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Abstract: The design of a low-pass-frequency filter with the electronic change of the approxima-
tion characteristics of resulting responses is presented. The filter also offers the reconnection-less
reconfiguration of the order (1st-, 2nd-, 3rd- and 4th-order functions are available). Furthermore,
the filter offers the electronic control of the cut-off frequency of the output response. The feature
of the electronic change in the approximation characteristics is investigated for the Butterworth,
Bessel, Elliptic, Chebyshev and Inverse Chebyshev approximations. The design is verified by PSpice
simulations and experimental measurements. The results are also supported by the transient domain
response (response to the square waveform), comparison of the group delay, sensitivity analysis and
implementation feasibility based on given approximation. The benefit of the proposed electronic
change in the approximation characteristics feature (in general signal processing or for sensors in
particular) is presented and discussed for an exemplary scenario.

Keywords: Butterworth approximation; Bessel approximation; elliptic approximation; Chebyshev
approximation; current-mode; electronic adjustment; frequency filter; reconnection-less reconfiguration

1. Introduction

Active analog frequency filters represent an important part in sensor applications [1]
(electrocardiographic systems, phase-sensitive detection, biosensors, for instance). The
design procedure of (analog) frequency filters, as one of the fundamental building blocks
of many applications in various industry branches, deals with many inherent problems.
Frequency filters are implemented to approximate the ideal characteristic (immediate
turnover of pass-band area to stop-band area especially), since the ideal filter characteristics
in practice cannot be achieved. Thus, various approximations have been created in accor-
dance with the desired transfer properties of the filter [2]. These transfer properties can be
specified by the following criteria: (a) the steepness of the transition between the pass-band
and stop-band of the magnitude characteristics, (b) the linearity of the phase response,
(c) the flatness of the group delay, (d) the ripple of the magnitude characteristics in the
pass-band area, (e) the overshot of the step response, and (f) the sensitivity of individual
filter parameters in dependence on the selected approximation. Therefore, the proper
selection of the approximation is of great importance in the design procedure of a filter as it
fundamentally affects the resulting behavior of the filter and consequently the behavior
of the whole application [3]. Despite the existence of many various approximations, the
selection is usually limited to available standard approximations. In fact, the process of the
selection of a suitable approximation in active analog low-frequency (up to hundreds of
megahertz) filters, regardless of its importance, is often limited to the selection of the most
typical choice (i.e., Butterworth approximation).
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Some papers [4–8] have focused on the comparison of multiple approximations in
accordance with the above-mentioned criteria in search for the optimal filter design for
an intended solution. It is a well-known fact that better characteristics of the magnitude
response (the high steepness of the transition between the pass-band and stop-band area)
lead to the worse characteristics in the case of the time (the overshoot of the step response)
and phase (linearity of the phase response and flatness of the group delay) responses and
vice versa. Therefore, we usually look for some compromise or a specific characteristic
that is most important for us in a given scenario. We can identify typical frequency filters
having Butterworth approximation [9–13], filters having Bessel approximation [14–16],
filters having Elliptic (also called Cauer) approximation [17–19], filters having Chebyshev
approximation [20–23] and filters having Inverse Chebyshev approximation [24–26]. Con-
sidering the steepness of the transition between the pass-band and stop-band area of the
magnitude response, Elliptic and Chebyshev approximations are steepest. Bessel approxi-
mation offers the least-steep transition. Opposed to the highest steepness of Elliptic and
Chebyshev approximations, these approximations are characterized by the ripple in their
pass-band area, unlike Butterworth, Inverse Chebyshev and Bessel approximations. Bessel
approximation has the flattest group delay in contrast with the approximations with high
steepness (Elliptic and Chebyshev). Butterworth and Inverse Chebyshev approximations
show their average properties when it comes to the group delay response. Similarly, Bessel
approximation provides the best step-response results, with minimal overshots, at the
expense of the steepness of the transition in contrast to Elliptic and Chebyshev approxima-
tions. The average transient characteristics, again, are offered by Butterworth and Inverse
Chebyshev approximations [3].

From the proposed research [9–26], some circuit solutions [12,13,15] present more than
one filtering function. However, these functions are typically available from individual
circuits (each filter type has its own topology). Similarly, papers [14,16–18,25,26] has offered
the designs of various orders. However, each filter of a given order was proposed as a single-
purpose circuit (each filter was proposed as an individual topology). Only the solution
in [12] allows the reconfiguration of the type and order of the resulting filtering function
(from a single topology) by the implementation of a switching mechanism. Furthermore,
as evident from [9–26], the filters typically follow one particular approximation. This
approximation then determines the features of the filter and consequently the applicability
of the filter in accordance with the desired requirements of a particular application. Thus,
the possibility to select or modify (readjust) the approximation of the filter offers a wider
range of applicability of the filter and also an additional degree of freedom for the change
in the magnitude/phase/transient response.

The above-mentioned issues can be solved by so-called reconnection-less reconfig-
urable filters [27–36]. These filters are defined as two-port structures (containing one input
and one output terminal), where the resulting transfer function (type) is given by the elec-
tronic means. This concept originates from the reconnection-less reconfigurable frequency
filters working in microwave systems [27–32], where the reconfiguration of the transfer func-
tion is achieved by the electromagnetic coupling of elements. From the reconnection-less
reconfigurable frequency filters working in the microwave bands, the proposal in [30–32]
considers the possibility to change the approximation characteristics. The proposed filter
in [30] can change between a band-pass function of Chebyshev and Elliptic characteristics.
The solution in [31] provides a band-pass function with Butterworth characteristics and
a band-stop function with Chebyshev characteristics. The filter in [32] offers a possibility
to change between a band-pass function with Chebyshev and Elliptic characteristics. In
case of the low-frequency (up to hundreds of megahertz) reconnection-less reconfigurable
filters [33–36], the reconfiguration is performed by the setting of electronically controllable
parameters (continuous electronic control) of modern active elements rather than by switch-
ing between the inputs and/or outputs of a given filter, or any modification of the internal
topology of the filter. Therefore, the resulting transfer function can be changed by the
control DC current or voltage externally applied to a chip, instead of the switching or any
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topological modification of the internal structure (which is typically not possible in the case
of on-chip implementation). Moreover, the presence of the continuous electronic control
offers a feature of fine-tuning of the resulting function and the possible adjustment of the
stop-band/pass-band area. The filters in [33–35] provide the ability to change between
different types of the transfer function, while the solution in [36] can also change the order
(slope between pass and stop band) of the used transfer function.

