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Abstract: The accurate voltage measurement of distribution networks is of great significance in
power dispatching and fault diagnosis. Voltage sensors based on the spatial electric field effect do not
require grounding, which provides the possibility for the distributed measurement of transmission
line voltages. However, the divider ratio of suspension grounding voltage sensors is affected by
the height between the sensor and the ground, as well as the distance between the sensor and the
telegraph pole. In this paper, a self-calibration method based on internal capacitance transformation
is proposed to realize the on-line calibration of suspension grounding voltage sensors. The calibration
is accomplished by switching different parameters in the conditioning circuit, and the calibration
process does not require power failure or known input excitation. In addition, the impact of electric
fields in the other two phases of three-phase transmission lines on measurement through simulation
research is quantified in this paper. In order to reduce the impact of interference electric fields, an
equipotential shielding structure is designed. The circuit topology and probe prototype have been
developed and testing has been conducted in laboratory conditions; the experimental results show
that the maximum relative error of voltage amplitude is 1.65%, and the phase relative error is 0.94%.
The measurement accuracy is not limited by the height to ground or the distance to the telegraph
pole. In addition, in the application of an equipotential shielding probe, the maximum deviation of
measured voltage is 0.7% with and without interference electric fields.

Keywords: voltage measurement; suspension grounding; self-calibration; internal capacitance
transformation

1. Introduction

With the development of smart grid technology, the characteristics of the distribution
network are becoming more and more complex, and the real-time online monitoring of
the operating state of the distribution network has been suggested, which has higher re-
quirements. Real-time and accurate distributed measurement provides a new idea for the
monitoring of the distribution network [1–4]. There are many current measuring devices
for power systems, such as magnetic components [5,6], Hall sensors [7], Process Control
Blocks (PCBs) and Roche coils [8]. Unlike voltage sensors, current sensors are not affected
by ground potential, so they can be calibrated in the lab or factory and maintain high
accuracy at the application site. In terms of voltage sensors, the distributed measurement
of the phase voltage of overhead transmission line is always a difficult point. In voltage
measurement, the most widely used voltage sensors are Power Transformers (PTs), ca-
pacitor voltage transformer (CVTs) and optical voltage sensors. The main limitations of
PTs and CVTs is their high cost, complex insulation structure, large size and installation
difficulties [9,10]. And these devices need to be reliably grounded, although some studies
have made improvements in grounding methods [11,12]. The above disadvantages prevent
them from being placed on a large scale in the distribution system. Optical voltage sensors
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are one of the important measurement tools for relay protection and energy monitoring
in distribution networks [13,14]. However, due to their high technical requirements, poor
stability and high cost, they have not been widely applied.

Miniaturization, convenience and low cost for large-area deployment are the way
forward for voltage measurements [15,16]. Some scholars have already started to use the
principles of space electric field and capacitance to carry out research related to voltage
measurement. A commonly used voltage measurement method is the voltage measurement
technology based on the principle of stray capacitance voltage division [17–19]. The
voltage divider is formed according to the coupling stray capacitance between the induced
electrode and the measured wire and the inherent capacitance of the designed sensor; the
voltage measurement value of the measured wire can be obtained according to the ratio
of capacitance mentioned above. Since the capacitance between the induced electrode
and the measured wire needs to be determined, such sensors are usually designed to
measure special scenarios, such as specially designed GIS tanks, or to measure very fast
transient overvoltage (VFTO) signals without a known frequency response [20]. This
measurement technology needs to be connected to the real ground; it is difficult to apply in
the measurement of high voltage due to the problem of insulation.

Transmission line measurement technology is used to capture the electric field emit-
ted by a wire through an ungrounded electric field sensor, and the voltage of the wire is
reconstructed through the relationship between the sensor output signal and the transitive
relation [21,22]. The advantage of this technology is that it can be measured completely
without contact. However, since the capacitance of the sensor to the measured wire and the
ground is difficult to obtain, complex calibration is required, which is usually accompanied
by the interruption of the power system and the injection of known excitation into mea-
sured wire, so it is difficult to apply in practical engineering. To overcome this limitation, an
on-line calibration technique based on system identification is developed [23,24]. This tech-
nology eliminates the influence of unknown capacitance between the probe and the wire
by injecting a reference signal into the induced electrode, greatly improving measurement
accuracy. However, since the transmission line is usually at least a three-phase line and
the sensor needs to deal with the electric field from multiple wires, the above calibration
method will be interfered with by the surrounding coupled electric field in the transmission
line scene, and its calibration accuracy will be limited by the interference electric field.

