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Abstract: Smart meter datasets have recently transitioned from monthly intervals to one-second
granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a
fundamental data mining technique, is extensively applied to discern unique energy consumption
patterns. However, the advent of high-resolution smart meter data brings forth formidable challenges,
including non-Gaussian data distributions, unknown cluster counts, and varying feature importance
within high-dimensional spaces. This article introduces an innovative learning framework integrating
the expectation-maximization algorithm with the minimum message length criterion. This unified
approach enables concurrent feature and model selection, finely tuned for the proposed bounded
asymmetric generalized Gaussian mixture model with feature saliency. Our experiments aim to
replicate an efficient smart meter data analysis scenario by incorporating three distinct feature
extraction methods. We rigorously validate the clustering efficacy of our proposed algorithm against
several state-of-the-art approaches, employing diverse performance metrics across synthetic and
real smart meter datasets. The clusters that we identify effectively highlight variations in residential
energy consumption, furnishing utility companies with actionable insights for targeted demand
reduction efforts. Moreover, we demonstrate our method’s robustness and real-world applicability
by harnessing Concordia’s High-Performance Computing infrastructure. This facilitates efficient
energy pattern characterization, particularly within smart meter environments involving edge cloud
computing. Finally, we emphasize that our proposed mixture model outperforms three other models
in this paper’s comparative study. We achieve superior performance compared to the non-bounded
variant of the proposed mixture model by an average percentage improvement of 7.828%.

Keywords: probabilistic modelling; energy analytics; bounded mixture models; asymmetric generalized
Gaussian distribution; feature selection

1. Introduction

The predictive power of machine learning holds the key to deciphering intricate
patterns and driving efficient solutions for a sustainable future, particularly in the realm of
smart meter data modelling and utility program improvement. This predictive capability
has already played a crucial role in ensuring global food supplies, a once seemingly
insurmountable challenge. Scientists have been instrumental in harnessing this power
for the benefit of society. As we embark on this new era, machine learning is poised to
further our understanding of the world, optimize resource utilization, and reduce our
environmental impact, ultimately promoting prosperity and sustainability. In this pursuit,
our focus is on the intricacies of smart meter data modelling and its application in enhancing
utility programs, such as energy efficiency and demand response. The implementation of
Advanced Metering Infrastructure (AMI) across Europe stands as a notable catalyst behind
the surpassing of energy efficiency targets outlined in the EU’s 20-20-20 energy policy.
Building on the triumphs in Europe, smart meter deployments have transcended borders,
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becoming a global phenomenon in nations striving to modernize their electricity grids.
Consequently, these groundbreaking advancements in energy metering technologies have
birthed a trove of high-quality, consistently sampled electrical power consumption datasets.
This surge in data dimensions underscores the compelling necessity for meticulous feature
selection within the domain of machine learning models. This ensures the prioritization
of the most enlightening attributes while simultaneously mitigating noise and curtailing
computational expenditures. Within the machine learning context, “features” denote the
distinct measurable properties or intrinsic characteristics of data that serve as the essential
input for predictive models. In the scope of this paper, when we allude to “features”, we
specifically refer to the statistical metrics derived from time-series data or the readings
gleaned from smart meters pertaining to a particular energy consumer. Our work delves
into the challenges and potential of this domain, introducing methodologies that not only
improve the predictive accuracy but also enhance transparency and interpretability. Our
goal is to ensure that every stakeholder, from scientists to policymakers, can fully utilize
the potential of these advancements for a brighter and more sustainable future.

The challenge of smart meter data modelling using clustering techniques is pivotal in
advancing utility programs geared towards achieving energy sustainability and fostering a
better future. In this context, the integrated IoT architecture for smart metering proposed
by the research in [1] provides valuable insights into the technological foundations of
modern smart metering systems. Effectively harnessing high-frequency smart meter data
to understand consumer energy consumption behaviour presents a significant opportunity.
Research papers, exemplified by [2], have delved into the segmentation of household
energy consumption using hourly data, enabling the identification of intricate consumption
patterns. Likewise, the work in [3] revolves around the analysis and clustering of residential
customers’ energy behavioural demand using smart meter data, facilitating the recognition
of distinct consumption behaviours [3–7]. These modelling solutions offer substantial
benefits by providing utility programs with tailored insights. They empower utilities to
develop strategies for energy efficiency and demand response that are intricately aligned
with consumer behaviour. Ultimately, this not only enhances energy sustainability but also
contributes to the creation of a more environmentally responsible and prosperous future.