The practical applications of adjustable and reconfigurable filters can be found in
wireless communication and cognitive radio environments, where these filters can be
helpful to radio systems in order to isolate signals of interest or attenuate interfering
signals depending on the current state of the cognitive environment, as demonstrated
in [30–32]. These filters usually can change their transfer function between band-pass and
band-stop or all-pass functions, or change their approximation type, as mentioned earlier.
The reconfigurable filters are also useful in adaptive filtering [37–40], where automatic
adjustment of standard and special transfer responses is welcomed. In addition, the
presented solution simplifies ways of design and the overall complexity used, for example,
in [37,38]. Adaptive filtering has benefits also for the preprocessing of a signal before analog-
to-digital conversion [39], as well as communication systems (interference cancellation) [40].

Table 1 provides a comparison of higher-order (>2) filters referenced in the introduction.
This table indicates the following disadvantages of the previously proposed filters:

• All designs focus only on the utilization of a single particular approximation type
(without considering the possibility of changing it).

• The electronic control of the pole (cut-off) frequency is available (considered) only in
papers [21–23].

• None of the designs offer the electronic control (reconnection-less reconfiguration) of
the order. Reference [12] offers the change in the order together with the change in the
type of the transfer function. Nonetheless, this is performed using mechanical switches.

• Only research discussed in [9,11,26] is also supported by the experimental measurements.

Table 1. Comparative summary of cited higher-order low-frequency filter designs.
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[9] 2019 Butterworth LP 5th 6/5 Yes/Yes VM No No No 1,2

[10] 2018 Butterworth BP 5th 5/35 Yes/No CM No No No 1,2

[11] 2018 Butterworth LP 5th 6/5 Yes/Yes VM No No No 1,2

[12] 2016 Butterworth LP, BP 1st, 2nd,
3rd 3/40 Yes/No VM No No No 1,2,3

[13] 2017 Butterworth LP, BP 3rd N/A Yes/No CM No No No 2,4

[14] 2020 Bessel LP 2nd–8th N/A Yes/No N/A No No No 2,5



Sensors 2023, 23, 8057 4 of 23

Table 1. Cont.
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[16] 2020 Bessel LP 4th N/A Yes/No N/A No No No 2,5

[17] 2018 Elliptic LP 3rd–5th – Yes/No VM No No No 2,5,6

[18] 2013 Elliptic LP 3rd, 4th – Yes/No VM No No No 2,7

[20] 2019 Chebyshev BP 6th 6/6 Yes/No VM No No No 1,2

[21] 2018 Chebyshev LP 4th 4/6 Yes/No VM Yes No No –

[22] 2021 Chebyshev BS 3rd 9/6 Yes/No CM Yes No No –

[23] 2020 Chebyshev HP 3rd 6/3 Yes/No CM Yes No No –

[25] 2016 Inv. Chebyshev BP 3rd N/A Yes/No VM No No No 8

[26] 2017 Inv. Chebyshev LP 3rd N/A Yes/Yes VM No No No 8

This
work –

Butterwoth, Bessel,
Elliptic,

Chebyshev, Inv.
Chebyshev

LP 1st, 2nd,
3rd, 4th 5/4 Yes/Yes CM Yes Yes Yes –

List of previously unexplained abbreviations used in Table 1: LP—low-pass, BP—band pass, BS—band stop,
HP—high-pass, VM—voltage mode, CM—current mode. Notes: 1 presented topology is fully differential,
2 electronic control of the pole (cut-off) frequency is not available or it is possible but not investigated and
presented, 3 structure can be reconfigured (change its order) by an array of switches, 4 design is CMOS-only,
5 simulations of the presented research are strictly numerical, 6 number of active/passive parts, depending on
the order, is 5/6, 12/8, 15/8, 7 number of active passive parts, depending on the order, is 3/10, 4/14 or 5/16,
8 presented filter is passive.

To the best of the authors’ knowledge, there has been no report of a low-frequency
current-mode filter offering the electronic change in the approximation characteristics. The
designed filter offers the feature of the electronic change in the used approximation (tested
for Butterworth, Bessel, Elliptic, Chebyshev and Inverse Chebyshev approximations) and
reconnection-less reconfiguration of the order (providing the low-pass function of the
1st, 2nd, 3rd and 4th order). The electronic adjustment of the cut-off frequency is also
possible. The proposal is verified by PSpice simulations together with the experimental
measurements of the implemented filter. The further analysis is focused on the comparison
of the features of the filter depending on the selected approximation.

2. Description of the Filter

The filtering topology, originally proposed in [36] for purposes of the fractional-order
current-mode reconnection-less reconfigurable low-pass filter of various orders, was suit-
ably applied to operate as a filter with a reconnection-less reconfiguration of its order and
electronic change in used approximation. The filter (Figure 1) was based on the 4th-order leap-
frog topology, employing four Operational Transconductance Amplifiers (OTAs) [41], one
current amplifier with independently controlled outputs (referred to as Individual Output
Gain Controlled Current Amplifier (IOGC–CA)) and four grounded capacitors.



Sensors 2023, 23, 8057 5 of 23

Sensors 2023, 23, x FOR PEER REVIEW 4 of 23 
 

 

[21] 2018 Chebyshev LP 4th 4/6 Yes/No VM Yes No No – 
[22] 2021 Chebyshev BS 3rd 9/6 Yes/No CM Yes No No – 
[23] 2020 Chebyshev HP 3rd 6/3 Yes/No CM Yes No No – 
[25] 2016 Inv. Chebyshev BP 3rd N/A Yes/No VM No No No 8 

[26] 2017 Inv. Chebyshev LP 3rd N/A Yes/Yes VM No No No 8 

This 
work 

– Butterwoth, Bessel, Elliptic, 
Chebyshev, Inv. Chebyshev 

LP 1st, 2nd, 
3rd, 4th 

5/4 Yes/Yes CM Yes Yes Yes – 

List of previously unexplained abbreviations used in Table 1: LP—low-pass, BP—band pass, BS—
band stop, HP—high-pass, VM—voltage mode, CM—current mode. Notes: 1 presented topology is 
fully differential, 2 electronic control of the pole (cut-off) frequency is not available or it is possible 
but not investigated and presented, 3 structure can be reconfigured (change its order) by an array of 
switches, 4 design is CMOS-only, 5 simulations of the presented research are strictly numerical, 6 
number of active/passive parts, depending on the order, is 5/6, 12/8, 15/8, 7 number of active passive 
parts, depending on the order, is 3/10, 4/14 or 5/16, 8 presented filter is passive. 