In references [25,26], an array electric field sensor is used to measure the electric field at
multiple locations, and an algorithm based on electric field integration is used to reconstruct
the transmission line voltage. But in actual measurements, the position of the array sensor
with respect to the ground and the transmission line is usually unknown, and the telegraph
pole also changes the distribution of the spatial electric field.

A suspension grounding voltage sensor based on the spatial electric field effect was
proposed in reference [27]. The sensor body is electrically and mechanically connected to a
single conductor. The sensor based on the space electric field effect uses air as the insulating
medium, and the induced electrode in the sensor is coupled to the real ground by stray
capacitance to create a capacitance divider. When used, it can be directly hung on the wire
without grounding. Due to the direct use of air insulation, the measurement technology
has low insulation requirements. However, in the capacitive divider formed in this way,
the stray electricity to the ground is easily affected by the distance and the environment,
which will affect the measurement accuracy to a certain extent. In addition, the authors do
not consider the influence of other phase-line coupled electric fields.

Based on the floating voltage sensor, this paper solves the problem of the capacitance
between the sensor and ground being difficult to determine and other phase electric field
interferences. A self-calibration method based on internal capacitance transformation is
proposed to realize the on-line calibration of the voltage ratio in actual measurement. At
the same time, an equipotential shielding structure is designed to reduce the interference
of other phases without grounding shielding. Firstly, the basic principle of a suspension
grounding voltage sensor based on the spatial electric field effect is introduced, and the
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affecting factors of the coupling capacitance between the probe and the earth are analyzed.
Then, the selected parameters are optimized via error analysis. A scheme to solve the un-
certainty of capacitance to ground is proposed and a circuit is designed. Then, the selected
parameters of circuit parameters are optimized via error analysis. Through simulation, the
influence of other two-phase electric fields on voltage measurement is quantified. In order
to reduce the influence of interfering electric fields, an equipotential shielding structure
is designed. On this basis, the sensor probe and circuit topology are developed. Finally,
the sensor prototype is tested for amplitude and phase accuracy, scene adaptability and
anti-interference ability. The experimental results demonstrate the feasibility of this method,
which may provide a new direction for the research and development of transmission line
voltage measurement methods. Finally, the shortcomings of this measurement method and
the future plans are discussed.

2. Principle of Voltage Measurement
2.1. Suspension Grounding Voltage Sensor Based on Spatial Electric Field Effect

The measurement principle of a floating voltage sensor based on the spatial electric
field effect is shown in Figure 1a. Including an equipotential electrode and induced elec-
trode, the equipotential electrode is connected to the transmission line through lead wire,
and the capacitance formed by the induced electrode and the ground is Ce. The equipo-
tential electrode is connected to the induced electrode through a structural capacitance Cm
and a sampling resistor Rm, and the voltage across the sampling resistor is Uo. The voltage
of the transmission line is Ul . The equivalent circuit according to Figure 1a is shown in
Figure 1b. The transfer function obtained from the equivalent circuit diagram is shown in
Equation (1) [28], where Cg = Ce + Ct.

Uo(s)
Ul(s)

=
sRmCg

1 + sRm(Cm + Cg)
(1)
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diagram; (b) equivalent circuit diagram.

The frequency response of Uo is the frequency response of a high-pass filter with a
cutoff frequency of f1 = 1/2πRm

(
Cm + Cg

)
[29]. If the operating frequency of the voltage

sensor is much greater than f1, Equation (1) can be simplified as:

Uo

Ul
=

Cg

Cm + Cg
(2)

If the coupling capacitance Cm, Cg and the sensor output voltage signal Uo are known,
the voltage Ul of the transmission line can be reconstructed using Equation (2). The ca-
pacitance Cm is a structural capacitance that can be obtained through digital bridges or
simulations, and the sensor output voltage Uo can be obtained through data acquisition
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instruments. The coupling capacitance Cg is affected by the height to ground, the specifica-
tions of the telegraph pole and the distance between the sensor and the telegraph pole. In
actual measurement, Cg is difficult to determine.

