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Abstract: During industrial production activities, industrial products serve as critical resources whose
performance is subject to various external factors and usage conditions. To ensure uninterrupted
production processes and to guarantee the safety of the production personnel, a real-time analysis of
the industrial product quality and subsequent decision making are essential. Conventional detection
methods have inherent limitations in meeting the real-time demands of processing large volumes of
data and achieving high response speeds. For instance, the regular inspection and maintenance of
cars can be time-consuming and labor-intensive if performed manually. Furthermore, monitoring
the damage situation of bearings in real time through a manual inspection may lead to delays and
may hinder production efficiency. Therefore, this paper presents online machine-learning-based
methods to address these two practical problems and simulates them on various datasets to meet
the requirements of efficiency and speed. Prior to being fed into the network for training, the data
undergo identity parsing to transform them into easily identifiable streaming data. The training
process demonstrates that online machine learning ensures timely model updates as small batches of
data are sent to the network. The test results indicate that the online learning method exhibits highly
stable and effective performance, optimizing the training process.

Keywords: industrial product quality analysis; identity parsing; online machine learning

1. Introduction

Industrial products purchased for processing or business operations play a crucial
role in both daily life and production. The quality of these industrial products directly
impacts the efficiency and overall quality of the production process. Therefore, even a slight
deviation in their condition cannot only reduce their lifespan but can also pose potential
risks to the safety of the production personnel, leading to irreparable losses. Moreover, any
product malfunction indicates underlying issues with both the manufacturing processes
and quality control in the industry, which can result in significant social problems and
adverse effects. Hence, the timely evaluation of their quality is crucial and imperative.

Industrial products and their application environments require tailored solutions to
meet their specific needs. As a pivotal industrial product and an indispensable vehicle in
contemporary society, the automobile serves multifarious functions, such as facilitating
transportation, reducing travel time, and ensuring travel quality. There are numerous indi-
cators that can be assessed for any vehicle, including the interconnectivity of its body-frame
components, the performance of its associated locomotive mechanism, and the proper
functioning of its electrical components [1]. These factors directly impact the vehicle’s
price assessment, classification, and future usability. In practical production and appli-
cation processes, the indicators that can be taken into consideration are more intricate
and diverse. Additionally, given the extensive number of vehicles involved, meeting the
real-time requirements for both production and safety inspections through conventional
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methods poses significant challenges. The literature [2] presents a systematic model for
evaluating internet cars where user evaluations are analyzed using feature extraction and
LSTM, while the overall training process incorporates DCGAN. This approach enables the
utilization of internet-based model evaluations as a reference for car buyers and facilitates
product optimization for automotive companies. The literature [3] presents a framework
that enables the assessment of autonomous vehicles’ condition and their surrounding
environment in real-world scenarios. The proposed framework encompasses a range of
software and hardware facilities along with a complete set of systems comprising the
environmental perception layer, behavioral decision-making layer, and motion planning
layer. The effectiveness of this framework has been validated through its application to
two natural driving datasets encompassing both typical driving situations and high-risk
scenarios. The literature [4] proposes an accelerated evaluation concept through the uti-
lization of piecewise mixture distribution models. The test results demonstrate that this
approach reduces the evaluation time and significantly enhances accuracy and efficiency.
Furthermore, in addition to the overall assessment of a vehicle’s condition, there exist
various methodologies for evaluating the specific indicators pertaining to different types of
vehicles. In the literature [5], two approaches, namely, subjective and objective methods,
have been proposed to analyze their correlation and to evaluate the comfort level of a
vehicle based on diverse feedback from both drivers and vehicles. The literature [6] has
developed an intelligent connected vehicle (ICV) information collection system platform for
monitoring the driving state of intelligent vehicles. It utilizes an immune algorithm model
to analyze and evaluate real-time driving data. The experimental results demonstrate that
the evaluation outcomes align with actual states, indicating the feasibility and effectiveness
of this approach. In the realm of autonomous vehicles, the literature [7] proposes a novel
evaluation approach that integrates chassis-domain modeling with spatiotemporal signal
analysis during driving to establish a connection to the overall vehicle performance, en-
compassing safety and comfort. For long combination vehicles (LCVs), the literature [8]
proposes a novel evaluation method for dynamic stability based on simulation experi-
ments. This study aims to investigate the underlying factors contributing to the divergent
outcomes observed across various evaluation methods.