To the best of the authors’ knowledge, there has been no report of a low-frequency 
current-mode filter offering the electronic change in the approximation characteristics. 
The designed filter offers the feature of the electronic change in the used approximation 
(tested for Butterworth, Bessel, Elliptic, Chebyshev and Inverse Chebyshev approxima-
tions) and reconnection-less reconfiguration of the order (providing the low-pass function 
of the 1st, 2nd, 3rd and 4th order). The electronic adjustment of the cut-off frequency is 
also possible. The proposal is verified by PSpice simulations together with the experi-
mental measurements of the implemented filter. The further analysis is focused on the 
comparison of the features of the filter depending on the selected approximation. 

2. Description of the Filter 
The filtering topology, originally proposed in [36] for purposes of the fractional-order 

current-mode reconnection-less reconfigurable low-pass filter of various orders, was suit-
ably applied to operate as a filter with a reconnection-less reconfiguration of its order and 
electronic change in used approximation. The filter (Figure 1) was based on the 4th-order 
leap-frog topology, employing four Operational Transconductance Amplifiers (OTAs) 
[41], one current amplifier with independently controlled outputs (referred to as Individ-
ual Output Gain Controlled Current Amplifier (IOGC–CA)) and four grounded capaci-
tors. 

 
Figure 1. Designed low-pass filter with the ability of the reconnection-less reconfiguration of its 
order and used approximation based on the 4th-order leap-frog topology. 

The schematic symbol of the OTA and its used implementation is shown in Figure 
2a,b, respectively. The behavior of the OTA element can be described by the relation IOUT± 
= ±gm (VIN+ − VIN–), where gm denotes the transconductance of the OTA. The OTA in the filter 
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devices, working as the OTA, typically offer only one output, the implemented solution 
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Figure 1. Designed low-pass filter with the ability of the reconnection-less reconfiguration of its order
and used approximation based on the 4th-order leap-frog topology.

The schematic symbol of the OTA and its used implementation is shown in
Figure 2a,b, respectively. The behavior of the OTA element can be described by the relation
IOUT± = ±gm (VIN+ − VIN–), where gm denotes the transconductance of the OTA. The OTA
in the filter structure requires two outputs (of the opposite polarity). Since the commercially
available devices, working as the OTA, typically offer only one output, the implemented
solution was created by one LT1228 device [42] functioning as the OTA (gm tunable by
DC control current ISET_gm) and one EL4083 device [43] (it copies the output current of the
OTA and provides two currents of the opposite polarity). Both devices are commercially
available. When considering a significant sensitivity of transconductance on temperature
variations, external circuits generating the same bias current deviation caused by tempera-
ture can be used for auto-compensation of the gm temperature drift of the OTAs when the
ambient temperature variation is very large (automotive, military purposes of application).
However, based on the application field, the temperature variation expected in standard
room conditions has an insignificant impact on the performance of the OTA.
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Figure 2. Operational Transconductance Amplifier (OTA): (a) schematic symbol, (b) used implementation.

Figure 3 presents the schematic symbol and used implementation of the IOGC–CA
element. The IOGC–CA (this particular solution) is described by the relation IOUT = −Bi(IIN),
where Bi stands for the current gain of the individual output of this element; thus, i = {1, 2, 3, 4}.
The IOGC–CA provides the feature of the reconnection-less reconfiguration of the order of the
filter based on the setting of the current gains Bi. It is implemented by one Universal Current
Conveyor (UCC) [44], which is used to provide four copies of the input current (it works
as a current follower with two inverting and two non-inverting outputs) and four EL2082
devices [45] used to adjust the current gain of each output of the IOGC–CA (controllable by
DC control voltage VSET_B). There are also two additional OPA860 devices [46] (added in
order to invert the polarity of the currents so all available transfer functions have the same
polarity). Both EL2082 and OPA860 are commercially available. The UCC is not commercially
available; nonetheless, it could be implemented by three EL4083 devices or by a suitable
CMOS structure, for instance. The inner topology of the IOGC–CA in case of the CMOS
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structure could be simplified as the outputs of the UCC could be all designed with the same
polarity (inversion performed by the OPA860 devices would not be necessary).
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Figure 3. Individual Output Gain Controlled Current Amplifier (IOGC–CA): (a) schematic symbol,
and (b) used implementation.

The transfer function of the filter (Figure 1) is expressed as K(s) = N(s)/D(s), where

N(s) = B4(s3C1C2C3gm4 + s2C2C3gm1gm4 + sC3gm1gm2gm4+
+sC1gm2gm3gm4 + gm1gm2gm3gm4) + B3(s2C1C2gm3gm4+
+sC2gm1gm3gm4 + gm1gm2gm3gm4) + B2(sC1gm2gm3gm4+
+gm1gm2gm3gm4) + gm1gm2gm3gm4B1

, (1)

D(s) = s4C1C2C3C4 + s3C2C3C4gm1 + s2C3C4gm1gm2+
+s2C1C4gm2gm3 + s2C1C2gm3gm4 + sC2gm1gm3gm4+
+sC4gm1gm2gm3 + gm1gm2gm3gm4

. (2)

Equation (1) indicates clear dependence of the resulting order of the function on
the setting of current gains B1 to B4 cancelling corresponding terms of the numerator
if a specific current gain is set to zero. For instance, the 4th-order LP function will be
available when B1 = 1, B2 = B3 = B4 = 0. Also, the resulting filtering response can be
amplified if particular current gain B is higher than 1. Furthermore, the obtainment of
the selected approximation characteristics is achieved through the change in the values
of the transconductances, dependent on particular coefficients of the transfer function
(regarding the chosen approximation). Moreover, if the particular implementation of the
current amplifiers offers the analog (continuous) control of their current gain, this feature
can be used to adjust the pass-band gain of the output response (fine tuning) if the pass
band does not have the unity gain (is not exactly 0 dB due to inaccuracy of filter parameters
and values of passive parts).