In order to quantify the sensitivity of Cg, the finite element simulation software
COMSOL was used to calculate the size of Cg at different ground heights and distances
from the telegraph pole. The simulation parameters are shown in Figure 2a. The distance
d1 between the probe and the telegraph pole increased from 0.4 m to 2.0 m in steps of 0.4
m, and the distance h1 between the probe and the ground increased from 4 m to 12 m in
steps of 0.5 m. The simulation results obtained are shown in Figure 2b. According to the
simulation results, the deviation in Cg between d1 = 0.4 m and d1 = 0.8 m at h1 = 4 m is
7.3%, and the deviation in Cg between d1 = 0.4 m and d1 = 2 m at h1 = 4 m is 19.5%. The
deviation in Cg between h1 = 4 m and h1 = 5 m at d1 = 0.4 m is 2.96%, and the deviation in
Cg between h1 = 4 m and h1 = 12 m at d1 = 0.4 m is 12.9%. It can be seen that the capacitance
Cg will be affected by the installation position of the sensor relative to the telegraph pole
and the ground. From Equation (1), it can be seen that replacing Cg with a fixed coefficient
will result in a measurement error proportional to the offset rate of the capacitor.
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(a) Simulated models and parameters; (b) the influence of different ground heights h1 and telegraph
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2.2. Self-Calibration Method Based on Internal Capacitance Transformation

A self-calibration method based on internal capacitance transformation is proposed to
achieve the acquisition of Cg and voltage reconstruction. The schematic diagram is shown in
Figure 3a. On the basis of Figure 1a, the schematic diagram incorporates a lumped capacitor
Ca and a single pole double throw switch S1 at both ends of the structural capacitance Cm,
which is a relay switch controlled by a microcontroller (MCU). The relationship between Ca
and Cb is a series connection. Uo1 and Uo2 represent the output voltage of the instrumental
amplifier (INA) when the switch is turned to 1 and 2, respectively.

The equivalent circuit diagram of Figure 3a is shown in Figure 3b. When the switch is
turned to 1, the transfer function is shown in Equation (3), where k = Ca/Ca + Cb.

Uo1

Ul
=

sRmCg

1 + sRm(kCb + Cm + Cg)
(3)

When ω > ωh1 = 1
Rm(kCb+Cm+Cg)

, the above transfer function can be simplified as:

Uo1

Ul
=

kCg

kCb + Cm + Cg
(4)
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When the switch is turned to 2, the transfer function can be expressed as:

Uo2(s)
Ui(s)

=
skRmCg

1 + sRm
(
Cb + Cm + Cg

) (5)

When ω > ωh2 = 1
Rm(Cb+Cm+Cg)

, the above transfer function can be simplified as:

Uo2

Ul
=

Cg

Cb + Cm + Cg
(6)

By eliminating the simultaneous Equations (4) and (6), the following can be obtained:

Cg =
Uo2k(Cb + Cm)− Uo1(kCb + Cm)

Uo1 − kUo2
(7)

Ul =
Uo1Uo2(kCb − Cb)

Uo1(kCb + Cm)− Uo2k(Cb + Cm)
(8)

By controlling whether the capacitor Ca is connected to the circuit or not, two different
transfer relations and output voltages can be obtained. The unknown capacitance Cg can
be obtained by means of Equation (7). Further, the measured voltage Ul can be obtained
via Equation (8).

3. Topology Circuit and Shielded Probe Design
3.1. Analysis of Calibration Accuracy Impact and Parameter Optimization

The selection of capacitance parameters is the key to improving voltage calibration
accuracy. When there is an error in the output voltage of the sensor substituted in actual
measurement, using Equation (8) for calibration may cause the error to expand infinitely.
Reference [23] conducted simulation calculations and analyses on the calibration model
in [30] and found that when there are almost equal subtractions in the calibration formula,
the error will propagate widely. The use of capacitors with an accuracy of 0.01% will result
in an error of −15.5% in the calibration voltage. Fortunately, the propagation of errors can
be reduced through parameter optimization.

In order to explore the optimal parameter range, the parametric scanning of the
equivalent circuit model is simulated. Assuming the model in Figure 3b is a pure capacitor
network, the initial values of Cm, Ca, Cb and Cg are set to 20 pF, 5 pF, 1 nF and 2 pF,
respectively. The variation range is shown in the horizontal axis in Figure 4, and all
parameters except for variables remain unchanged as the initial parameters. We changed
the output voltage Uo1 and Uo2 to (1 − 0.005)Uo1 and (1 − 0.005)Uo2, respectively, to
simulate a 0.5% error in the output of the sensor. We substituted the output voltage
with errors into Equation (8) to obtain the calibration voltage and calculated the relative
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error between the calibration voltage and the actual voltage. The curves of each capacitor
parameter and relative error are shown in Figure 4.
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voltage.