Moreover, the richer and more granular data may lead to more complex and diverse
consumption patterns, necessitating the use of flexible distributions in statistical models
to capture the nuances in class data distributions effectively [8–10]. DR is an incentive
program that allows utility companies to save money on unnecessary investments and
lower emissions of greenhouse gases (GHG) [8–10]. DR induces households to reduce their
energy consumption levels at high wholesale market prices or when system reliability is
jeopardized. EE programs aim to reduce the power demand of households while maintain-
ing their consumption habits [8,11–13]. Traditional machine learning exploratory analysis
tools, such as unsupervised learning techniques, transform smart meter information into
valuable information participating in customer clustering [8]. Clustering is a statistical
data analysis technique that can uncover or infer intrinsic properties and cluster the data
into several components according to the observations’ similarities [8]. As a soft clustering
approach, the Gaussian mixture’s reliability and minimal impact on computational capabil-
ities have made it a good candidate for modelling smart meter data [8,14–16]. The Gaussian
distribution does not fit data well within a mixture model if the data have an asymmetric
distribution, as demonstrated in Figure 1. The estimation of data-bounded support regions
using Gaussian mixture models has been a notable avenue of research, with advancements
in vector quantization techniques [17–21]. The deployment of AMI has introduced high
dimensionality in modern energy consumption datasets [4]. Patterns are easily distin-
guished within observations represented with features of high entropy. Feature selection
has several advantages: it is well established to improve the performance of model-based
classification [22], and it helps to develop interpretable models that are reduced in complex-
ity within applications across several disciplines [23]. The search for the optimal number
of clusters and the optimal set of features is an interrelated optimization problem [23].
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However, searching for the optimal set of features is challenging in an unsupervised setting
because there is no clear criterion for the optimization process, since the number of clusters
is unknown [23]. Historically, to find the optimal number of features, an exhaustive search
is done through the space of all feature subsets [24–26]. Additionally, non-exhaustive search
techniques do not guarantee finding the optimal feature subset. Therefore, an efficient
solution was proposed within an unsupervised setting [23]; the optimal feature subset
search is converted into an estimation problem parallel to the learning of mixture models,
where a vector of feature weights is estimated using the expectation-maximization (EM)
algorithm [23].

Figure 1. The Gaussian distribution symmetry problem.

In our experimental analysis, our proposed method outperforms the asymmetric
generalized Gaussian mixture model-based feature selection (FSAGGMM), the bounded
asymmetric generalized Gaussian mixture model (BAGGMM), and the asymmetric gener-
alized Gaussian mixture model (AGGMM) according to several performance evaluation
metrics. Additionally, our proposed mixture model has been implemented using Concordia
University’s High-Performance Computing (HPC) Facility: Speed [27].

The current energy consumer segmentation approach distinguishes itself from previ-
ous works by effectively modelling different representations of smart meter data, taking
into account the class data bounds, inferring the true number of consumer clusters, and
finding the optimal set of features in a single optimization process. The rest of the paper is
organized as follows: in Section 2, we inform the reader about all the prior works within the
context of this paper. in Section 3, we describe the proposed feature selection model based
on the bounded asymmetric generalized Gaussian mixture model (FSBAGGMM). Section 4
explains how the mixture model’s parameters are estimated and how the MML’s objective
function is derived for our specific case. Section 5 exhibits the experimental results in the
context of household energy consumption segmentation by comparing the performance of
our proposed algorithm against several state-of-the-art clustering algorithms. Finally, we
discuss and conclude our research in Sections 6 and 7, respectively.

2. Prior Works

Numerous applications leverage energy consumption data, benefiting from the in-
creased feasibility and reliability facilitated by smart meters. Non-intrusive load mon-
itoring (NILM) has enhanced heating, ventilation, and air conditioning (HVAC) fault
detection through smart meter readings, eliminating the need for additional sensors [28].
Smart meter data serve as valuable input for load forecasting and energy efficiency
recommendations [29]. Customer-oriented solutions, such as user-friendly web portals
for bill understanding, have also been proposed [30]. Additionally, energy consumption
data inform predictive models and offer consumption insights, further contributing to
energy efficiency [29,31,32]. Previous research has addressed key aspects of smart meter
data analytics. The research in [33] focused on smart-meter-driven segmentation, while
the research in [34] introduced layer-wise relevance propagation for smart grid stability
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prediction. The research in [35] optimized deep models for improved smart grid stability
prediction. Additionally, the research in [36] explored customer segmentation based on
smart meter data analytics. These studies form the foundation for our research, covering
various aspects of smart meter data analysis and its applications.