3. General Design Verification

The design was verified using PSpice simulations and experimental measurements.
The simulations were performed using models in TSMC 0.18 µm CMOS technology. Used
models of OTA, the current amplifier and current follower can be found in [33,47,48]. The
transconductance of the OTA model and the current gain of the current amplifier model
were adjusted using a DC control current. The supply voltage of all used models was ±1 V.
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The practical implementation of individual active elements was performed by the UCC,
EL2082, EL4083, LT1228 and OPA860, as introduced in the previous section. The UCC, made
by Brno University of Technology, and the ON Semiconductor design center in I3T 0.35 µm
CMOS technology, used a supply voltage of ±1.65 V. The remaining used active elements
used a supply voltage of ±5 V. The measurement itself was performed by a network
analyzer Agilent 4395A utilizing voltage-to-current and current-to-voltage converters
constructed by OPA860 and OPA861 [49] devices. Figure 4 shows the implemented PCB of
the used filter.
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The design of the filters of a higher order (>2) is usually performed by the cascade
combination of individual 1st- and 2nd-order filters. For the direct design, coefficients of
the transfer function (coefficients b), depending on the chosen order and approximation,
have to be calculated [3]. In our case, the coefficients were calculated using a design tool
NAF [50] (or they can be obtained from tables with normalized coefficients of the transfer
function as in [3], for instance). The general 4th-order transfer function had the form given
by (3). The terms contained in the numerator may vary (based on filter type), as long as
the order of the highest polynomial term(s) is not higher than the order of the highest
polynomial in the denominator in order for the circuit to be stable. Coefficients b can then
be obtained based on chosen parameters such as the angular frequency, approximation,
steepness of the transition, etc., (the tolerance field) from design tables or NAF.

K(s) =
N(s)
D(s)

=
N(s)

b0 + b1s1 + b2s2 + b3s3 + b4s4 (3)

The following specification of the tolerance field for the calculation of the coefficients,
was used: approximation—(gradually) Elliptic, Butterworth, Chebyshev, Bessel and Inverse
Chebyshev, operational angular frequency, 300,000 rad/s (f 0 ≈ 47 kHz) (this frequency was
chosen considering the bandwidth limitations of the used active elements (5–10 MHz) so
there were at least two decades before the response was affected by parasitic characteristics);
ripple in the pass band (if any)—KP = 3 dB, stop-band frequency f S—3,000,000 rad/s
(470 kHz); transfer in stop band (KS)—depending on used approximation in order to create
the transfer function of a given order (4th-order) −84 dB (Elliptic), −77 dB (Butterworth),
−73 dB (Chebyshev), −65 dB (Bessel), and −73 dB (Inverse Chebyshev). Based on the
selected approximation, the coefficients of the transfer function were calculated, as stated
in Table 2.
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Table 2. Values of the coefficients of the transfer function for different approximations.
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b4 [–] 1

b3 [–] 1.736 × 105 7.844 × 105 1.745 × 105 1.421 × 106 7.895 × 105

b2 [–] 1.079 × 1011 3.076 × 1011 1.052 × 1011 9.091 × 1011 3.117 × 1011

b1 [–] 1.143 × 1016 7.068 × 1016 1.093 × 1016 3.015 × 1017 7.226 × 1016

b0 [–] 1.622 × 1021 8.119 × 1021 1.434 × 1021 4.286 × 1022 8.489 × 1021

The relations for the transconductances gm1 to gm4 can be expressed by the comparison
of individual terms of the denominator of the transfer function of the filter (2) and the
general transfer function of the 4th-order (3):

gm1 = b3C1, (4)

gm2 =
b2C1C2C3C4 − C1C2gm3gm4

C1C4gm3 + C3C4gm1
, (5)

gm3 = − C1C3C4b1gm1

C2
1C4b1 − C1C4b2gm1 − gm

2
1gm4

, (6)

gm4 =
C1C4b0(C1b1 − b2gm1)

C2
1b2

1 − C1b1b2gm1 + b0gm
2
1

. (7)

If choosing the values of capacitors C1 = C2 = C3 = C4 = 1 nF, the resulting values of
the transconductances (based on coefficients from Table 2) are given in Table 3.

Table 3. Values of the transconductances with regard to the selected approximation.
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gm1 [µs] 173.6 784.4 174.5 1421.4 789.5

gm2 [µs] 242.2 277.3 244.1 490.7 278.9

gm3 [µs] 112.6 190.3 118.7 307.4 189.9

gm4 [µs] 342.6 196.1 283.6 200.1 203.0

Figures 5–9 show the results (simulations denoted by black dashed lines and exper-
imental measurements presented by colored lines) of the output response of the filter
for all available orders gradually with Elliptic approximation characteristics (Figure 5),
Butterworth approximation characteristics (Figure 6), Chebyshev approximation charac-
teristics (Figure 7), Bessel approximation characteristics (Figure 8) and Inverse Chebyshev
approximation characteristics (Figure 9). The results show expected features of given ap-
proximations, such as the ripple in the pass-band area, in the case of responses with Elliptic
and Chebyshev approximation, the maximally flat pass-band area for Butterworth, Bessel
and Inverse Chebyshev approximations, a less steep transition between the pass-band and



Sensors 2023, 23, 8057 9 of 23

stop-band area in case of Bessel approximation, etc. The differences between the simulation
results and the experimental results (applies for all presented data in the paper) were
mainly caused by the parasitic/real characteristics of used active elements.
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signal being 1000 times smaller) is summarized in Table 6. Chebyshev and Elliptic approx-
imation reached this attenuation earlier (at frequency around 175 kHz). They were fol-
lowed by Butterworth and Inv. The Chebyshev approximation (around 265 kHz) and Bes-
sel approximation did not reach this attenuation until 390 kHz. Table 7 provides the infor-
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The magnitude and phase characteristics (simulations denoted by black dashed lines
and experimental measurements presented by colored lines) of the 4th-order (as the highest
order responses available in case of the proposal—the best example) output response are
shown in Figure 10, for a more direct comparison of the resulting steepness depending
on the used approximation. It is evident that the responses with Elliptic and Chebyshev
approximation characteristics had a greater steepness of their transition slopes, the But-
terworth and Inverse Chebyshev approximations provided average steepness, and the
smallest steepness of the magnitude response was obtained for Bessel approximation. The
results prove the intended feature of the reconnection-less reconfiguration of the used
approximation (electronic change in approximation). We can choose a better fitting slope
of the response based on the selected approximation if this characteristic is important for
our needs. The pole frequency for each approximation can be compared in Table 4. The
pole frequency slightly varied from 42.9 kHz to 49.6 kHz in the cases of the simulations
and 43.8 kHz to 47.2 kHz in the case of the measurement. The pole frequency of Bessel
approximation was at lower value in comparison to other approximations and Elliptic
approximation was at a higher frequency in comparison to other approximations. The
transfer in the stop band KS at the stop-band frequency f S (which was specified to be
470 kHz during the obtainment of the coefficients of the transfer function) can be compared
in Table 5. The Elliptic and Chebyshev approximations showed the highest attenuation at
this frequency. The smallest attenuation was obtained in the case of Bessel approximation.
In order to highlight the faster/slower transition between the pass-band and stop-band
area, the frequency of the attenuation reaching −60 dB (when considering the stop band
to be for the signal being 1000 times smaller) is summarized in Table 6. Chebyshev and
Elliptic approximation reached this attenuation earlier (at frequency around 175 kHz). They
were followed by Butterworth and Inv. The Chebyshev approximation (around 265 kHz)
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and Bessel approximation did not reach this attenuation until 390 kHz. Table 7 provides
the information about the ripple (its peak value) in the pass band. There was no ripple
in the case of the Butterworth, Bessel and Inv. Chebyshev approximations. Elliptic and
Chebyshev approximations showed similar peak values of their ripples, with the ripple
being more evident in the case of the measurement.
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Table 4. The pole frequency f 0 of the 4th-order LP function from Figure 10.

