| = −24.3 dB
are used as design goals. The obtained results demonstrate that the inverse ANN surrogate
can predict the resonator parameters even for more demanding performance requirements.
The isolation and return loss, obtained by using EM simulation, based on the predicted
values by inverse ANN model are |S21| = −46.2 dB and |S11| = −26 dB, respectively. Also,
as shown in Figure 10, the performance parameters of the array using the data predicted by
the inverse NN surrogate are better than the target, which corroborates suitability of the
inverse ANN model for the considered task. As seen in Figure 10, the proposed antenna
array with resonator provides 50 MHz bandwidth from 2.425 to 2.475 GHz, which in this
band S11 is less than 10 dB. The result shows 66% improvement in operating bandwidth,
due to the proposed resonator.
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Figure 9. The array characteristics predicted using the inverse ANN surrogate and EM simulation
(Example I). In this design example, the actual resonator parameters are LR = 52.4 mm, WR = 4.7 mm,
LT1 = 1.8 mm and LT2 = 1.2 mm, and the values predicted by inverse ANN surrogate are LR = 52.98 mm,
WR = 4.7 mm, LT1 = 1.806 mm and LT2 = 1.201 mm, which demonstrates the prediction accuracy of
the proposed surrogate model. The shown resonator parameters are obtained through electromag-
netic simulation.
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Figure 10. The array characteristics predicted using the inverse ANN surrogate and EM simulation
(Example II). Here, the actual resonator parameters are LR = 54.4 mm, WR = 4.7 mm, LT1 = 1.6 mm and
LT2 = 1.2 mm, and the values predicted by inverse ANN surrogate are LR = 54.33 mm, WR = 4.7 mm,
LT1 = 1.606 mm and LT2 = 1.197 mm, which again demonstrates the prediction accuracy of the
proposed surrogate model. The shown resonator parameters are obtained through electromag-
netic simulation.

The current distribution within the antenna array structure has been depicted in
Figure 11. As it can be seen, the proposed structure can effectively suppress the coupling
between the antenna elements at the operating frequency. In Figure 11a, two antenna
patches are applied close to each other, and as can be seen, there is mutual coupling
between two arrays. In this case, mutual coupling has occurred and the electric and
magnetic fields of one patch affect the other patch, resulting in a change in the current
distribution. This can lead to an uneven distribution of current across the patches, which
can impact the radiation pattern and efficiency of the antenna array. In Figure 11b, the
proposed resonator is applied between two patches. As seen, the mutual coupling is
significantly reduced and the current distribution in the antenna array is improved. The
proposed resonator acts as a filter that reduces the coupling between the patches.
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Figure 11. Current distribution of the designed antenna array: (a) a baseline two-element antenna
array, (b) proposed antenna array with the isolation-enhancement resonator.

Gain parameters of the designed antenna array with and without the isolation-
enhancement resonator are depicted in Figure 12. It can be seen that the gain parameter
of the proposed antenna array with the isolation-enhancement resonator is 6.15 dB at
2.45 GHz, while this parameter is about 5.95 dB for the simple two-element antenna array
without resonator at this frequency. The results show that applied isolation-enhancement
resonator increases the gain parameter. Figure 13 shows the radiation patterns of the
proposed antenna array with and without the isolation-enhancement resonator at 2.45 GHz,
when port 1 of the antenna is excited. In the main lobe patterns of the upper-sphere space,
results are basically consistent.
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The antenna array considered in Example II has been fabricated and experimentally
validated. Figure 14 shows the antenna prototype, as well as measured frequency response.
The obtained results fully corroborate predictions of the proposed inverse ANN model. In
particular, the resonator with dimension rendered by inverse ANN does reduce undesirable
coupling upon being inserted between the two radiators. The experimental results show
−38 dB and −19 dB attenuation levels in magnitudes of S12 and S11 parameters, respectively.

Figure 14. Fabricated prototype of the antenna array (Example II) and its measured frequency
response. The output S-parameters of the proposed antenna array is shown on the top left of the
figure, which shows the simulated and measured S12, isolation, and S11, return loss, parameters.
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A comparison between the proposed structure and state-of-the-art designs reported in
the literature have been listed in Table 3. It can be concluded from the data therein that the
performance of the proposed design is competitive over the benchmark, especially in terms
of the achieved mutual coupling reduction between the antenna elements.

Table 3. Performance comparison between the proposed structure and state-of-the-art designs
reported in the literature.

Ref.
No

Freq.
(GHz) Approach Edge to Edge

Spacing
Improvement

in S21

The Value of S21
with Resonator

[1] 3.94 I-section
16 mm

30 dB NA(0.15 λ)

[24] 4.8 Meandered-Line
7 mm

16 dB 22 dB(0.11 λ)
[72] 2.2–2.7 ANN—Resonator Plane NA 5.6 dB 25.3 dB
[81] 3.1–10.6 Meandered-Line 8 mm 1–24 dB 17 dB–40 dB

[82] 2.45 3D-Metamaterial
15 mm

18 dB 35 dB(0.13 λ)

[83] 5.59 Planar EBG
22 mm

30 dB NA(0.4 λ)

[84] 5.8 Interdigital Lines 3.8 mm
24 dB 23 dB(0.07 λ)

[85] 5.6–6.1 Metasurface 3 mm 8–27 dB 25 dB–40 dB
[86] 5 Split Ring Resonator 0.25 λ 10 dB 30 dB
[87] 2.8 Meandered Resonator 0.056 λ 8–10 dB 20 dB

Proposed 2.45 Proposed Resonator-
Inverse ANN

6 mm
37.2 dB 46.2 dB(0.05 λ)

7. Conclusions

In this paper, a new approach to reducing undesirable coupling in antenna arrays,
using dedicated resonators and surrogate modeling, has been proposed. The presented
methodology capitalizes on inverse ANN models that directly render optimum values of
the resonator geometry parameters based on the input data being the desired levels of
isolation and the return loss parameters. The inverse model is based on a feedforward MLP
architecture, trained using nature-inspired algorithms (here, PSO), which ensures a globally
optimum setup of the model hyper-parameters. For the sake of illustration, two design
cases are studied, both concerning antennas that operate 2.45 GHz with 0.07λ edge-to-edge
distance. In both cases, the obtained results demonstrate good agreement between surrogate
model prediction and EM simulation. At the same time, the performance of the designed
arrays is superior over the benchmark in terms of the achieved mutual coupling reduction.
In addition, in future works, the applicability of the proposed approach to other frequencies
and antenna types, such as higher frequency bands or different antenna geometries, will be
studied to assess the versatility and generalizability of the technique. Also, the feasibility
of extending the proposed method to address mutual coupling reduction in multi-band
or wideband antenna arrays will be investigative. Moreover, in the future works, hybrid
optimization techniques that combine PSO with other algorithms will be performed to
improve optimization efficiency and enhance the likelihood of finding global optima.
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