The bearing is a crucial component of modern industrial equipment, serving the
primary function of providing support to mechanical rotating bodies, reducing friction
coefficients during movement, and ensuring rotational accuracy [9,10]. The precision,
performance, lifespan, and reliability of bearings are all vital in the production process. In
industry settings, bearings are considered high-precision products that require comprehen-
sive support from various disciplines, such as mathematics and physics alongside material
science, heat treatment technology, precision machining and measurement technology, and
numerical control technology, with effective numerical methods supported by powerful
computer technologies to serve them effectively. Therefore, the fault diagnosis of bearings
plays a pivotal role in assessing the manufacturing quality, while studying bearing fault
diagnosis techniques remains critical. The current methodology for diagnosing bearing
faults primarily relies on the utilization of the CWRU dataset. The literature [11] proposes a
WDCNN algorithm that utilizes the original time signal from the CWRU dataset as an input
and employs a large-size convolution kernel in the first convolution layer to effectively
suppress high-frequency noise. Subsequently, smaller convolution kernels are utilized for
multilayer nonlinear mapping, ultimately achieving a nearly 100% classification accuracy.
In the field of bearing defect diagnosis and spectrogram creation, a novel approach is
introduced in the literature [12] to effectively reduce input data dimensionality and to
optimize the model structure by downsampling vibration sensor signals. This specific
method employs a lightweight CNN model with fixed feature map dimensions, resulting
in a high classification accuracy with low-dimensional input data. In the literature [13], a
TCNN network, also known as ResNet-50, is introduced with 51 convolutional layers. The
research proposes a method to convert the time-domain signal of the CWRU dataset into
the RGB image format for the network input, resulting in an impressive testing accuracy
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rate of 99.99%. The literature [14] proposes an enhanced neural network model based on
AlexNet, which effectively addresses the overfitting issue commonly encountered in deep
neural networks through the utilization of transfer learning. An impressive classification
accuracy of 99.7% is achieved on the CWRU dataset using their method. The literature [15]
addresses the challenges of irreversible demagnetization faults and bearing faults by em-
ploying the transfer learning method and VGG-16 network, utilizing the pretrained VGG-16
parameters from ImageNet. As a result, it achieves an impressive accuracy rate of 96.65%
in fault classification. The literature [16] introduces a convolutional neural network called
TICNN, which integrates training interference to enhance bearing fault detection. The
results demonstrate the algorithm’s robust adaptability to diverse environments and its
effective performance in noisy settings without prior noise reduction.

Considering the aforementioned factors, numerous contemporary algorithms demon-
strate an almost perfect recognition accuracy of nearly 100% on both the car evaluation
dataset employed in vehicle quality detection and the CWRU dataset utilized in bearing
fault classification. Therefore, it is imperative to shift our focus towards the practical
implementation of these methods rather than solely pursuing the improvement of the
algorithm [17,18]. Consequently, we have resolved to evaluate the industrial product
quality through online machine learning, which can efficiently detect real-time issues while
being better suited for actual environments. The primary contributions of this paper are
as follows:

• The quality issues of industrial products, such as cars and bearings, are effectively
addressed through the implementation of an online machine learning method and are
verified on relevant datasets;

• After undergoing data preprocessing and identification analysis, the pertinent datasets
are inputted into the network to enhance the comprehensiveness of the extracted
features and to improve the accuracy of the prediction results;

• The initial WDCNN model is adapted to better suit the online machine learning
requirements;

• Python’s deep river package is utilized to train and predict neural networks in an
online learning manner.

This paper is organized as follows: Section 2 provides an introduction to the method of
online machine learning, specifically focusing on the FTRL algorithm, the deep river library,
the description of the dataset, and the proposed solutions; Section 3 provides the com-
prehensive experimental data and comparisons with various verified methods; Section 4
analyzes and discusses the experimental results as well as the virtues and weakness of our
method; and Section 5 concludes our work. The full-text flow chart is shown in Figure 1.
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Figure 1. The full-text flow chart.

2. Methods of Online Machine Learning
2.1. Online Machine Learning

The concept of online machine learning does not refer to a specific model but rather
signifies a method for training models. The process of online learning diverges from offline
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learning or batch learning. In traditional training methods, the model’s update cycle is
relatively lengthy once it goes online. Additionally, the model remains static and lacks
interaction under real-time situations. If a prediction is erroneous, correction can only
take place during the subsequent update iteration. However, in online learning, training
samples are sequentially inputted into an algorithm, and each sample is utilized only once
and is used separately for the training and testing processes, eliminating the necessity to
accumulate all the training samples for simultaneous learning [19–24]. More specifically,
the method of online machine learning initially focused on addressing logistic regression
problems. In the context of logistic regression, overfitting can be prevented by minimizing
the structural risk, which is so-called regularization, as well as optimizing the loss function.
The logistic regression problem at hand can be expressed in two distinct forms. One is the
unconstrained optimization form of soft regularization formulation, which is represented
by the following formula:

Ŵ = arg min
W

n

∑
i=1

L(W, zi) + g‖W‖1 (1)

The other is the convex optimization problem with constraints, whose formula is
as follows:

h(X) = −
∫ b

a
f (x)log( f (x))dx (2)

In Formulas (1) and (2), L(W, zi) represents the loss function, and g represents the
gradient. By adjusting the loss value and the change in the gradient in a timely manner,
the learning model can be promptly updated upon receiving new data during the training
process. This fundamental distinction distinguishes online learning from offline learning.
The advantage of online machine learning lies in its ability to automatically update the
model with feedback data, eliminating the need for manual adjustments after training.
By incorporating real-time feedback data, online learning can dynamically adjust the
model and can enhance prediction accuracy. Figure 2 illustrates the flow chart of online
machine learning.
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Figure 2. Flowchart of online machine learning.

The characteristics of online learning, as illustrated in Figure 2, encompass the acquisi-
tion of data from streaming sources, the capability to train new models on minibatches or
even single samples, and the ability to generate features in real time. Therefore, if a training
process satisfies all of these aforementioned conditions, it can be considered an instance of
online machine learning.