Approximation Simulations Measurement

Elliptic 49.6 kHz 47.2 kHz

Butterworth 44.1 kHz 45.2 kHz

Chebyshev 47.8 kHz 45.8 kHz

Bessel 42.9 kHz 43.8 kHz

Inv. Chebyshev 45.3 kHz 45.9 kHz

Table 5. The transfer in stop band KS at the stop-band frequency f S (470 kHz) of the 4th-order LP
function from Figure 10.

Approximation Simulations Measurement

Elliptic −92.9 dB −97.6 dB

Butterworth −79.4 dB −77.8 dB

Chebyshev −94.0 dB −84.8 dB

Bessel −65.2 dB −68.0 dB

Inv. Chebyshev 79.1 dB −75.4 dB

Table 6. The stop-band frequency f S if the transfer in stop band KS = −60 dB of the 4th-order LP
function from Figure 10.

Approximation Simulations Measurement

Elliptic 184 kHz 174 kHz

Butterworth 268 kHz 258 kHz

Chebyshev 177 kHz 170 kHz

Bessel 405 kHz 390 kHz

Inv. Chebyshev 270 kHz 257 kHz
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Table 7. The ripple in the pass band (peak value) of the 4th-order LP function from Figure 10.

Approximation Simulations Measurement

Elliptic 1.5 dB 3.1 dB

Butterworth - -

Chebyshev 1.3 dB 3.0 dB

Bessel - -

Inv. Chebyshev - -

4. Further Analysis and Comparison

The simulation and experimental results provided in this section were carried out
using the same setup as described in the previous section (unless stated otherwise).

4.1. Electronic Adjustment of the Cut-off Frequency

The electronic adjustment of the cut-off frequency was achieved by the change in
the values of transconductances gm1 to gm4, as long as the ratio between them remained
unchanged so it did not affect the approximation features and the value of the quality
factor. This was tested in case of the 4th-order function with Butterworth characteristics for
three settings of the desired (theoretical) f 0 (23.5 kHz, 47 kHz and 94 kHz). The resulting
values of the transconductances in relation to the selected value of f 0 are summarized
in Table 8. The results of the electronic adjustment of the cut-off frequency are depicted
in Figure 11 and compared in Table 9. The intended electronic adjustment operated as
expected without an influence on the characteristics of the used approximation or the value
of the quality factor.

Table 8. Values of the transconductances depending on the selected value of the cut-off frequency.

Theoretical f 0 [kHz] 23.5 47.0 94.0

gm1 [µs] 386.1 784.4 1544.3

gm2 [µs] 136.5 277.3 546.0

gm3 [µs] 93.7 190.3 374.7

gm4 [µs] 96.5 196.1 386.1
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Table 9. Theoretical, simulated and measured cut-off frequencies based on selected values of
transconductances.

Theoretical f 0 [kHz] 23.5 47.0 94.0

Simulated f 0 [kHz] 22.3 46.6 92.9

Measured f 0 [kHz] 20.9 45.2 94.9

4.2. Response to the Square Waveform

The behavior of the filter in the time domain depending on the used approximation
was evaluated for the square waveform input signal in order to investigate the overshot
of the step response. The results were provided only in the case of the simulations, as
the current responses (for the measurements) would be rather difficult to acquire without
proper equipment. The input (square) signal had its amplitude set to 15 µA with a frequency
of 1 kHz. Figure 12 presents the output responses (colored traces) to the input signal (black
trace), including a detail of the overshot in case of the rising edge. The filter worked in
the time domain as expected, depending on the configuration of the reconnection-less
reconfiguration of a given approximation. The Elliptic approximation had the greatest
overshot in response to the unity step followed by Chebyshev approximation. The response
with Bessel approximation characteristics had the most flat unity step response with
the smallest overshot. Table 10 compares the settling time based on the approximation.
Bessel approximation showed the shortest settling time, as expected. The settling times
of Butterworth and Inverse Chebyshev approximations were close to each other, and
they are slightly longer than in case of Bessel approximation. Chebyshev and Elliptic
approximations show the most significant settling times from all tested approximations,
with Elliptic approximation as the longest. This behavior follows features expected from
magnitude and phase characteristics. By electronic means, we can choose approximation
characteristics with a smaller overshot if the application is more sensitive to stability issues.

Figure 12. Transient domain response onto a square waveform input signal of 15 µA amplitude and
a frequency of 1 kHz.

Table 10. The overshot settling time of the unity step response from Figure 12.

Approximation Simulations

Elliptic 317 µs

Butterworth 83 µs

Chebyshev 257 µs

Bessel 59 µs

Inv. Chebyshev 77 µs
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4.3. Group Delay-Response Results

Since the group delay characteristics are associated with the linearity of the phase
responses and analogically with the step response results, the response with Bessel ap-
proximation was the one with a minimum deviation from the constant group delay time
in the pass-band area. Furthermore, Elliptic and Chebyshev approximation showed the
worst group delay properties from used approximations, and Butterworth and Inverse
Chebyshev approximations offered relatively small ripples in the group delay responses to
the pass-band area, as demonstrated by Figure 13. The peak values of the group delay of
individual approximations can be compared in Table 11. The Bessel showed no ripple, with
the highest value of 0.7 µs in the case of the simulations and 0.8 µs for the measurement.
The peak value of Butterworth and Inv. Chebyshev approximations reached around 1.3 µs.
The Elliptic approximation showed a lower ripple than the Chebyshev approximation,
which exhibited the largest ripple in group delay. The group delay responses were provided
for the 4th-order function.