From Figure 4, it can be seen that Cm and Ca are negatively correlated with calibration
accuracy. Therefore, reducing Cm and Ca can improve the calibration accuracy. The impact
of Cb on accuracy can be ignored, as it only needs to meet a certain voltage ratio to reduce the
output signal to the collectable voltage range. In the subsequent probe and circuit design,
the capacitors and resistors are set as shown in Table 1. The instrumentation amplifier used
is AD8220ARMZ, and the gain is set to 1. The amplitude frequency characteristic curve
and phase frequency characteristic curve of this circuit are shown in Figure 5. From the
figure, it can be seen that there is a flat frequency response in the range of 20 Hz to 50 kHz,
and the sensor output voltage is independent of phase and frequency. When measuring
power frequency voltage, Equation (8) can be used for voltage reconstruction.

Table 1. The value of the selected parameter.

Parameters Description Value

Cm
Capacitance between induced

electrode and equipotential electrode 5 pF

Ca Transformation capacitor 5 pF
Cb Sampling capacitor 3 nF
Rm Sampling resistor 50 MΩ
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3.2. Equipotential Shielding Probe

In actual transmission line measurement, there are at least two adjacent transmission
lines besides the measured wire. At the same time, the electric field of adjacent lines
will also be coupled to the induced electrode through capacitance, as shown in Figure 6a.
Among them, the voltages on transmission lines phase-A, phase-B, and phase-C are Ua,
Ub, and Uc. Assuming that the sensor is used to measure the voltage of phase- A, the
equipotential electrode is connected to phase-A to form an equipotential. The capacitance
formed by the induced electrode and phase-A, phase-B and phase-C is Cma, Cmb and Cmc,
respectively. The equivalent circuit according to Figure 6a is shown in Figure 6b, and the
transfer function obtained from this equivalent circuit diagram is as follows:

Uo = Ua − (
CmaUa

Cg + Cma
+

CmbUb
Cg + Cmb

+
CmcUc

Cg + Cmc
) (9)Sensors 2023, 23, x FOR PEER REVIEW 8 of 16 
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It can be seen from Equation (9) that when one phase of a three-phase transmission
line is measured using a suspension grounding voltage sensor based on the electric field
effect, the electric field generated by the remaining two phases will be coupled to the sensor.
Due to the fact that all transmission lines have the same frequency of electric fields, the
signals captured by the sensor cannot be separated. In order to explore the influence of
other adjacent lines, the finite element simulation was used to quantify it. The parameters
in the simulation model are shown in Figure 7. The simulation results are shown in Figure 8.
When only phase-A has a voltage amplitude of 10 kV, the potential of the induced electrode
is 850 V. When the voltage amplitude of phase-A, phase-B and phase-C is 10 kV and the
phase difference is 120◦, the induced electrode potential is 912 V, with a deviation of 6.8%.
It is necessary to design shielding probes to reduce the interference of adjacent lines.
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As can be seen from Equation (9), by increasing Cma and decreasing Cmb, Cmc can
enhance the anti-interference ability of the sensor. However, in the analysis of Section 3.1,
increasing Cma will result in a decrease in calibration accuracy. Therefore, an equipotential
shielding structure that significantly reduces the capacitance Cmb and Cmc without signif-
icantly increasing Cma is designed in this paper. The structural schematic diagram and
parameters are shown in Figure 9. To verify its performance, the flat plate probe in Figure 7
was replaced with the equipotential shielding probe. Figure 10 shows the simulation results,
which show that the potential of the induced electrode with and without interfering wires
is 997 V and 999 V, respectively, with a difference of 0.2%. Table 2 shows the inherent
capacitance values of two types of probes and the comparison of capacitance parameters
for the adjacent line. Compared to the flat structure, the capacitance Cma increases by
1.37 times, and the capacitance of Cmb and Cmc decreases by 78 times.
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Table 2. Comparison of capacitance in plate structure and equipotential shielding structure.