Sensors 2023, 23, 8167 5 of 20

2.2. FTRL Optimizer

The field of online machine learning primarily focuses on logistic regression prob-
lems, with solutions predominantly relying on online gradient descent (OGD) [25–28] and
stochastic gradient descent (SGD), or the gradient descent method [29–31]. The typical
weight-updating formula of the gradient descent method is shown below:

Wt+1 = ∏C(Wt − αt(gt + ξt)) (3)

In Formula (3), gt represents the subgradient of the loss function. To manage the
model complexity, the L1 or L2 norm is commonly incorporated into the loss function for
regularization purposes. This approach effectively prevents overfitting by penalizing exces-
sive parameters. The L1 norm represents the sum of the absolute values in a vector, also
known as Lasso regularization, whereas the L2 norm represents the sum of the squares in a
vector, also known as Ridge regression. The weight-updating formula of L1 regularization
can be expressed as follows:

Wt+1 = Wt − ηtGt − ηtλ sgn(Wt) (4)

In Formula (4), Wt denotes the weight of the training step t, ηt represents the learning
rate, Gt represents the gradient, λ represents the regularization parameter, and sgn(Wt)
represents the derived function of |Wt|. The mixed regularization formula for the gradient
descent method is presented below:

Ψ(x) = IC(x) + ψ(x) (5)

The term ξt in Formula (3) represents the gradient of Ψ(x) as defined in Formula (5),
with the constraint space C serving as the projection set. The fundamental concept under-
lying this approach is to perform gradient descent on the loss function for the individual
data as described in Formulas (1) and (2). However, due to the suboptimal directions taken
by each step of gradient descent and the challenges associated with achieving truly sparse
solutions through online gradient descent, there are inherent limitations to its effectiveness.
The problem was effectively addressed by Google through the implementation of the follow
the regularized leader (FTRL) algorithm, which seamlessly translates theoretical research
into practical engineering. The FTRL algorithm is an online learning optimization technique
that is particularly well suited for processing vast amounts of data with numerous sparse
features. It offers convenience, practicality, and excellent predictive performance. This
algorithm exhibits exceptional performance in convex optimization problems featuring
nonsmooth regularization terms.

The FTRL algorithm integrates the forward–backward splitting method (FOBOS),
an enhanced version of online gradient descent (OGD) [32], and regularized dual aver-
aging (RDA) to effectively harness the characteristics and advantages of both FOBOS
and RDA [33]. FOBOS decomposes each datum’s iterative process into an experiential
loss gradient descent iteration and an optimization problem, while RDA is a nongradi-
ent descent method that aggregates the gradients of each sample to facilitate a smoother
gradient-updating process. In contrast to SGD, which solely estimates and descends gradi-
ents for one observed sample at a time, RDA can overcome the loss-function oscillation
problem of SGD, enhance the sparsity, and prevent the truncation of some dimensions due
to insufficient training. Both methods aim to obtain sparser solutions.

The fundamental principle of FOBOS lies in both the historical outcomes and the
pursuit of optimal results at this stage. The specific formulas for weight updating are
as follows:

Wt+ 1
2
= Wt − ηtGt (6)

Wt = arg min
W

{
1
2

∥∥∥W −Wt+ 1
2

∥∥∥2
+ηt+ 1

2
Ψ(W)

}
(7)
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Formula (6) represents standard random gradient descent, whereas Formula (7) de-
notes the fine tuning of the results based on the current conditions. The following state
formula can be derived by combining Formulas (6) and (7):

Wt+1,i = sgn(Wt,i − ηtgt,i)max
{

0, |Wt,i − ηtgt,i| − ηt+ 1
2
λ
}

(8)

Formula (8) implies that the gradient generated by a sample may not be sufficient to
elicit a significant weight update in the corresponding dimension. However, RDA accounts
for the cumulative change in the gradient and relinquishes the idea of gradient descent.
The specific iterative formula is as follows:

Wt = arg min
W

{
1
t

t

∑
r=1
〈Gr, W〉 + λ‖W‖1 +

γ

2
√

t
‖W‖2

2

}
(9)

In Formula (9), 〈Gr, W〉 represents the average integral value of the gradient Gr over
W, λ‖W‖1 denotes the L1 regularization term, and γ

2
√

t
is a nonnegative nondecreasing

sequence. Specifically, the principle of RDA is to replace the original gradient descent
method in the solution process with the process of updating the closed-form solution.
To prevent overfitting, RDA employs two main strategies. Firstly, RDA introduces a
regularization term that constrains the feature weights and reduces their correlation, thereby
achieving regularization. Secondly, during the optimization process of the loss function in
RDA, if the absolute value of the cumulative average gradient in a certain dimension falls
below a threshold value, then the weight for that dimension is reset. The above formulas
yield the following result:

Wt+1,i =

{
0, |gt,i| < λ

−
√

t
γ (gt,i − λsgn(gt,i)), otherwise

(10)