Clustering has proven helpful to find energy consumption patterns in low- and high-
voltage customers [37,38]. Additionally, demand management programs have successfully
utilized clustering in order to select suitable candidate energy consumers [39–41]. Thus,
several approaches have been employed for the segmentation of energy users, such as
Euclidean distance-based clustering [31,38] and multi-resolution clustering in the spectral
domain [42]. Similarly, several clustering methods, such as hierarchical clustering, K-means,
fuzzy K-means, and self-organizing maps (SOM), have been used to cluster consumers
with similar energy consumption patterns in [37]. SOM was tested for its capability to
classify consumption profiles in [43]. Clustering has also proven useful to enhance energy
consumption prediction using a two-layer feed-forward artificial neural network [10]. The
Gaussian mixture model, optimized by the EM algorithm, was utilized in [32,44] as a
non-distance-based consumer segmentation tool. Other finite mixture models have also
been used within the context of the same application [45].

In order to model smart meter data in different representations, several limitations
imposed by the Gaussian mixture model must be overcome. Several distributions have
been used as a base distribution of mixture models to overcome the shape rigidity of
the Gaussian distribution, such as the Student’s-t distribution [46–48] and the general-
ized Gaussian distribution (GGD) [49–51]. Compared to the Gaussian distribution, the
Student’s-t distribution has an additional parameter (ν) called the degree of freedom that
allows the distribution to generalize to different probability distributions. The Student’s-t
distribution is identical to the Cauchy distribution when (ν = 1) and approaches the
Gaussian distribution as (ν) approaches infinity. As for the GGD, the additional parameter
per component (λ) is called the shape parameter; it controls the tails of the distribution,
making it far more flexible to different types of data and less vulnerable to outliers [52–54].
In more recent studies, the asymmetric generalized Gaussian distribution (AGGD) was
used as a base distribution for mixture models [55,56]. The AGGD can generalize to a large
class of distributions, such as the impulsive, the Laplacian, the Gaussian, and the uniform
distributions, in addition to the ability to fit asymmetric data [57]. Additionally, and in
order for mixture components to fit better to real-life data, the bounded support concept
was adopted in several finite mixture models [17,20,58].

Several feature extraction methods have been utilized to process high-dimensional
data in electrical load observations and convert them into a new set of reduced feature
spaces. In [59], a scalable algorithm for data processing has been proposed for a dataset
collected from 10,000 Australian homes over a year. Dimensionality reduction is accom-
plished by employing a sparse representation technique in [60]. An encoding system has
given representations for energy consumers with a pre-processed dictionary in [2]. The
discovery of prominent energy consumption time windows is crucial for feature extraction
and, therefore, in modelling the typical consumer’s behaviour. Through a thorough analysis
of several smart meter trials, researchers have been able to identify four time periods where
the most extensive distribution of peak demand occurs within smart meter datasets [32].
The energy consumption data within the specified time periods were used to calculate seven
weakly correlated features. Projection methods such as principal component analysis (PCA)
were also used to concisely represent a consumer’s load curve [37].

In the context of the energy consumption segmentation application, a feature selection
approach based on genetic algorithms has been utilized effectively in [31] to reduce the high
dimensionality of smart meter data and improve the clustering performance of k-means.
In general, several exhaustive search methods are conducted to perform feature selection,
such as sequential forward search, backward search, floating search, beam search, bidirec-
tional search, and genetic search [24–26,61]. However, more recently, several studies have
approached the problem of finding the optimal set of features as an optimization problem
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within the context of mixture-based clustering in several real-life applications [56,62], thus
achieving feature selection with minimal computation expenses.

