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Abstract: The analysis of the external forces of swimming starts has revealed how swimmers propel
themselves out of the block, but data should be properly interpreted to fully understand force-
generation mechanisms. This study aimed to assess horizontal and vertical forces in the backstroke
start based on swimmers’ structural and propulsive actions. Firstly, a simulated structural force was
estimated by two transient backstroke-start inter-segmental realistic body positions: a maximally
tucked position and an extended one (just before the hands-off and the take-off, respectively).
Secondly, 10 competitive backstroke swimmers performed four 15 m maximal backstroke starts
with the external forces estimated. Thirdly, the simulated structural force was subtracted from raw
horizontal and vertical force data, measured between hands-off and take-off instants, resulting in
the propulsive forces. The application of the algorithm has evidenced that backstrokers’ horizontal
and vertical simulated-structural-force components contributed to ~40% of total force during start
propulsion (~0.2–0.12 s before the take-off), followed by the propulsive horizontal force increment and
a progressive vertical component reduction (~0.05 s) with ~20◦ take-off angle. Based on these findings,
researchers and coaches can better guide swimmers as to the proper mechanical strategies to achieve
effectiveness in the backstroke start, and to improve direct transfer of resistance training programs.

Keywords: backstroke; starts; passive force; propulsion

1. Introduction

The starting time, usually assessed from the beep until the swimmer’s vertex passes the
15 m mark, is highly representative of overall performance for short-distance events [1–3].
The start is composed of the block/wall, flight, entry, and underwater interdependent
phases [1,2,4], with the first actions being determinant of the global effectiveness [2,3,5].
In the ventral events starts, it is advised to generate proper partition between horizontal
and vertical forces to guarantee optimal take-off angles for a greater flight distance [1,5,6].
Flight distance is also important in the dorsal events starts [7–9], allowing the swimmers to
travel considerably faster through the air than in water. The backstroke start flight distance
is shorter compared to that observed on ventral events starts [1,4,10], since the swimmers’
initial position is very close to the water surface [7,9,11]. Moreover, its reduced take-off
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angle implies a smaller vertical reaction force, which highlights the importance of the
horizontal component for propulsion [10,12] and overall performance.

Detailed assessments of the backstroke-start kinetics using tri-axial waterproof force
plates are scarce [13], which limits the proposal of effective steering strategies. Previous
studies that focused on differences in the lower limbs’ force production between backstroke
start technical variants (with and without the wedge) revealed a two-peak profile in the
horizontal and vertical raw force components [8,10,13], with no wedge effect on impulse
being noticed [8]. Thus, a thorough description of force generation considering postural
and effective force components is needed for accurate training feedback (as previously
evidenced with the “grab start” technique [6]). The horizontal and vertical force compo-
nents in the backstroke start might involve swimmers’ muscular and body weight dynamic
effects to maintain contact with the wall while moving from the hands-off to the take-off.
The use of the wedge might partially obviate the friction mechanism that occurs, especially
on the vertical force component [8,10,12], as to swimmers’ feet indentation and wall contact
stability (Figure 1).
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Figure 1. Positioning of a swimmer’s feet on the wedge pair during the wall-contact phase of the
backstroke start.

According to established stepwise procedures [5], the impulse is continuously gen-
erated in the absence of an effective start effort. This can be evidenced by an inactive
rigid body fall while rotating around a wall-fixed axis. In the backstroke start, the unani-
mated body’s descent would begin at ~40◦ to the horizontal axis [11] (similarly to the kick
start [1,14,15], and conversely to the ~90◦ observed in the grab start [6]), which might imply
a delayed loss of wall contact given the smaller take-off angle. For an inactive body, the
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Here
→
RPassive(t) is the same as in Equation (1), and

→
RActive(t) is in the opposite direc-

tion of the propulsive force vector applied to the start wall by swimmers’ muscular and
mechanical actions.