Formula (10) reveals that the fundamental principle of RDA is to assign a weight of
zero when the absolute value of the cumulative gradient average generated by a dimension
falls below λ. The distinction between FOBOS and RDA lies in their computation methods,
with the former calculating the current gradient and L1 regularization terms, while the
latter employs cumulative gradients and L1 regularization terms; furthermore, there are
variations in the restrictions imposed on W. Despite achieving increased sparsity, RDA
exhibits a slight decrease in accuracy. Therefore, as its name suggests, the FTRL algorithm
incorporates and balances the advantages of the previous algorithms while considering
both the accuracy of FOBOS and the sparsity of RDA [34,35]. Its feature-weight-updating
formula can be expressed as follows:

Wt+1 = arg min
W

(
g1:tW +

1
2

t

∑
s=1

σt‖W −Ws‖2
2 + λ1‖W‖1

)
(11)

The term g1:tW in Formula (11) represents the cumulative sum of the gradients, in-

dicating the direction of the decreasing loss function; 1
2

t
∑

s=1
σt‖W −Ws‖2

2 ensures that the

predicted results do not deviate significantly from the existing ones; and λ1‖W‖1 is a
regularization term employed to generate sparse solutions. It can be observed that the
FTRL algorithm comprehensively considers the impact of both the cumulative weight and
the gradient, leading to enhanced accuracy and sparsity.

2.3. Deep River

River [36] is a python library designed for constructing online machine learning
models that operate on data flows, which consist of sequences of individual elements
containing attribute characteristics and parameter information. The objective of river
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is to serve as a versatile tool for machine learning capable of performing tasks such as
classification, regression, anomaly detection, and time-series prediction as well as other
streaming-based tasks. In essence, river leverages machine learning models to accomplish
tasks through online learning. Additionally, many batch machine learning algorithms
incorporate online learning components.

Deep river, an improved version of river and river’s compatibility wrapper for deep
learning, is also a python library for online deep learning. The objective of deep river
is to facilitate online machine learning for neural networks by integrating the river API
with the capabilities of designing neural networks based on PyTorch library. Deep river
empowers users to construct diverse types of neural networks in accordance with the
design principles of rivers. Currently, deep river can perform most tasks that are achievable
by neural networks, such as classification and regression.

Similar to the principle of river, deep river is capable of online data reading, processing
one or small batches of samples at a time. Throughout each step of the training process,
timely updates can be made to the model parameters while simultaneously extracting
features in real time and splicing them into samples. As a result, deep river is fully
equipped for online neural network training and prediction.

2.4. Datasets
2.4.1. Car Evaluation Dataset

The car evaluation dataset [37] was initially proposed to demonstrate an expert system
for decision making, and it was subsequently utilized in the testing of the constructive
induction and structure discovery methods. It assesses the condition of each vehicle
individually based on six indicators, namely, the buying price, price of maintenance,
number of doors, capacity in terms of the persons to be carried, the size of the luggage boot,
and estimated safety of the car. The dataset contains a total of 1728 pieces of data. The
automobile evaluation results and each indicator encompass multiple states as presented
in Table 1.

Table 1. The different states of the automobile evaluation results and each indicator.

Label States

Buying price Very high, high, medium, low
Price of maintenance Very high, high, medium, low

Number of doors 2, 3, 4, 5, and more
Capacity in terms of persons to be carried 2, 4, and more

The size of luggage boot Small, medium, big
Estimated safety of the car Low, medium, high

The results of car evaluation Acceptable, unacceptable, good, very good

2.4.2. Case Western Reserve University Dataset

The CWRU dataset is a collection of vibration signals from Western Reserve University
that was specifically designed for research on bearing fault diagnosis and life prediction.
The provided parameters include the number of samples for each type of fault, the length
of each sample, the associated load size, and the degree of fault presentation.

The experimental platform comprises a motor, a torque sensor, a power tester, and
electronic controllers. The rotating shaft of the motor is supported by the bearings under test.
The drive-end bearing is SKF6205, with sampling frequencies of 12 KHz and 48 KHz, while
the fan-end bearing is SKF6203, with a sampling frequency of 12 KHz. After measurement,
the experimental data are processed into mat files containing the vibration data for both
the fan- and drive-end bearings as well as the motor speed information. The final sample
data include 4 normal samples, 77 outer-race damage samples, 40 inner-race damage
samples, and 40 rolling-body damage samples. Each sample mat file contains drive-end
accelerometer data, fan-end accelerometer data, base accelerometer data, time-series data,
and revolutions-per-minute values. Among them, a one-dimensional time-series signal
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was mainly utilized in this paper. The classification of bearing faults includes three types:
the inner raceway, outer raceway, and rolling element. Each type is further divided into
different cases based on the fault diameters (7 mils, 14 mils, and 21 mils). Overall, nine
distinct fault types exist in addition to the normal conditions, resulting in ten possible
classifications for bearing faults. The specific classifications of bearing faults are shown
in Figure 3.
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Figure 3. Bearing fault classifications for the CWRU dataset.