Various methods have been employed to determine the optimal number of energy
consumer clusters. Diverse clustering evaluation metrics and scenarios have been utilized,
with the best scenario dictating the optimal number of consumption profiles [63,64]. Ad-
ditionally, an entropy-based evaluation index was applied to time series data for cluster
optimization [31]. Probabilistic model selection methods, such as the Bayesian Information
Criterion (BIC) and the Akaike Information Criterion (AIC), were used in different studies
to select the optimal cluster count [32,65]. It is worth noting that the AIC tends to favour
more complex models, particularly with smaller training datasets, while the BIC leans
toward simpler models. Another superior approach is the Minimum Message Length
(MML) criterion, known for its excellence over BIC and AIC [66–68]. MML, combined with
the feature-weighting mixture model [23], simultaneously performs model and feature se-
lection, avoiding exhaustive searches. This paper builds on prior research that has evolved
mixture models to become increasingly flexible and assumption-light, aiming to better
capture real-world data complexities. Our proposed model leverages this accumulated
knowledge to introduce a more flexible approach.

3. The Unsupervised BAGGMM-Based Feature Selection Model

Mixture models are a powerful approach to model incomplete data. The observa-
tions in this paper are represented as a set of vectors X = { ~X1, ~X2, ~X3, . . . , ~XN}, ~Xi ∈ RD,
i ∈ {1, 2, 3, . . . , N}. We aim to model data in X using a mixture model with M com-
ponents where M ≥ 1. It is possible to state that the D-dimensional random variable
~Xi = (Xi1, Xi2, . . . , XiD) is sampled from a M component mixture model if its probability
density function can be written as follows:

p(~Xi|Θ) =
M

∑
k=1

p(~Xi|θk)pk (1)

where Θ represents the set of parameters of all the M-component mixture models. The term
pk represents the mixing proportion of the component k; by definition, pk is positive and
∑M

k=1 pk = 1. The likelihood function gives the joint distribution for all the observations:

p(X |Θ) =
N

∏
i=1

M

∑
k=1

p(~Xi|θk)pk (2)

In order to define the complete data likelihood, an M-dimensional vector of unobserved
variables is defined, and it is denoted by ~Zi. For each observation i, the unobserved binary
vector is assigned with 0s, except at the k’th position, where the cluster is responsible
primarily. The complete data likelihood is defined as follows:

p(X , Z|Θ) =
N

∏
i=1

M

∏
k=1

(
p(~Xi|θk)pk

)Zik

(3)

where Z = {~Z1, . . . , ~ZN}. The features in Equation (2) are considered to be of equal
importance. However, in the context of a real application, the estimation of the feature
weights is an effective approach to better model data [37,38]. The integration of the feature
selection approach within the mixture model involves considering that the irrelevant
features are modelled with a background Gaussian distribution as in [23]. In this paper,
feature weights are estimated for all the mixture components. Therefore, the background
Gaussian distribution has a single set of parameters ~β = {~η,~δ}, where ~η represents the
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vector of means for all the data dimensions and ~δ represents the standard deviation vector.
Thus, we are proposing to rewrite Equation (2) to adopt feature relevancy as follows:

p(~Xi|Θ,~β, ~ϕ) =
M

∑
k=1

pj

D

∏
d=1

p(Xid|θkd)
ϕd p(Xid|βd)

1−ϕd (4)

where ~β = {(η1, δ1), . . . , (ηD, δD)}. The unobserved binary vector ~ϕ = (ϕ1, . . . , ϕD) indi-
cates the relevancy of each feature. By assuming that the elements within vector ~ϕ are
mutually exclusive and independent of the component label Z, we have

p(~Xi, ~ϕ) = p(~Xi|~ϕ)p(~ϕ) =
M

∑
k=1

pk

D

∏
d=1

(
ωd p(Xid|θkd)

)ϕd ×
(
(1−ωd)p(Xid|βd)

)1−ϕd (5)

After the marginalization over ϕ, the obtained mixture model is formalized as follows:

p(~Xi|ΘM) =
M

∑
k=1

pk

D

∏
d=1

[
ωd p(Xid|θkd) + (1−ωd)p(Xid|βd)