Parameters Description
Values

Flat Structure Equipotential Shielding Structure

Cma [pF] Capacitance between induced
electrode and equipotential electrode 3.39 4.64

Cmb [pF] Capacitance between induced
electrode and phase-B conductor 0.125 0.0016

Cmc [pF] Capacitance between induced
electrode and phase-C conductor 0.125 0.0016

3.3. Control Steps and Measurement Process

The measurement framework used in this article is shown in Figure 11. The induction
probe is connected to the conditioning circuit, which includes a switching capacitor, relay,
instrumentation amplifier, single chip microcontroller and +5 V conversion ±5 V module
power. The conditioning circuit is connected to the data acquisition device to read the
output signal and display it in real time on a personal computer. At the same time, the
conditioning circuit is connected to a personal computer through a converter to provide
power and switch control commands for the conditioning circuit. When the switch is
controlled to 1, the sensor output signal is marked as Uo1. When the switch is controlled
to 2, the sensor output signal is marked as Uo2. The obtained output value and known
parameter values are used to reconstruct the voltage according to Equation (8).
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4. Experimental Testing and Result Analysis
4.1. Establishment of Experimental Platform

In order to verify the feasibility of the calibration method for suspension grounding
voltage sensor based on internal capacitance transformation and the performance of the
equipotential anti-interference probe, a testing platform was built in the laboratory, and the
testing site is shown in Figure 12. The AC voltage source is CX9914BX, from Changsheng,
which can provide 30–300 Hz, 0–5 kVrms AC voltage output. Its output is connected to the
tested wire with a length of 20 m. The data acquisition instrument is a Picoscope 5000D PC
oscilloscope from Pico Technology (Cambridgeshire, UK), with a resolution of 16 bits and a
sampling rate of 62.5 MS/s. The oscilloscope is connected to a mobile personal computer
(PC) through a Universal Serial Bus (USB), and the output signal collected is displayed
through PicoScope7 software (7.0.116). The mobile PC is battery-powered, making the
measurement system completely isolated from the actual ground. The voltage and phase
of the measured wire are calibrated by the Tektronix 6015A probe, which is also connected
to the oscilloscope and displayed on PicoScope7.
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During the experiment, the induced probe is placed below the measured wire, and the
equipotential electrode of the probe is connected to measured wire. The measured wire
is mounted on two stretchable poles, with a maximum stretchable distance of 8 m. The
Tektronix 6015A high-voltage probe is connected at both ends of the measured wire and
the actual ground.

4.2. Amplitude and Phase Accuracy Testing

The following steps are carried out when the measured wire is located at a height of
3 m. Perform the following experimental steps on the established experimental platform.
In the first step of testing, turn switch S1 to 1 and record the output Uo1 of the signal
processing circuit observed from the oscilloscope. In the second step of testing, turn switch
S1 to 2 and record the output Uo2 of the conditioning circuit observed from the oscilloscope
and the Tektronix 6015A calibrated application voltage. The output range of the AC source
increases from 1000 Vrms to 5000 Vrms in steps of 200 Vrms. Repeat the above steps to
complete the experiment. The results of the recorded values and reconstructed voltage Ur
via Equation (8) are shown in Table 3.

Table 3. Accuracy test results.

UP6015A/V Uo1/mV Uo2/mV Ur/V

997 269.2 616.2 1000
1197 323.8 738.2 1205
1396 376.0 861.7 1388
1595 430.5 984.0 1611
1795 483.2 1107 1787
1994 535.9 1229 1972
2193 591.8 1353 2213
2392 646.0 1475 2431
2591 697.3 1598 2575
2791 753.1 1722 2813
2990 803.7 1843 2958
3189 858.3 1967 3169
3388 914.1 2093 3390
3587 966.7 2214 3581
3786 1022 2337 3816
3985 1073 2460 3954
4184 1127 2584 4151
4383 1183 2705 4419
4581 1234 2829 4548
4780 1290 2948 4833
4979 1345 3075 5028
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Figure 13 shows the fitting curve and relative error characteristics between the re-
constructed voltage Ur and the calibrated voltage UP6015A, and the results show that the
maximum relative error of the amplitude is 1.65%. Figure 14a shows the output waveform
of Tektronix P6015A and the sensor output waveforms Uo1 and Uo2 when the output volt-
age of the voltage source is 5000 Vrms. Figure 14b shows the phase comparison details, and
the results show that the relative error of the phase is ∆t

T · 100% = 188us
0.02s = 0.94%.
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4.3. Scenario Adaptability Testing