To enhance the accuracy and representativeness of the research content, this paper
exclusively utilized the experimental data obtained from SKF6205, a deep-groove ball
bearing with a sampling frequency of 12 kHz. A total of 10,000 pieces of data was selected,
comprising 36 mat files, representing the inner raceway, outer raceway, and rolling element,
along with 4 normal files. The nine types of bearing damage and one normal type are
denoted by the letters A to J for the sake of convenience in the description. Table 2 presents
the categories and corresponding quantities of the dataset that was used as well as the
corresponding letter representation for each type.

Table 2. The categories of dataset, the number of each type, and the letters representing each type.

Fault Type Inner Raceway Outer Raceway Rolling Element Normal

0 inch
0 0 0 1000

J

0.007 inch
1000 1000 1000 0

A B C

0.014 inch
1000 1000 1000 0

D E F

0.021 inch
1000 1000 1000 0

G H I

2.5. Solutions to Different Problems in the Quality of Industrial Products

The car evaluation dataset and CWRU dataset necessitate distinct approaches due to
the disparities in their data format, content, and quantity. This entails distinct schemes
for data preprocessing and the neural network structure. However, both problems exhibit
similarities in their training and testing processes, as they both utilize the online learn-
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ing mode based on deep river and the FTRL optimizer. Figure 4 illustrates the specific
learning process.
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Figure 4. The process of online learning in this paper.

The raw data of the dataset in Figure 4 were subjected to manual data preprocessing
or river data preprocessing, enabling their conversion into a format compatible with neural
networks. Subsequently, during the training process, each set of data underwent iteration
and updating using river’s metric library. Following the model updates, the evaluation
indicators were also updated, and the current score value along with the classification were
outputted. The current output was utilized as a reference for the training of the next set
of data.

2.5.1. Solution to Car Evaluation

Due to the limited amount of data in the car evaluation dataset and its simple structure,
it may be more appropriate to employ a simpler neural network and to reduce the number
of training samples fed into the network during each iteration. This approach can not only
accelerate the training speed but can also enhance the real-world detection performance.

The overall neural network comprises four linear layers, where the first two incorpo-
rate the ReLU activation functions for feature extraction, the third layer serves as a linear
summarization and output module, and the fourth layer houses a softmax classifier for
final classification.

2.5.2. Solution to Bearing Defect Detection

The neural network presented in this paper exhibited similarities to the WDCNN
model described in the literature [11], albeit with several implemented optimizations.
Specifically, we removed the last convolution layer and pooling layer, adjusted the pa-
rameter settings of the convolution layer, replaced AdaBN with BN layers, and adopted
alpha dropout for the dropout layers. These modifications were made to prioritize learning
efficiency within our machine learning algorithm, ensuring a higher rate of model updates
through the adoption of fewer layers. Moreover, as each set of data was trained separately
during online learning, excessive connections between the training processes were un-
necessary; thus, it was inappropriate to employ AdaBN, which was originally utilized in
transfer learning.

The WDCNN architecture is designed to maximize information extraction by utilizing
wide convolution kernels in the shallow layers while analyzing deep semantic features
with small convolution kernels in the deeper layers. Multilayer narrow convolutions
effectively segmentize fault features. The structure of the WDCNN in this paper comprised
a first convolutional layer with 16 channels and a 64 × 1 convolution kernel followed by a
second convolutional layer with 32 channels and a 3 × 1 convolution kernel; then, a third
convolutional layer with 64 channels and a 3 × 1 convolution kernel; and, finally, a fourth
convolutional layer with 16 channels and a 3 × 1 convolution kernel. Each of these layers
was subsequently followed by a one-dimensional max-pooling layer of the size 2 × 1. The
stride for the first convolutional layer was set to be 16, while, for the rest it, it was set to be 1.
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Additionally, each layer incorporated an activation function as well as batch normalization
(BN). Specifically, the ReLU activation function was employed in the convolutional layers
for linear correction. The formula of ReLU is as follows:

ReLU(x) =
{

x, x > 0
0, x ≤ 0

(12)

The calculation formulas of the BN layer are as follows:

µ =
1
m

m

∑
i=1

xi (13)

σ =
1
m

m

∑
i=1

(xi − µ)2 (14)

x̂i =
xi − µ√
σ2 + ε

(15)

yi = γx̂i + β (16)

f (x) =
γω√
σ2 + ε

x +
γ√

σ2 + ε
(b− µ) + β (17)

Among these formulas, µ and σ represent the mean value and variance of each feature
map, x̂i represents the normalized data, and yi can be regarded as the output obtained
through translation and scaling using β and γ. β and γ serve as shift factors and scale
factors, respectively, both of which are learnable parameters that cannot be fixed but
may vary with each training batch. By utilizing these parameters, the BN layer could
effectively mitigate the internal covariate shift, thereby maintaining relative stability within
a limited range for the overall parameter values. Additionally, the BN layer recalibrated its
other parameters to ensure controllability while enhancing network stability for optimal
training outcomes.

The alpha dropout layer was employed following the fully connected layer to effec-
tively address overfitting issues during training and to maintain self-normalization. The
specific principle involved applying Bernoulli distribution to selectively zero out certain
elements, while the remaining elements were randomly adjusted in terms of scaling and
shifting during each forward call to maintain a unit standard deviation. This approach
ensured the constancy of both the mean and variance while activating negative saturation
values in a random manner to self-regularize the data. To ensure an output with a unit
standard deviation, alpha dropout was always paired with the SeLU activation function,
which can be defined by the following formula:

SeLU(x) =
{

λα(ex − 1), x < 0
λx, x ≥ 0

(18)

The values of λ and α in the formula were predetermined. SeLU ensured faster internal
normalization compared to external normalization, leading to accelerated network convergence.