]
(6)

where ΘM = [Θ, ~ω,~β] is the complete set of parameters that define the proposed mixture
model. The vector ~ω = (ω1, . . . , ωD) quantifies the feature importance with a set of weights
where ωd = p(ϕd = 1). Thus, Equation (6) represents the probability density function that
is assumed to generate the data. The foreground distribution or the mixture base distri-
bution p(Xid|θkd) models the relevant attributes of each latent class in the data. Several
distributions have been proposed for feature selection in the context of mixture models,
such as the asymmetric Gaussian distribution (AGD) [62] and the asymmetric generalized
Gaussian distribution (AGGD) [56]. However, these distributions are unbounded with a
support region that extends across the set of real numbers. Real-life datasets are mostly
digitized and have bounded support [18]. Therefore, we propose the bounded asymmetric
generalized Gaussian distribution (BAGGD) to model the relevant features of each com-
ponent in the mixture. The BAGGD distribution generalizes several different distribution
classes, such as the impulsive, the Laplacian, the Gaussian, and the uniform distributions,
to fit different shapes of observed bounded support, asymmetric, and non-Gaussian data.
In order to define the bounded distribution proposed in this paper, the bounded support
region τkd in R for each component is first defined for the following indicator function:

H(Xid|k) =
{

1 Xid ∈ τkd

0 Otherwise
(7)

The bounded asymmetric generalized Gaussian probability density function for each D-
dimensional data point is defined as follows:

p(~Xi|θk) =
D

∏
d=1

Ψ(Xid|θkd)H(Xid|k)∫
∂k

Ψ(Xid|θkd)dX
(8)

The unbounded distribution p(Xid|θkd) is the asymmetric generalized Gaussian distribution
(AGGD). The symmetric and asymmetric generalized Gaussian distributions are defined in
Equations (9) and (10), respectively.

g(Xid|µkd, σkd, λkd) =

λkd

[
Γ(3/λkd)
Γ(1/λkd)

]1/2

2σkdΓ(1/λkd)
exp
[
− A(λkd)

∣∣∣∣Xid − µkd
σkd

∣∣∣∣λkd
]

(9)
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Ψ(Xid|θkd) =


g1(Xid|θkd) x < µkd

g2(Xid|θkd) x ≥ µkd

=

λkd

[
Γ(3/λkd)
Γ(1/λkd)

]1/2

(σlkd
+ σrkd)Γ(1/λkd)

×


exp
[
− A(λkd)

(
µkd−Xid

σrkd

)λkd
]

Xid < µkd

exp
[
− A(λkd)

(
Xid−µkd

σlkd

)λkd
]

Xid ≥ µkd

(10)

where A(λkd) =

[
Γ(3/λkd)
Γ(1/λkd)

]λkd/2

; θkd = [µkd, σlkd
, σrkd , λkd] represents the set of parameters

that defines the AGGD for each mixture component. µkd, σlkd
, σrkd , and λkd denote the

mean, the left standard deviation, the right standard deviation, and the shape parameter of
the AGGD, respectively. The shape parameter controls the distribution’s tails. The larger
its value, the flatter the distribution at the mean; the smaller it is, the more peaked the
distribution at the mean. The right and left variance combination allows the probability
density function to be asymmetric or non-asymmetric. Thus, the proposed mixture model
would consider the different shapes, asymmetry, and bounded support region of the
smart meter data. Bounded distribution generalizes to all its special cases, including the
bounded variants [18]. Thus, our proposed FSBAGGMM generalizes to a wide range of
mixture models, including the bounded variants, as shown in Table 1. Additionally, we will
demonstrate in Section 5 how the proposed FSBAGGMM can generalize feature selection
models based on the asymmetric generalized Gaussian mixture, in addition to several
specific mixture models in terms of modelling smart meter data.

Table 1. FSBAGGMM special cases.

Special Case Required Change in FSBAGGMM Parameters

Feature selection model based on
the Asymmetric Generalized Gaussian Mixture (FSAGGMM) [56] H(Xid|k) = 1
Feature selection model based on
the Bounded Asymmetric Gaussian Mixture (FSBAGMM) λkd = 2
Feature selection model based on
the Asymmetric Gaussian Mixture (FSAGMM) [62] H(Xid|k) = 1, λkd = 2
Feature selection model based on
the Bounded Generalized Gaussian Mixture (FSBGGMM) σrkd = σlkd
Feature selection model based on
the Generalized Gaussian Mixture (FSGGMM) σrkd = σlkd ,H(Xid |k)=1
Feature selection model based on
the Bounded Gaussian Mixture (FSBGMM) σrkd = σlkd