The current study aimed to apply the
→

GRF(t) splitting formalism [6] to the backstroke
start technique after the hands-off instant, since, from this point onwards, a swimmers’
body rotates around a single axis according to the simple rigid body model [6]. When
performing the backstroke start, swimmers have the option of using the wedge and the wall
(FINA rule SW 6.1; FINA [17]) by means of a halluces–platform alignment, the central point
of which should be the centre of pressure (COP). This geometrical profile may be described
as the centre of mass (CM) rotation around the halluces lateral–medial axis, merged into the

CM displacement along the anterior–posterior CM–COP direction [6].
→

GRF(t) will be split

into the
→
RPassive(t) and

→
RActive(t) components using the algorithm previously proposed [6]

to better understand the mechanical load applied by swimmers’ musculoskeletal systems
and to define suitable steering strategies during the off-of-the-wall propulsion.

2. Materials and Methods
2.1. Swimmers’ Matrix of Inertia Determination

The minimum and maximum values of the moment of inertia around the halluces
(3D CAD, DS Solidworks, Dassault Systèmes, Solidworks Corporation, Waltham, MA,
USA) and the segmental values (NASA human body anthropometrical inertial model [18])
were assessed using a swimmer’s model (with sagittal symmetry being assumed) [5].
The swimmer’s matrix of inertia and the estimation of CM–COP distance were necessary
for the application of the differential equations [6] governing the rigid body’s fall as a
rotation around halluces. These values were assessed with a model of a rigid articulated
human body (mass 85.71 kg, volume 89.4 dm3 and surface area 3.26 m2) compatible with
two transient swimmers’ inter-segmental backstroke-start body positions (one maximally
tucked and the other maximally extended, with 0.668 m and 1.159 m CM–COP distance just
before hands-off and take-off, respectively; Figure 2A,B). The swimmer’s mass had a small
effect on the dynamic equations governing the dummy model’s motion [6]. The backstroke
start variant with the feet positioned over the wedge (0.04 m above water level) [13] was
performed with the hands grasping the grips vertically [10,12].
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lines are representative of the model coordinate plane system and the water line.

2.2. Experimental Start Protocol

Ten male competitive backstroke swimmers (age 21.1 ± 5.36 years old, stature
1.78 ± 0.04 m, body mass 72.82 ± 10.05 kg, training background 12.6 ± 6.13 years, 100 m
short course backstroke performance 59.67 ± 2.89 s representing 77.69 ± 3.59% of the 2021
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world record) volunteered to participate. All swimmers were healthy (with no serious
injuries or illnesses in the last six months), able-bodied, and national-level event partici-
pants. Approval for all experimental procedures was granted by the local university Ethics
Committee in accordance with the Declaration of Helsinki. Swimmers and parents/legal
guardians (when swimmers were aged below 18 years) freely provided written informed
consent before data collection. A power analysis was performed (G*Power version 3.1,
Department of Psychology, Heinrich Heine Universität, Duesseldorf, Germany), and ten
participants were required to have an 80% power level to detect an effect size of >0.5 using
a one-tailed single-sample t-test with a probability of 0.05. The sample recruitment and the
experimental procedures are presented in Figures 3 and 4, respectively.

1 
 

 
Figure 3. Flowchart of sample recruitment and inclusion process, as well as the experimental
steps [19].
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2.3. Data Collection and Analysis

The instrumented start block consisted of four tri-axial strain gauge waterproof force
plates, two for the upper limbs and two for the lower limbs, which allowed independent
→

GRF(t) measurements [12]. Upper-limb force plates were laterally fixed on the starting
block, with independent handgrips fixed on each force-plate top. Lower-limb force plates
were vertically positioned on a custom-built underwater structure fixed on the wall, each
one with its independent wedge attached over the force-plate top (at 0.04 m above the
water level, cf. FINA Rule FR 2.2.11 [19]). The two force-plate pairs had a 0.5 N sensitivity,
<5% error and a 300 and 200 Hz resonance frequency [12], respectively. The start block was
fixed over the underwater structure to ensure that the overall dynamometric unit complied
with FINA Rules FR 2.1.8 [19]).