The structure of the convolutional neural network presented in this paper is shown
in Figure 5.

In Figure 5, the numerical value in each step represents the output size of the corre-
sponding layer. The input denotes a one-dimensional signal from the CWRU dataset, while
“Conv1d” refers to one-dimensional convolution. One-dimensional convolution involved
performing a sliding-window operation on the one-dimensional input and utilized the
input data within the convolutional window to compute an output value. As it operated
only along the width of the data, its result was a two-dimensional sequence. For instance,
128 in “128× 16” in Figure 5 represents the width of the output, while 16 indicates its depth
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or the number of channels. “Pool” refers to max pooling; “flatten” denotes the flattening
operation, which transformed the two-dimensional data into a one-dimensional form; “FC”
denotes the full connection layer; and “Alpha Dropout” refers to the dropout layer.
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Figure 5. The structure of modified WDCNN in this paper.

3. Experiments and Results
3.1. Experimental Environment

The hardware utilized in this paper employed a computer equipped with a 13th
Gen Intel(R) Core(TM) i7-13700HX CPU, 16.00 GB of RAM, and an NVIDIA GeForce RTX
4060 graphics card with 8G of memory. The software environment was the Windows 11
operating system, which runs on the python 3.9 programming environment and mainly
utilizes pytorch and the deep river framework while invoking library functions such as
math, matplotlib, and others.

3.2. Data Preprocessing
3.2.1. Data Preprocessing Method for Car Evaluation

Due to the limited amount of data in the dataset, the features extracted during training
may have been insufficient. Therefore, employing data augmentation techniques was
considered necessary. Data augmentation could enhance model generalization, mitigate
overfitting, improve stability, and enable better adaptability to diverse scenarios and
changes, thereby enhancing the overall model performance and effectiveness.

For the car evaluation dataset, which contains labeled text–numeric mixed data,
category balancing was employed as a means of enhancing the data by increasing the
number of samples categorized as “acceptable”, “good”, and “very good”, respectively,
to match that categorized as “unacceptable”. This adjustment was made because there
were 1210 instances labeled as “unacceptable”, which was the highest amount among
all the categories. To achieve this balance, we first calculated the required number of
enhanced samples for each category and then resampled from within each category using
the sampling back technique to generate additional samples. Finally, these augmented
samples were added to create an enhanced dataset consisting of a total of 4840 pieces
of data.

The label features in the car evaluation dataset are easily identifiable, thus the one-hot
conversion method was considered for data preprocessing, involving transforming the
data into the approximate binary format using the pandas function.
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3.2.2. Data Preprocessing Method for Bearing Fault Detection

Similar to the case with the car evaluation dataset, due to the relatively small size
of the training sample, overfitting could easily occur. Moreover, the dataset consists
of one-dimensional fault diagnosis signals that exhibit unique timing and periodicity
characteristics. Therefore, we devised a dedicated function to realize the random sampling
of the data and to employ one of three techniques randomly: scaling, shifting, or adding
noise to the sampled data to realize data augmentation. Among them, the shifting method
refers to the overlapping sampling method mentioned in the literature [11] to ensure the
maximum retention of the data’s original information and characteristics. The ratio between
the augmented and original data was maintained at 1:1. Following data augmentation, there
were 20,000 pieces of data. Prior to their input, normalization using river’s MinMaxScaler
preprocessor was applied.

3.3. Experimental Processing and Data Comparison
3.3.1. Experimental Results of Car Evaluation

The architecture of the neural network and its corresponding parameters for automo-
bile quality inspection are presented in Table 3.

Table 3. Neural networks for automotive quality classification.