, λkd = 2
Feature selection model based on
the Gaussian Mixture (FSGMM) σrkd = σlkd

, λkd = 2, H(Xid|k) = 1
Feature selection model based on
the Bounded Laplace Mixture (FSBLMM) σrkd = σlkd

, λkd = 1
Feature selection model based on
the Laplace Mixture (FSLMM) σrkd = σlkd

, λkd = 1, H(Xid|k) = 1
Asymmetric Generalized Gaussian Mixture Model (AGGMM) [55] H(Xid|k) = 1, ωd = 1
Bounded Asymmetric Gaussian Mixture Model (BAGMM) λkd = 2, ωd = 1
Asymmetric Gaussian Mixture Model (AGMM) [69] H(Xid|k) = 1, λkd = 2, ωd = 1
Bounded Generalized Gaussian Mixture Model (BGGMM) [18] σrkd = σlkd

, ωd = 1
Generalized Gaussian Mixture Model (GGMM) [49] σrkd = σlkd ,H(Xid |k)=1, ωd = 1
Bounded Gaussian Mixture Model (BGMM) [70] σrkd = σlkd

, λkd = 2, ωd = 1
Gaussian Mixture Model (GMM) σrkd = σlkd

, λkd = 2, H(Xid|k) = 1, ωd = 1
Bounded Laplace Mixture Model (BLMM) [71] σrkd = σlkd

, λkd = 1, ωd = 1
Laplace Mixture Model (LMM) σrkd = σlkd

, λkd = 1, H(Xid|k) = 1, ωd = 1
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4. Model Parameter Estimation and Selection

In this section, we will explain how the feature weights and the mixture model
parameters are estimated for the modelling of the training data, in addition to the model
selection criterion. We propose an approach to reveal the valid number of intrinsic clusters
within a dataset using MML and estimate the proposed model’s parameters using EM.

4.1. Parameter Estimation Using the EM Algorithm

The mixture model’s parameters are optimized in parallel with the features’ weights
in each iteration using the EM algorithm. The iterations of the EM algorithm produce a
sequence of models with a non-decreasing log-likelihood. The parameters are optimized
to achieve the maximum log-likelihood, and the log-likelihood function is expressed
as follows:

L(X , ΘM, Z, ϕ) = ∑
i,k

p(Zi = k|~Xi) log pk + ∑
i,k

∑
d

1

∑
ϕd=0

p(Zi = k, ϕ|~Xi)

×
(

ϕd(log(p(Xid|θkd) + log wd)

+ (1− ϕd)(log p(Xid|βd) + log(1−ωd))

) (11)

The EM algorithm has made the optimization process for mixture models feasible through
an iterative process using Equation (11) instead of Equation (2). The conditional expected
values γ(Zjh) and ω̂d are given by Equations (12) and (13).

p(Zi = k|~Xi, ΘM) = γ(Zik) =
pk ∏D

d=1 ζi,k,d

∑K
j=1 pj ∏D

d=1 ζi,j,d
(12)

ω̂d =
∑N

i=1 ∑M
j=1

ωd p(Xid |θjd)

ζi,j,d
γ(Zij)

N
(13)

where ζi,k,d =
[
ωd p(Xid|θkd) + (1− ωd)p(Xid|βd)

]
. The EM algorithm consists of a loop

over two steps: the E-step and the M-step. They are performed repetitively until conver-
gence. In the E-step, Equation (12) is evaluated using either the initial parameters or the
parameters estimated in the M-step. In the M-step, the parameters of the next model in the
sequence are estimated. Each estimated model in the sequence represents a better approxi-
mation of the distribution of the smart meter data. Due to the complicated nature of the
BAGGD function, the gradient of the log-likelihood function (Equation (11)) with respect
to each one of the parameters was non-linear, and a closed-form solution was not obtained;
therefore, for these parameters, we used the Newton–Raphson method to approximate the
update values, as demonstrated in the equations below. The partial derivatives obtained
with respect to each of the parameters can be found in Appendix A. Thus, the M-step is
implemented using the following equations:

pk = p(Zk = 1) =
∑N

i=1 p(k|~Xi, ΘM)

N
(14)

ˆµkd = µkd −
[(

∂2L(X , ΘM, Z, ϕ)

∂µ2
kd

)−1(
∂L(X , ΘM, Z, ϕ)