Figure 13. Comparison of the experimental measurements of the group delay responses of used
approximations.

Table 11. Group delay (Peak Value) of the group delay response from Figure 13.

Approximation Simulations Measurement

Elliptic 3.3 µs 2.6 µs

Butterworth 1.3 µs 1.2 µs

Chebyshev 3.5 µs 3.0 µs

Bessel 0.7 µs 0.8 µs

Inv. Chebyshev 1.4 µs 1.3 µs

4.4. Sensitivity Analysis

A certain inaccuracy (impedance, offset, etc.) of individual outputs of used active
elements, together with the tolerance of used passive parts, can cause a significant deviation
in the resulting transfer function. Since each approximation will lead to different values
of used transconductances and thus, it might lead (depending on the implementation) to
different values of output impedances of used active elements interacting with each other;
the sensitivity of individual parameters of the filter will vary depending on the currently
used approximation. Therefore, an analysis of the subsequent sensitivity functions in
relation to the used approximation can prove useful. Based on the above-mentioned, the
real transfer function of the filter consists of 16 individual parameters (C1, C2, C3, C4, gm11,
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gm12, gm21, gm22, gm31, gm31, gm41, gm42, B1, B2, B3 and B4). Parameters gm11, gm12, gm21, gm22,
gm31, gm31, gm41, gm42 represent individual outputs of OTAs and parameters B1, B2, B3 and
B4 then stand for the outputs of the IOGC–CA element. Considering all these parameters,
the real transfer function takes form of Kreal(s) = Nreal(s)/Dreal(s), where

Nreal(s) = s3C1C2C3gm42B4+
+s2(C1C2gm32gm42B3 + C2C3gm11gm42B4)+
+s(C1gm22gm32gm42B2 + C2gm11gm32gm42B3+
+C3gm12gm21gm42B4 + C1gm22gm31gm42B4)+
+gm12gm22gm32gm42B1 + gm11gm22gm32gm42B2+
+gm12gm21gm32gm42B3 + gm11gm22gm31gm42B4

, (8)

Dreal(s) = s4C1C2C3C4+
+s3C2C3C4gm11 + s2(C1C4gm22gm31+
+C1C2gm32gm41 + C3C4gm12gm21)+
+s(C4gm11gm22gm31 + C2gm11gm32gm41)+
+gm12gm21gm32gm41

. (9)

The relative sensitivity function (magnitude) of the filter in relation to the variation of
the individual parameters can be described as [51]

S|K(jω)|
qi = Re

{
S|K(jω)|

qi

}
(10)

where K(jω) is the transfer of the filter and qi represents ith parameter of the filter. The
mathematical expression of individual sensitivities was calculated using Maple software.

Figures 14–18 depict the relative sensitivities of individual parameters within a whole
analyzed frequency range (100 Hz to 100 MHz) for the given approximations. The sen-
sitivity analysis of the complete transfer function (all current gains B were set to one) is
performed so it includes the results for all parameters. It can be seen that the sensitivities
reached typical values (sensitivity around 1), with the highest values around the desig-
nated cut-off frequency (f 0 = 47 kHz). Elliptic and Chebyshev approximations showed
higher sensitivities (the most sensitive parameters in general were C1 and C3 reaching over
2 and −3 around f 0). It is evident that the sensitivities for Butterworth, Bessel and Inverse
Chebyshev approximations are slightly lower.
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transfer function with Butterworth approximation characteristics.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 15. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Butterworth approximation characteristics. 

 
Figure 16. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Chebyshev approximation characteristics. 

 
Figure 17. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Bessel approximation characteristics. 

Figure 16. Relative sensitivity functions of magnitude response on individual filter parameters of the
transfer function with Chebyshev approximation characteristics.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 15. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Butterworth approximation characteristics. 

 
Figure 16. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Chebyshev approximation characteristics. 

 
Figure 17. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Bessel approximation characteristics. 

Figure 17. Relative sensitivity functions of magnitude response on individual filter parameters of the
transfer function with Bessel approximation characteristics.



Sensors 2023, 23, 8057 17 of 23Sensors 2023, 23, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 18. Relative sensitivity functions of magnitude response on individual filter parameters of 
the transfer function with Inv. Chebyshev approximation characteristics. 

4.5. General Comparison of the Values of Resulting Transconductances 
All used values of transconductances (regarding selected approximation) are sum-

marized in Table 3. It can be seen that Elliptic and Chebyshev approximations require 
lower values of the transconductances than the remaining approximations. The highest 
value of used transconductances for a given setting (f0 = 47 kHz and selected values of 
capacitors) for Elliptic approximation was 342.6 µs and was 283.6 µs in the case of Cheby-
shev approximation. Butterworth and Inverse Chebyshev characteristics required similar 
values of transconductances (the highest value for Butterworth was 784.4 µs and was 789.5 
µs for Inverse Chebyshev approximation, which was approximately two times larger than 
in the case of Elliptic and Chebyshev approximations). Bessel approximation was charac-
terized by the highest required values of the transconductances (the highest used value 
was 1421.4 µs, which was double the value of transconductance used in Butterworth and 
Inverse Chebyshev approximations and four times the value required for Elliptic and Che-
byshev approximations). Considering typical implementation limits and the related fab-
rication issues of CMOS structures and commercially available solutions of the OTA ele-
ment, the maximal (usually) obtainable value of the transconductance was around 1 ms 
for modern integrated CMOS designs and 10–50 ms for BJT commercially available de-
vices. Therefore, from the implementation aspects, Elliptic and Chebyshev approxima-
tions came out as more advantageous ones. Moreover, we need to keep in mind that, in 
case of the adjustment of the cut-off frequency, the value of transconductances is twice as 
much if the value of cut-off frequency is doubled (see Table 8). This fact creates more re-
stricted limits of the cut-off-frequency adjustment in cases of approximations with higher 
required values of resulting transconductances. 