Layer (Type) Activation In_Features Out_Features

Linear1 ReLU 21 50
Linear2 ReLU 50 50
Linear3 ReLU 50 4
Linear4 softmax 4 4

Considering the simplicity of our network structure and the limited dataset size, we
chose a batch size of one to ensure that each data point could undergo iteration during
training. For evaluation purposes, half of our available data were allocated for training,
while the remaining half was reserved for testing. In the FTRL optimizer, l1 regularization
was set to 0.001, l2 regularization was set to 0.1, the alpha value was set to 0.1, and the beta
value was set to 1. The specific reason for this is that, among these four hyperparameters,
the alpha value regulates the update amplitude of each step during optimization iterations
within a typical range of values between 0.1 and 1. A higher alpha value will lead to sparser
feature weights; therefore, a conservative choice of setting it to a lower bound, such as 0.1,
ensures better control over the training process. The beta value governs model sparsity and
typically ranges from 0.1 to 1; however, it is commonly set to 1 to maintain an appropriate
early learning rate without excessively hindering the training progress. L1 and l2 are
utilized for regularization control, with parameter values usually selected in the range of
0.0001 to 1. Based on the insights gleaned from the literature sources [38] combined with
the extensive experimentation conducted on our own datasets, we empirically determined
that l1 should be set to 0.001, while l2 should be set to 0.1. With the appropriate values
assigned to the learning rate and various parameters of FTRL, the accuracy of the training
process gradually and smoothly improved until it reached a stable state after a certain
number of iterations. Since each training process involved only one set of data and was
relatively independent, the accuracy and loss value of the training process do not have
substantial significance for the final classification results. They can only be maintained as
records in the actual production process to facilitate subsequent inspection and sorting.
The final test classification results are shown in Figure 6.
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The traditional machine learning methods provided in the original dataset and our
online machine learning method were evaluated separately to better emphasize the advan-
tages of online machine learning. The comparison of the classification results across all the
methods is illustrated in Figure 7 in the format of confusion matrices.
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Our online learning method achieved a classification accuracy rate of 98.843% as
shown in Figures 6 and 7a, accurately classifying 2392 out of the total 2420 test data. The
classification accuracy rates of the other methods, obtained from the test and Figure 7, are
presented in Table 4.

Table 4. Test results compared to other methods validated on car evaluation dataset.

Methods Mean Accuracy (%)

Support Vector Classification 96.942
Random Forest Classification 91.694

Logistic Regression 89.917
Online Learning (ours) 98.843

The advantages of online machine learning can still be observed to a certain extent
when compared with other traditional offline learning methods, as demonstrated by the
findings presented in Table 4, despite the disparities in the dataset processing and train-
ing approaches.

In order to further evaluate the performance of categorization after data augmentation,
we conducted comparative experiments on both the augmented data and the original
dataset under identical environmental conditions. Although the data enhancement ratio
was 1:1, the method employed for enhancing the car evaluation dataset was category bal-
ancing, resulting in an inconsistent amount of data in every class undergoing enhancement.
Also, it could not be ensured that the selected test set in the five-fold crossover test matched
the original test set prior to enhancement. Therefore, the original dataset and enhanced
dataset were directly compared through the training and testing of online machine learning
using identical parameters. The proportion of test sets was 50%. The comparative results
of the five tests are shown in Table 5.

Table 5. Comparison of test results between enhanced car evaluation dataset and original dataset.

Dataset Classification Accuracy (%) Mean (%) Standard Deviation (%)

Original dataset 98.719 98.760 98.554 99.050 98.802 98.777 0.160
Enhanced dataset 98.512 98.306 98.512 98.554 98.430 98.463 0.088

The results presented in Table 5 demonstrate a marginal decrease in the classification
accuracy following data augmentation. However, it is noteworthy that the mean difference
in the classification accuracy across the five tests was only 0.314%. Additionally, the
standard deviation of the test set before and after enhancement was found to be 0.160% and
0.088%, respectively, indicating that our classification model exhibited a level of stability
even when exposed to perturbed input data.

3.3.2. Experimental Results of Bearing Fault Detection

Table 6 systematically presents an overview of the specific details pertaining to our
proposed WDCNN model.

The batch size and FTRL optimizer parameters remained consistent with those in
Section 3.3.1, while the training sample proportion was adjusted to 50%. The fault types in
the CWRU test set were categorized into four distinct levels based on horsepower, namely,
levels 0, 1, 2, and 3. Consequently, it was imperative to conduct separate classified tests for
each level. The final classification results based on horsepower are shown in Figure 8.
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Table 6. Modified WDCNN model for bearing fault analysis.

Layer (Type) Activation Size of Filter and Pooling Number of Channels

Conv1 (Conv1D) ReLU 64 × 1 16
batch_normalization (BatchNormalization)

Pool1 (MaxPooling1D) 2 × 1
Conv2 (Conv1D) ReLU 3 × 1 32

batch_normalization (BatchNormalization)
Pool2 (MaxPooling1D) 2 × 1

Conv3 (Conv1D) ReLU 3 × 1 64
batch_normalization (BatchNormalization)

Pool3 (MaxPooling1D) 2 × 1
Conv4 (Conv1D) ReLU 3 × 1 16

batch_normalization (BatchNormalization)
Pool4 (MaxPooling1D) 2 × 1

Fla1 (Flatten)
FC1 (Fully Connected) SeLU

alpha_dropout (AlphaDropout)
FC2 (Fully Connected) softmax
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Figure 8. The test classification results for bearing fault detection.

We validated multiple techniques by utilizing the structure and parameters presented
in the partial references, which were tested on the CWRU dataset, resulting in the experi-
mental data. The theoretical results claimed in the introduction of the original paper were
supported by our tests, demonstrating a recognition accuracy comparable to those reported
in the literature. The classification results obtained from testing these methods on the
CWRU dataset are depicted in Figure 9 using confusion matrices. The correspondence
between the category labels and letters can be found in Table 2.

The average classification accuracy rates, as obtained from the test results and Figure 9,
are presented in Table 7.

The results demonstrate that our online learning approach achieved an accuracy
comparable to those of the other deep learning methods, with the potential to attain near-
perfect performance. This further validates the applicability of online machine learning
models in real-world production scenarios.
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Table 7. Test results compared to other methods validated on CWRU dataset.