∂µkd

)]
(15)
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ˆσlkd
= σlkd

−
[(

∂2L(X , ΘM, Z, ϕ)

∂σ2
lkd

)−1(
∂L(X , ΘM, Z, ϕ)

∂σlkd

)]
(16)

ˆσrkd = σrkd −
[(

∂2L(X , ΘM, Z, ϕ)

∂σ2
rkd

)−1(
∂L(X , ΘM, Z, ϕ)

∂σrkd

)]
(17)

ˆλkd = λkd −
[(

∂2L(X , ΘM, Z, ϕ)

∂λ2
kd

)−1(
∂L(X , ΘM, Z, ϕ)

∂λkd

)]
(18)

η̂d =

∑N
i=1

[
(1−ωd)p(Xid |βd)

ζi,k,d
γ(Zik)

]
xid

∑N
i=1 ∑M

j=1
(1−ωd)p(Xid |βd)

ζi,j,d
γ(Zij)

(19)

δ̂d
2
=

∑N
i=1

[
(1−ωd)p(Xid |βd)

ζi,k,d
γ(Zik)

]
(xid − ηd)

2

∑N
i=1 ∑M

j=1
(1−ωd)p(Xid |βd)

ζi,j,d
γ(Zij)

(20)

4.2. Model Selection

Model selection involves selecting the best set of parameters that model the smart
meter data. Among several candidate models, the model with the maximum log-likelihood
may achieve the best fit to the data; however, it is not guaranteed to perform well on
unseen data. In other words, model evaluation based on the log-likelihood exclusively
could be misleading. In this section, we develop a model selection criterion to infer the
true number of consumption profiles within a dataset in an unsupervised manner. The
Minimum Message Length criterion [72,73] is an information-theory-based model selection
method; it selects the best model among a list of candidate statistical models based on its
capability of compressing a message containing the data. According to the MML criterion,
the best model minimizes a message that consists of two parts: the first part encodes the
model using prior knowledge about the model exclusively, and the second part encodes the
data using the model. Given a list of candidate models, the following function is minimized
to obtain the true number of intrinsic clusters within the data:

MessLens ≈ − log p(ΘM) +
c
2
(1 + log ρc) +

1
2

log |I(ΘM)| − log p(X |ΘM) (21)

In Equation (21), the prior distribution is represented by p(ΘM), the determinant of the
Fisher information matrix is represented by |I(ΘM)|, and the model’s likelihood is repre-
sented by p(X |ΘM). The constant c is the total number of parameters; in this case, it is
calculated as c = M + D + 4DM + 2D, c ≥ 1. The term ρc ∈ Rc represents the optimal
quantization lattice constant [74]; the value of the constant is approximated with ρc =

1
12

as the value of c changes across the list of candidate models [75]. The independence of
the different clusters of parameters has been considered in this paper, which allows the
factorization of the prior distribution and Fisher information matrix in Equation (21). Ad-
ditionally, we approximate the determinant of the Fisher information matrix using the
complete likelihood, and we consider the uninformative Jeffrey’s prior for the distribution
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of each group of parameters. Hence, in our case, the MML optimization objective function
is calculated as follows:

MessLens ≈ c
2
(1 + log ρc) +

c
2
(log N) + 2M

D

∑
d=1

log ωd + 2d
M

∑
k=1

log pk +
D

∑
d=1

log(1−ωd)

− log p(X |ΘM)

(22)

Equation (22) is minimized with respect to several constraints [23], which are listed as
follows: 0 < pk ≤ 1, 0 ≤ ωd ≤ 1, and ∑M

j=1 pj = 1. In the context of this model
selection criterion, since we are estimating feature weights using the EM algorithm,
Equations (23) and (24) are utilized alternatively to approximate the parameters p̂k and ω̂d,
respectively, as follows:

p̂k =

max
(

∑N
i=1 ∑M

j=1 γ(Zij)− 2D, 0
)

∑M
j=1 max

(
∑N

i=1 γ(Zij)− 2D, 0
) (23)

ω̂d =

max
(

∑N
i=1 ∑M

j=1
ωd p(Xid |θjd)

ζi,j,d
γ(Zij)− 2M, 0

)
T

(24)

T = max
( N

∑
i=1

M

∑
j=1

ωd p(Xid|θjd)

ζi,j,d
γ(Zij)− 2M, 0

)
+ max

( N

∑
i=1

M

∑
j=1

(1−ωd)p(Xid|βd)

ζi,j,d
γ(Zij)− 1, 0

)
(25)

The Algorithm of Model Selection and Model Parameter Estimation

Algorithm 1 describes how to perform model selection and feature selection using the
MML criterion and model parameter estimation using the EM algorithm.