The dynamic calibration was made, as described before, on the rigid-body fall [6],
which revealed a resultant homogeneity on the static calibration. Custom-designed data
processing software was created in LabView 2013 (SP1, National Instruments Corporation,
Austin, TX, USA) to acquire, plot, and save the strain readings from each force plate at a
2000 Hz sampling rate. A starter device (Omega StartTime IV Acoustic Start, Swiss Timing
Ltd., Corgémont, Switzerland) was instrumented to simultaneously generate a starting
command and export a trigger signal to the force plates through a custom-built trigger box

(cf. FINA Rule SW 4.2 [17]).
→

GRF(t) records were analogue-to-digital converted by several
modules for strain-signals reading (NI9237, National Instruments Corporation, USA) and
their respective chassis (CompactDAQ USB-9172 and Ethernet-9188 National Instruments
Corporation, Austin, TX, USA).

Two custom-designed processing routines created in Matlab (The MathWorks Incor-
porated, Natick, MA, USA) converted strain readings (µε) into force values (N), filtered
upper and lower limb force curves (4th order zero-phase digital Butterworth low-pass
filter with a 10 Hz cut-off frequency [10]), summed right- and left-limb force data, and
normalized upper and lower limb force values to swimmers’ body weights. The splitting

tool algorithm [6] was applied to each of the four trials of the swimmer
→

GRF(t) and was

synchronized to the take-off. GRFH(t) and GRFV(t) were used to calculate the
→

GRF(t)
angle to the horizontal, which, for the rotation around the halluces, is the same as that
between the line CM–COP and the horizontal (Equation (3)).

θ(t) = arctan[GRFV(t)/GRFH(t)] (3)

To compute
→
RPassive(t), the moments of inertia of the rotation around the halluces COP

from a rigid body fall were estimated (in the most-tucked and most-extended backstroke
start positions; Figure 2, A and B panels). It was necessary to give information about the
initial angular velocity and establish the −10, 0, 10 and 60◦/s values for the rigid-body
models (Figure 2) to run the dynamic model to obtain the angle between the CM–COP line
and the horizontal axis, the respective angular velocity, and the horizontal and vertical
force components (Figures 5 and 6). The differences between the values returned for
simulated CM–COP angle to horizontal axis [θ(t)], respective angular velocity (Figure 5)
and RHpass(t) and RVpass(t) theoretical profiles (Figure 6) were small in the simulations
and mainly dependent on the body position, and did not led to a clear initial-condition
choice. Therefore, the 0◦/s initial condition at the hands-off was selected, since the angle is
a decreasing function of time. The cases with positive initial angular velocities display the
angle as an inverted U-shape, preventing a unique inversion of the angle-to-time curve [6].
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blue dashed lines), 0◦/s (red and blue continuous lines), 10◦/s (red and blue dotted lines), and 60◦/s
angular velocity (red and blue dot-dashed lines). GRFH(t) (Fh) and GRFV(t) (Fv) data ((A) and (B)
panels, respectively) are presented as a fraction of model body weight and synchronized to the
take-off.

3. Results

Complete inertia matrix components were calculated (Table 1) and the moment of
inertia around the halluces’ (IZZ) minimum and maximum values were obtained in the
most-tucked and most-extended body geometries, respectively. In both body geometries,
IZZ � IYZ, IXZ justifies the negative meaningfulness of the difference in IYZ and IXZ values
between rigid articulated body positions. The value for the inertia term IZZ almost tripled



Sensors 2023, 23, 7723 7 of 13

from the most-tucked to the most-extended inter-segmental backstroke-start positions. The
CM–COP line’s angle to the horizontal axis computed during the unanimated rigid body
fall showed an ~20◦ take-off angle (Figure 7A), which is compatible with the trend found in
the swimmers’ values. Angular velocity during the unanimated rigid body fall displayed a
linear descendent profile from hands-off until take-off, contrary to the observed swimmers’
angular velocity–time curves, which highlighted a steep negative increment in values
between ~−0.15 and −0.05 s (Figure 7B). Swimmers’ angle and angular velocity (Figure 7)
showed an abrupt positive increase immediately before take-off, explained by near-zero
force values, due to platform strain recovery inertial effects, causing numerical instability.