We wanted to verify that the measurement method proposed in this paper can be
measured in different scenarios and the measurement accuracy is not affected by the
measurement scenario. On the experimental platform shown in Figure 12, different tests
of ground height and tower distance were carried out. By changing the distance of the
telescopic rod to change the ground height h1, h1 increases from 2 m to 4 m in steps of
0.5 m, while maintaining d1 at 1.2 m during this process. By changing the distance of
the experimental platform and the wall to simulate the different distance d1 between the
sensor and the telegraph pole, d1 is increased from 0.4 m to 2 m in steps of 0.4 m, while
maintaining h1 at 3 m during this process. The experimental results are shown in Figure 15,
with a maximum percentage error of 1.34% with different h1 and a maximum percentage
error of 1.56% with different d1. When the voltage of the unknown wire is reconstructed
according to Equation (8), the measurement accuracy does not change significantly with
changes in height to ground or distance to telegraph pole.
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4.4. Anti Interference Achievement Test

To verify the shielding effect of the equipotential probe, experimental tests were
conducted as shown in Figure 16. Compared with the experimental platform in Figure 12,
replace the single-phase voltage source with the three-phase voltage source ANB13-1KA,
which can provide 40–300 Hz, 0–300 Vrms three-phase voltage output. In this test, in order
to measure low voltage, the capacitor Cb is replaced from 3 nF to 1 nF. The three-phase
voltage output is connected to three cables 60 cm apart. The following experiments were
conducted on this experimental platform. In the first step of testing, phase-A, phase-B and
phase-C are set to the same voltage, with a phase difference of 120◦. In the second test, the
voltage output is only in phase-B. The output voltages are set to 100 V, 200 V and 300 V,
and the reconstructed voltages and relative errors with interfered and without interfered
voltage are obtained, as shown in Table 4.
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As can be seen from Table 4, the sensor output voltages Uo1, Uo2 and reconstructed
voltage increase slightly in the presence of the interference voltage compared to the absence
of the interference voltage, but the increase is small. The deviations in the reconstructed
voltage are 0.7%, 0.67% and 0.69%, respectively. It shows that the equipotential shielding has
a good anti-interference property and can provide conditions for the voltage measurement
of transmission lines.
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Table 4. Anti-interference test results.

Applied
Voltage [V]

With/Without
Interference Uo1 [mV] Uo2 [mV] Reconstructed

Voltage [V] % Deviation

200
Without 204.3 489.5 199.7

0.7With 205.5 492.4 201.3

250
Without 254.3 609.4 249.2

0.67With 256.1 613.7 250.9

300
Without 307.1 735.2 301.3

0.69With 309.2 740.3 303.4

5. Conclusions

The main work of this article is as follows: (1) In order to solve the problem that
the capacitance between the sensor and ground is difficult to determine, a calibration
method based on internal capacitance transformation is proposed to achieve the calibration
of suspension grounding sensors. (2) We carried out theoretical research and transfer
function analysis on the proposed method, analyzed the influence of calibration accuracy
on system parameters through simulation and provided parameter design principles.
According to this design index, the topology of capacitor conversion circuit was formulated.
(3) The influence of the other two-phase electric fields on the measurement of three-phase
transmission lines was quantified through simulation research. In order to reduce the
impact of adjacent transmission lines, an equipotential shielding structure was designed.
(4) The calibration accuracy test was carried out with the self-made sensor prototype under
the power frequency voltage 1–5 kV, and the results showed that the maximum relative
error is 1.65% and the relative error of phase is 0.94%. Then, scenario adaptability testing
was conducted. The results show that in different measurement scenario experiments,
the maximum relative error is 1.56%, and the measurement accuracy is not limited by the
height of the sensor to the ground or the distance to the pole. Finally, the anti-interference
achievement test is carried out. The experimental data show that the maximum deviation
of the reconstructed voltage is 0.7% when there is no interfering electric field. This shows
that these potential shielding probes have good shielding ability to the external coupled
electric field.

It can be seen from the experimental results that the self-calibration method based on
internal capacitance transformation can realize the calibration of suspension grounding
voltage sensors in different measurement scenarios. The developed equipotential shield-
ing probe can greatly reduce the interference of external electric fields. It is of practical
significance to extend the suspension grounding voltage measurement based on the space
electric field effect. The structure in the manuscript is only intended for the verification of
a suspension grounding voltage sensor. The device may be affected by the accumulation
of rainwater or dust. In future practical applications, the sensor will be enclosed in an
enclosed space to prevent rain and dust from affecting the interior of the sensor.
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