5. Filter Utilization 
The filter has to be able to process different types of signals from simple shapes to 

more complex ones. In this case, various approximations can be found more suitable for 
specific types of signals. Therefore, in order to point out a beneficial feature of the elec-
tronic change in the approximation, the following situation is considered: the proposed 
filter will be tested for two types of processed input signal. The first signal is of a simple 
shape (sine–wave signal with a low number of spectral components (if slightly dis-
torted/not ideal)), in comparison to the second signal, having more complex shape (ramp 
signal consisting of multiples and combinations of spectral components). Furthermore, 
the processed (useful) signal is affected by noise. Figure 19 depicts the time-domain rep-
resentation and spectrum of the ramp signal (of a frequency of 20 kHz and an amplitude 
equal to 200 mV peak-to-peak) together with a signal affected by noise (1 V peak-to-peak 
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4.5. General Comparison of the Values of Resulting Transconductances

All used values of transconductances (regarding selected approximation) are sum-
marized in Table 3. It can be seen that Elliptic and Chebyshev approximations require
lower values of the transconductances than the remaining approximations. The highest
value of used transconductances for a given setting (f 0 = 47 kHz and selected values of
capacitors) for Elliptic approximation was 342.6 µs and was 283.6 µs in the case of Cheby-
shev approximation. Butterworth and Inverse Chebyshev characteristics required similar
values of transconductances (the highest value for Butterworth was 784.4 µs and was
789.5 µs for Inverse Chebyshev approximation, which was approximately two times larger
than in the case of Elliptic and Chebyshev approximations). Bessel approximation was
characterized by the highest required values of the transconductances (the highest used
value was 1421.4 µs, which was double the value of transconductance used in Butterworth
and Inverse Chebyshev approximations and four times the value required for Elliptic and
Chebyshev approximations). Considering typical implementation limits and the related
fabrication issues of CMOS structures and commercially available solutions of the OTA
element, the maximal (usually) obtainable value of the transconductance was around 1 ms
for modern integrated CMOS designs and 10–50 ms for BJT commercially available devices.
Therefore, from the implementation aspects, Elliptic and Chebyshev approximations came
out as more advantageous ones. Moreover, we need to keep in mind that, in case of the
adjustment of the cut-off frequency, the value of transconductances is twice as much if the
value of cut-off frequency is doubled (see Table 8). This fact creates more restricted limits
of the cut-off-frequency adjustment in cases of approximations with higher required values
of resulting transconductances.

5. Filter Utilization

The filter has to be able to process different types of signals from simple shapes to
more complex ones. In this case, various approximations can be found more suitable for
specific types of signals. Therefore, in order to point out a beneficial feature of the electronic
change in the approximation, the following situation is considered: the proposed filter will
be tested for two types of processed input signal. The first signal is of a simple shape (sine–
wave signal with a low number of spectral components (if slightly distorted/not ideal)), in
comparison to the second signal, having more complex shape (ramp signal consisting of
multiples and combinations of spectral components). Furthermore, the processed (useful)
signal is affected by noise. Figure 19 depicts the time-domain representation and spectrum
of the ramp signal (of a frequency of 20 kHz and an amplitude equal to 200 mV peak-
to-peak) together with a signal affected by noise (1 V peak-to-peak and a bandwidth of
10 MHz). The time-domain waveform and spectrum of the sine signal (of a frequency of
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20 kHz and an amplitude equal to 150 mV peak-to-peak), together with a signal affected by
noise (with the same parameters as in previous case), is presented in Figure 20.
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For the purposes of the demonstration, the 4th-order filtering function (f 0 = 47 kHz)
was used with Bessel, Butterworth and Elliptic approximations chosen as representative
examples. The transfer (attenuation) of the used V/I, I/V converters was approximately
–12 dB. Figures 21–23 subsequently show the output (filtrated) signal and its spectrum
when the electronic change in the approximation was set to Bessel, Butterworth and Elliptic
approximation characteristics. When the Butterworth and Elliptic approximation was used
in order to process the ramp signal, it can be seen that the filtered signal had a significant
deformation of its shape. This was caused by the fact that the transition between the
pass-band and stop-band area of the function with Butterworth and Elliptic approximation
characteristics was steeper than for the Bessel approximation, resulting in higher spectral
components of the useful signal being partially filtered out as well. Therefore, for the more
complex signal (shape), we should consider approximations with a less steep transition
between the pass-band and stop-band area. On the other hand, when processing a simple
signal (sine waveform in this case), we can select an approximation with a steeper transition
between pass-band and stop-band area for better filtration of the noise without the signal
shape deformations. This could be, of course, solved by changing the order of the filter.
Nonetheless, it means more additional stages of the building blocks (integrators) in a
cascade when a topological modification (increasing circuit complexity if not considering
the reconnection-less reconfiguration) would be necessary. Extended complexity would
also mean additional power consumption as well as additional chip area. When using the
electronic change in the approximation characteristics, the steepness of the function can be
easily adapted for the specific type of the processed signal.
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6. Conclusions

The proposed filter offers the electronic change in the approximation characteristics,
reconnection-less reconfiguration of the order and the electronic adjustment of the cut-off
frequency. The performance of this filter was verified through PSpice simulations and
experimental measurements, proving the presence and intended function of all above-
mentioned features (see Figures 5–13 and corresponding text).

The advantages of the presented filter are the following:

• The reconnection-less reconfiguration of the order (higher-order filters of different
orders are usually designed as individual circuits or the solution contains electronic
switches—the disadvantages of electronic switches was discussed in the introduction);

• The ability to electronically change approximation characteristics;
• The ability of fine tuning (adjusting the pass-band area);
• The electronic adjustment of the pole frequency.

The above-mentioned features provide additional degrees of freedom for the filter
and its adjustment based on the application. With these features, the filter can adapt
to a changing situation and requirements such as sensors, wireless communication and
cognitive radio environments, where a change in the filtering function might be necessary.
Standard filtering approaches and multifunctional filters do not allow these features.