Table 1. Inertia tensors expressed in
(
kg·m2) calculated for hallux rotation axis in the most-tucked

and the most-extended rigid articulated body positions.

Rigid Articulated
Body Positions Moment of Inertia Matrix Components

Most-tucked

IXX IXY IXZ
IYX IYY IYZ
IZX IZY IZZ

 =

+37.0068 −16.0489 −0.0006
−16.0498 +11.2819 +0.0002
−0.0006 +0.0002 +46.5009


Most-extended

IXX IXY IXZ
IYX IYY IYZ
IZX IZY IZZ

 =

+109.9163 −44.298 −0.0009
−44.298 +22.5456 +0.001
−0.0009 +0.001 +130.6885
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Figure 7. CM–COP line and horizontal axis angle ((A) panel) for a 0◦/s initial condition, as well as
respective angular velocity ((B) panel) from the passive rigid-body fall (continuous black line) and
the 40 observed swimmers’ backstroke-start trials (continuous grey lines). Model and observed angle
and angular velocity were synchronized to take-off.
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Following the starting signal, the backstroke swimmers’ initial movements occur
between 0.5 and 0.4 s before the take-off instant (Figure 8A,B), and the hands-off instant
varies among swimmers, occurring between 0.25 and 0.15 s before the take-off (for each
swimmer curve, the line thickness is increased at hands-off, Figure 8A,B). Most of the
swimmers showed consistent force–time curves, evidencing high stability, with standard
deviations between 0.02 and 0.06 BW, with exception of swimmers six and seven (with
0.1 BW; Figure 8A,B). Considering the swimmers 40 force–time curves all together, they
showed a standard deviation of 0.14 BW and 0.1 BW for horizontal (Figure 8A) and vertical
(Figure 8B) components, respectively.
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standard deviations for each swimmer (SW) and overall sample trials expressed as time to take-off
for the backstroke start technique.

In conclusion, each one of the swimmers in the sample has a consistent way of force
production at the swimming start, although different swimmers use different strategies.
Since our model only applies after hands-off, in the remaining figures we will only show
the force curves after this event and until take-off.

Rigid body fall RHpass(t) and RVpass(t) curves showed stability from the hands-off
until 0.12 s before the take-off, followed by a progressive descending profile (Figure 9). In
opposition to this, most of swimmers seem to evidence within the trials a slightly increasing
GRFH(t) and GRFV(t) profile from hands-off until reaching a peak value just before take-
off. GRFH(t) had the most outstanding magnitude, with peak values occurring later than
those of GRFV(t) (~0.04 vs 0.08 s before take-off, respectively; Figure 9). Figure 10 shows
the same RHpass(t) and RVpass(t) curves as Figure 9, displaying a stable curve between
0.25–0.12 s before take-off, which was followed by a descending profile, concomitant with
progressive increases in RHact(t) and RVact(t). Since the splitting of the observed force
curves into passive and active components is obtained through a θ(t)-mapping and not a
t-mapping, some artifacts may appear in the curves (Figure 10).
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4. Discussion

Swimming-start GRFH(t) and GRFV(t) evaluations have here highlighted swimmers’
strategies for achieving a proper take-off angle to attain a longer flight distance. Since this
is an important starting skill [1,3,6], accurate tools were designed to assess and interpret
the generation of the swimming-starts’ external force for research purposes and training
feedback [1,12,20]. The current study used a previously developed algorithm [6] to inter-
pret the mechanisms that are responsible for the backstroke start GRFH(t) and GRFV(t)
generation (as based in fundamental mechanics). From hands-off until ~0.12 s before
take-off, RHpass(t) and RVpass(t) depicted a stable profile, followed by a gradual reduction
concurrent with rises in RHact(t) and RVact(t) [12], showing that even in the absence of any
active propulsion effort, real propulsion can be observed [6]. Therefore, it was noticed

that two start trials from the same swimmer would produce identical
→

GRF(t) signature
patterns, with eventual dissimilarities occurring due to different active and passive force
contributions. Consequently, the analysis of these curves would enable more objective and
accurate feedback [5,16,21], a need that would become even greater when realizing that the
differences between elite athletes have decreased considerably over the years [16,22].