Methods Mean Accuracy (%)

WDCNN [11] 96.230
Lite CNN [12] 99.560

Resnet [13] 99.170
AlexNet [14] 99.420
VGG-16 [15] 96.620

Online Learning (ours) 99.230

The performance evaluation of the improved WDCNN was also conducted through
five experiments, similar to Section 3.3.1, by comparing the processed CWRU dataset with
the original dataset. However, it should be noted that the data enhancement method
employed by the CWRU dataset involved generating random disturbances based on
the original one-dimensional signal, thereby establishing correspondence between the
enhanced and original data instances. In addition, the amount of data was the same for
each category after data enhancement. Consequently, we could adopt a five-fold crossover
experiment approach and ensure one-to-one correspondence between each datum in the
divided test set before and after enhancement. The comparison results are presented
in Table 8.

Table 8. Comparison of test results of enhanced CWRU dataset and original dataset.

Dataset Classification Accuracy (%) Mean (%) Standard Deviation (%)

Original dataset 99.290 99.560 99.250 99.030 98.970 99.220 0.210
Enhanced dataset 99.180 99.420 99.140 98.850 98.810 99.080 0.226

The results presented in Table 8 demonstrate that the enhanced dataset exhibited a
difference of only 0.140% in its average classification accuracy compared to the original
dataset; the standard deviation of the five-fold crossover experiment before and after
enhancement was found to be 0.210% and 0.226%, respectively, thereby substantiating the
improved WDCNN’s stability and resistance against interference.

4. Discussion

According to the data from the two experiments conducted in this paper for two
distinct problems, it can be observed that the online machine learning method is more
suitable for handling streaming data or time-series data. Additionally, better experimental
results are achieved when there exists a certain correlation between the preceding and sub-
sequent data instances. In the first experiment, which focuses on vehicle quality detection, a
simplified neural network is employed in an online machine learning fashion. The model is
trained using the car evaluation dataset by sequentially feeding 4840 pieces of data into the
network. Although the final test accuracy falls slightly below those of the current highest
record and some other offline algorithms, its training process exhibits a faster iteration
speed due to the particularity of the small batch input and real-time model update. In the
second experiment, targeting the bearing fault detection problem, a customized neural
network based on the CWRU dataset is proposed for the online machine learning training
process. The final test accuracy achieved with this approach compares favorably with
those of other advanced offline learning algorithms while maintaining an efficient training
rate. It highlights the advantage of online machine learning in handling strong temporal
correlation information.

The experiment on bearing fault detection demonstrates that the online machine
learning method achieves an identification accuracy comparable to that of the offline
method as evidenced by a comparison with the literature [11]. Additionally, the online
machine learning method exhibits a faster training speed and data iteration rate. This is
attributed to the minimal impact of individual data inputs on the overall training process,
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enabling rapid and cost-effective learning steps. This enables the system to dynamically
incorporate the latest received data, making online learning suitable for continuous streams
of data. In scenarios with limited computing resources, online learning serves as an optimal
solution since it discards the unnecessary data after incorporating new instances, resulting
in significant space savings. Moreover, online learning algorithms are well suited for
training systems on extensive datasets. These algorithms load and train on portions of the
dataset sequentially until all the data have been utilized; however, this approach may incur
higher training requirements. In summary, online machine learning boasts a wide range of
applications and can outperform offline learning under specific conditions.

However, due to the inherent characteristics of online machine learning and some
limitations in the experiments conducted in this paper, there are still certain shortcomings
that need to be addressed. Firstly, the relatively high operation and maintenance costs must
be resolved during the training process to ensure real-time sample stitching accuracy, to
maintain real-time evaluation accuracy, and to roll back online models when necessary.
Additionally, anomaly monitoring must be carried out to detect any performance declines
quickly and to deal with them accordingly if bad data is used for training purposes. This
incurs additional costs but mitigates risks effectively. Secondly, due to the limited experi-
mental conditions and the small amount of data available for analysis in this study, some
parameters may not have been optimally adjusted, resulting in suboptimal results being
obtained. Furthermore, the model parameter updates may not necessarily trend towards
optimal values during the training process given the unique framework of online machine
learning algorithms themselves. Nonetheless, this paper demonstrates the efficacy of online
machine learning algorithms and their advanced applications in industrial scenarios while
substantiating the practical feasibility of employing this method for the quality inspection
of industrial products through experimental validation.

5. Conclusions

The objective of this paper is to investigate the issue of quality inspection for industrial
products in the manufacturing sector and to validate it using the car evaluation dataset
and the CWRU dataset through online machine learning techniques. The experimental
results demonstrate that, compared to other offline or deep learning methods, online
learning achieves higher efficiency while maintaining superior recognition accuracy due
to its reduced training iterations and unique model-updating mechanism. Additionally,
this study also demonstrates that neural networks can implement online deep learning
through Python’s deep river library. It should be noted that, due to various factors, such as
data limitations and methodologies, the results obtained in this paper in terms of accuracy
and loss values may not be optimal. However, this paper does prove that online machine
learning can be utilized in real industrial activities and can complete basic detection and
classification tasks under the condition of limited computing resources and high real-
time requirements.
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