The electronic change in the approximation characteristics can be useful in order to
influence the resulting behavior of the filter when searching for the optimal characteristics
for intended application or based on the processed signal. Based on this fact, the proposed
filter offers the possibility to choose the most fitting characteristics when focusing on a
particular feature (magnitude characteristics, transient domain features, implementation
requirements and limitations, etc.). For instance, the steepness of the transition between
the pass-band area and stop-band area can be adjusted without having to add another
integrator in a cascade, as topology modification might not be possible (in the case of
on-chip implementation). As another example, the approximation with smaller overshots
of the step response can be used for applications which are more sensitive when it comes
to their stability. All this can be achieved from one topology that offers the electronic
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adjustment of its approximation characteristics, which can be more freely adjusted for
particular needs of a given application, or that can be adjusted anytime during the lifespan
if the parameters of the application change or deteriorate. Another possible use of this
ability to change the approximation characteristics of the filter could be served in case
of sensors, where the conditions for the signal change often and the ability to change
the approximation characteristics can be used depending on the current situation in or-
der to decrease the noise in the processed signal. Particular benefits of the electronic
change in the approximation characteristics were discussed and an example was presented
(see Figures 21–23).
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37. Paulů, F.; Hospodka, J. New concept of analogue adaptive filter based on fully analogue artificial neural network. In Proceedings
of the 2022 New Trends in Signal Processing (NTSP), Liptovský Mikuláš, Slovakia, 12–14 October 2022; pp. 1–4. [CrossRef]

38. Hasler, J. A Programmable Adaptive-Q BPF Circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 1–11. [CrossRef]
39. Luo, Y.; Heng, C.H. A mixed-signal adaptive filter for level-crossing analog-to-digital converter. In Proceedings of the 2017 IEEE

International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]
40. Liao, W.S.; Zhao, O.; Li, K.; Kawasaki, H.; Matsumura, T. Implementation of In-Band full-duplex communication system with self-

interference cancellation using adaptive filter. In Proceedings of the 2023 VTS Asia Pacific Wireless Communications Symposium
(APWCS), Tainan City, Taiwan, 24–26 August 2023; pp. 1–5. [CrossRef]

41. Biolek, D.; Senani, R.; Biolkova, V.; Kolka, Z. Active elements for analog signal processing: Classification, Review, and New
Proposals. Radioengineering 2008, 17, 15–32.

42. Linear Technology, LT1228 Current Feedback Amplifier with DC Gain Control (Datasheet). 2012. Available online: http:
//cds.linear.com/docs/en/datasheet/1228fd.pdf (accessed on 31 January 2023).

https://doi.org/10.1109/MWSCAS48704.2020.9184590
https://doi.org/10.1109/TSP.2018.8441280
https://doi.org/10.1002/cta.1827
https://doi.org/10.1016/j.aeue.2019.152930
https://doi.org/10.1109/APCCAS.2018.8605626
https://doi.org/10.1109/ECTI-CON51831.2021.9454922
https://doi.org/10.1109/TSP49548.2020.9163437
https://doi.org/10.1109/NEWCAS.2018.8585488
https://doi.org/10.1002/cta.2216
https://doi.org/10.1109/TMTT.2017.2716940
https://doi.org/10.1109/LMWC.2019.2892846
https://doi.org/10.1049/iet-map.2018.5430
https://doi.org/10.1109/TMTT.2017.2716931
https://doi.org/10.1109/LMWC.2010.2045581
https://doi.org/10.1109/ICIAS.2012.6306185
https://doi.org/10.1109/TMTT.2010.2086533
https://doi.org/10.5755/j01.eee.20.6.7272
https://doi.org/10.5755/j01.eee.21.3.10205
https://doi.org/10.1109/Radioelek.2014.6828462
https://doi.org/10.1016/j.jare.2020.06.022
https://www.ncbi.nlm.nih.gov/pubmed/32922992
https://doi.org/10.23919/NTSP54843.2022.9920436
https://doi.org/10.1109/TCSI.2023.3292151
https://doi.org/10.1109/ISCAS.2017.8050872
https://doi.org/10.1109/APWCS60142.2023.10234051
http://cds.linear.com/docs/en/datasheet/1228fd.pdf
http://cds.linear.com/docs/en/datasheet/1228fd.pdf


Sensors 2023, 23, 8057 23 of 23

43. Intersil (Elantec), EL4083 CN Current–Mode Multiplier (Datasheet). 1996. Available online: https://datasheetspdf.com/pdf-file/
1437107/Intersil/EL4083/1 (accessed on 31 January 2023).

44. UCC–N1B—Universal Current Conveyor (UCC) and Second–Generation Current Conveyor (CCII+/–) (Datasheet), Brno Univer-
sity of Technology, Czech Republic. 2010. Available online: http://www.utko.feec.vutbr.cz/~koton/soubory/ucc_n1b_rev0.pdf
(accessed on 31 January 2023).

45. Intersil (Elantec), EL2082 CN Current–Mode Multiplier (Datasheet). 1996. Available online: http://pdf.datasheetcatalog.com/
datasheet/elantec/EL2082CN.pdf (accessed on 31 January 2023).

46. Texas Instruments—OPA860—Wide Bandwidth Operational Transconductance Amplifier (Datasheet). 2008. Available online:
http://www.ti.com/lit/ds/symlink/opa860.pdf (accessed on 31 January 2023).

47. Jerabek, J.; Sotner, R.; Vrba, K. General current–mode filtering structure with controllable current active elements. In Proceedings
of the 2013 36th International Conference on Telecommunications and Signal Processing (TSP), Rome, Italy, 2–4 July 2013;
pp. 402–406. [CrossRef]

48. Jerabek, J.; Sotner, R.; Vrba, K. Electronically Adjustable Triple–Input Single–Output Filter with Voltage Differencing Transcon-
ductance Amplifier. Rev. Roum. Sci. Tech.–El. 2015, 59, 163–172.

49. Texas Instruments—OPA861—Wide Bandwidth Operational Transconductance Amplifier (Datasheet). 2013. Available online:
http://www.ti.com/lit/ds/symlink/opa861.pdf (accessed on 31 January 2023).

50. Hajek, K.; Sedlacek, J. NAFID program as powerful tool in filter education area. In Proceedings of the Conference CIBLIS’97,
Leicester, UK, 1997. PK–4 1–10.

51. Chen, W.K. The Circuits and Filters Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://datasheetspdf.com/pdf-file/1437107/Intersil/EL4083/1
https://datasheetspdf.com/pdf-file/1437107/Intersil/EL4083/1
http://www.utko.feec.vutbr.cz/~koton/soubory/ucc_n1b_rev0.pdf
http://pdf.datasheetcatalog.com/datasheet/elantec/EL2082CN.pdf
http://pdf.datasheetcatalog.com/datasheet/elantec/EL2082CN.pdf
http://www.ti.com/lit/ds/symlink/opa860.pdf
https://doi.org/10.1109/TSP.2013.6613962
http://www.ti.com/lit/ds/symlink/opa861.pdf

	Introduction 
	Description of the Filter 
	General Design Verification 
	Further Analysis and Comparison 
	Electronic Adjustment of the Cut-off Frequency 
	Response to the Square Waveform 
	Group Delay-Response Results 
	Sensitivity Analysis 
	General Comparison of the Values of Resulting Transconductances 

	Filter Utilization 
	Conclusions 
	References