Swimmers’ inertia changed due to the different (most-tucked or most-extended)
backstroke-start inter-segmental positions that were used in the computer simulations.
This allowed for the calculation of θ(t) as a crucial parameter in the CM–COP direction

and the separation of
→
RPassive(t) and

→
RActive(t) components. Contrarily to the ventral

start technique [6], the IZZ value almost tripled in the most-tucked vs the most-extended
body positions, in line with the complexity of the backstroke-start performance [7,9,23]. In
the backstroke start, swimmers had quickly to change from a tucked positioning (mostly
sustained by the upper limbs even when using the wedge) to an effective segmental or-
ganization to generate proper lower-limb propulsion [7,9,11]. Small IZZ values enabled
higher angular accelerations around the halluces and evidenced that the beginning of the
movement was clearly a rotation [7,9,11], while the last contact moments showed more
propulsion out of the wall effort. Contrarily to the previous studies, the present findings
showed a detailed technical analysis based on the horizontal and vertical force–time curve
profiles generated by muscular-based biomechanical actions and body weight dynamical
effects during a commonly used backstroke start variant. The absolute force and impulse
assessments are valuable performance indicators [8,10]; however, the understanding of
the steering strategy adopted considering the relative position and orientation of body
segments as they changed during the backstroke start might help coaches and swimmers
to perform the task in a more effective way.

Swimmers who performed the symmetric GRFH(t) and GRFV(t) ventral grab start
propelled themselves out of the block at a ~45◦ take-off angle [6] and GRFH(t) and GRFV(t)
at the kick start had a similar magnitude profile after the rear-foot take-off [1,14,24]. How-
ever, these variables have not shown a similar pattern in the backstroke start, even with
the wedge [8,12], probably due to a smaller θ(t) angle constraint. The take-off angle is
a backstroke-start performance determinant [7,9,10], and is critical for the flight phase
extent and duration [9,11]. The backstroke starts with vs. without wedge showed a greater
take-off angle [11] because of friction mechanism obviation [8,12]. Elite swimmers used
a larger hip joint angular velocity to achieve proper steering postures on the take-off

and entry angles [7,14], and the
→
RPassive(t) contribution after hands-off, followed by the

→
RActive(t) generation, highlighted that major postural adjustments for proper take-off angle
should be performed until the reduction of meaningful inertial effects in order to optimise
backstroke-start performance determinants before and after the hands-off instant [7,12].

The current study’s θ(t) angle had a sharp value reduction ~0.1 s before the take-off,
in agreement with progressive increases in GRFH(t) and GRFV(t). Following the hands-
off, swimmers continued rotating the trunk and upper limbs, which contributed to the
appearance of a maximum GRFV(t) before the GRFH(t) peak [13]. GRFV(t) peak values
had already been noticed when using the wedge [10] and were not so pronounced as
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GRFH(t), due to essential backward steering before the take-off [8,11]. Notwithstanding
this, GRFV(t) was indicated as a crucial factor for successful ventral swimming-starts
performance [1,5,15], and a larger GRFH(t) peak just before take-off is a cardinal result
for backstroke-start propulsion [12,13,24]. Even though the main contribution of GRFV(t)
during the backstroke start with the wedge is expected to be denoted before the hands-
off, no kinetic effect was observed in backstroke start kinetics with the wedge [8]. The
present study reinforces the fact of backstroke-start performance complexity to generate the
vertical component for propulsion (cf. previous findings [8]), but also evidences from the
active and passive force–time curve analysis the optimal time for segmental rotations and
effective propelling force. Moreover, contrarily to the passive force, the active component
is apparently more susceptible to high variability (cf. [6]), which suggests that the selection
of the proper backstroke-start technical variation should be mainly based on optimised
propulsive muscular actions preceding the take-off.

The θ(t)-mapping methodology developed and implemented before on the
→

GRF(t)

grab-start technique to split
→
RPassive(t) and

→
RActive(t) components [6] was used in the

current study to characterise the backstroke start. It exhibited an evident RHpass(t) and
RVpass(t) contribution from ~0.2–0.12 s before the take-off (progressively decreasing), in
opposition to the grab-start profile [6]. The grab-start conditions are different, considering

the θ(t) angle, with swimmers undergoing
→
RPassive(t) effects during a longer period and,

consequently, revealing a greater RVpass(t) contribution. In the grab-start technique, swim-
mers evidenced RHact(t) and RVact(t) just after the hands-off, which means that over 60%
of the block time has been influenced by inertial components. Fine control and timing of
force production is necessary to find the optimal flight phase trajectory and at the same
time prepare for a smooth water entry with the least possible resistance [22]. The main
task for the swimmer has environmental and organic constraints that are faced during the
most propulsive starting wall instants, and subtle differences may distinguish swimmers
and individual swimmers’ trials as a consequence of environmental changes, training
procedures, or learning phenomena [6–8]. In fact, between-participant kinetic variability
was previously noticed when the backstroke start was performed with the wedge, which
was explained by differences in the swimmers’ technique or strength [8]. In opposition

to
→
RActive(t),

→
RPassive(t) is dependent on swimmer’s structure and inertial components,

diminishing the degrees of freedom involved in the swimming start movement and the
consequent variability.

Taking into consideration the backstroke start, the
→
RPassive(t) influence revealed a

more discreet profile for RHpass(t) and RVpass(t) components, which were substantially
replaced by RHact(t) and RVact(t) ~0.12 s before take-off. The upper and lower limbs’
high propulsive contribution during starts has been evidenced since the 1980s [10,12],
leading researchers to propose diverse resistance-training programs to improve strength
and power [3,5]. However, studies regarding the effects of force generated by swimmers on
their starting performances are very scarce. The display of the configuration of swimmers’

body segments when generating
→
RPassive(t) and

→
RActive(t) force profiles, as well as θ(t) data,

might benefit coaches and sports scientists when designing backstroke-start strength tests,
implementing strength training, and selecting the most proper backstroke-start variant for
better performance [3,5] (with a combined kinetics and kinematics analysis; e.g., [4,12,13]).

Notwithstanding the current study’s originality and relevance, limitations and further
research directions should be addressed. The previously developed algorithm that allows

the separation of
→
RPassive(t) from

→
RActive(t) components in the grab start can be applied in

the backstroke start from hands-off onwards. However, improvement of the algorithm’s

capability to assess
→

GRF(t) components in view of the COP translation from the starting
beep to the hands-off should be taken into consideration in future work, since the defined
start variant might exhibit swimmers’ setup adaptations, which might affect kinematic
and kinetics data (e.g., [8,10]). A swimmer’s mass is directly connected to anthropometric
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characteristics like volume, volumetric mass, CM position, height, and arm span, with
the current model revealing small sensitivity to it [6]. However, the impact of different
swimmers’ levels of mass, Izz, and CM–COP values should be analysed, since more-
proficient swimmers might produce better segment positioning and muscular effective
actions [3,7,10].

5. Conclusions

The current study revealed that the backstroke start is performed with the generation

of
→
RPassive(t) and

→
RActive(t) forces and, even considering wedge use, it is considered a

complex motor task. Starts performed in-water imply a small RHpass(t) and RVpass(t)

contribution during a short period just after the hands-off instant.
→
RPassive(t) influence

was sharply replaced by RHact(t) and RVact(t) components, pointing out that swimmers
should focus on trunk and upper-limb rotations for proper steering position from the
beep until the post-hands-off instants. Following this critical instant, effective muscular
actions are essential to potentiate horizontal propulsion before take-off. These findings
might help coaches to improve resistance-training programs’ accuracy and select the proper

technical variant of start while considering swimmers’ body segments at the
→
RActive(t)

instants as major contributors for propulsion and, consequently, enhancing the overall
backstroke-start performance.
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