Algorithm 1: Unsupervised FSBAGGMM
1: While M < Mmax do
2: Initialize ΘM

A K-means clustering results are used to initialize the parameters
(π1, . . . , πM, ~µ1, . . . , ~µM, ~σl1 , . . . , ~σlM , ~σr1 , . . . , ~σrM , λ1, . . . , λM).

B For each cluster k, each element of the parameter vector ~λk is set to the value 2.
C Initialize the background Gaussian distribution parameter set ~β using the

following equations for all the dimensions, where d ∈ {1, . . . , D}:

ηd =
1
N

N

∑
i=1

Xid (26)

δ2
d =

1
N

N

∑
i=1

(Xid − ηd)
2 (27)

3: Implement the E-step.

1. For each cluster k, compute the bounded support region ~τk = (τ1, . . . , τD).
2. Evaluate Equation (12).

• if ωd = 0 Then p(Xid|θkd) = 0
• if ωd = 1 Then p(Xid|βd) = 0

4: Implement the M-step using Equations (15) through (20), (23), and (24).
5: if p(X |Θ)ι+1 − p(X |Θ)ι < ε then

• Calculate the message length using Equation (22).
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4.3. Implementation with HPC

The advancements in computational methodologies have played a pivotal role in
addressing the challenges of data processing, especially in the realm of smart meters. Given
the magnitude and intricacy of the data generated by these meters, traditional computing
methods often fall short. This necessitated the exploration and implementation of our
algorithm via HPC.

Our choice of HPC was rooted in its inherent capability to expediently process large
volumes of data. For the clustering task at hand, HPC provided the computational agility
required to analyze vast datasets from smart meters swiftly. By leveraging the parallel
processing capabilities of HPC, we could achieve a significant reduction in computation
time, while ensuring the consistency and accuracy of our clustering results.

Edge cloud computing stands at the forefront of modern computational paradigms,
emphasizing on-the-spot processing to facilitate real-time decision-making. With the
integration of HPC in edge settings, we foresee several advantages.

• Enhanced Speed and Efficiency: By employing HPC at the edge, data from smart
meters can be processed locally, resulting in quicker analytics and response times.
This is especially crucial for utility programs that require timely information, such as
demand response and energy efficiency initiatives.

• Scalability: As the deployment of smart meters expands, the amount of data to be
processed will proportionally increase. HPC can readily handle this surge, ensuring
that the system can scale without compromising on performance.

• Real-Time Analytics for Utility Programs: HPC, coupled with edge cloud computing,
can power real-time analytics. For instance, utility providers can swiftly analyze
consumption patterns and roll out demand response strategies almost instantaneously.
This not only enhances grid reliability but also aids in optimizing energy consumption
and costs for consumers.

5. Experimental Results

In this section, we will validate the performance of the MML model selection criterion
and the proposed FSBAGGMM using two synthetic and real-life smart meter datasets
within the application of household energy consumption segmentation. The first real-life
dataset was recorded by the Commission for Energy Regulation (CER) and made accessible
for researchers by the Irish Social Science Data Archive (ISSDA) [4]. The dataset consists of
smart meter data gathered from more than 6000 Irish energy consumers from 14 July 2009
to 31 December 2010. The energy consumption is recorded in kWh with an interval of half
an hour. This dataset has two types of energy consumers: residential and small to medium
enterprises. As stated earlier, we are interested in analyzing the energy consumption of
residential energy consumers only. Therefore, 3639 Irish residential energy consumers
remain for analysis after data cleaning. Each residential consumer is assigned six different
tariffs (E, A, D, C, B, and W). The second real-life smart meter dataset consists of smart
meter data collected from 5567 residential homes in London. The data were collected by
the UK Power Networks led by the Low Carbon London Project between November 2011
and February 2014 [6]. The energy consumption is recorded in kWh with an interval of half
an hour. After data cleaning, observations of 3891 household energy consumers within
the year 2013 are used to analyze this experiment. The residential energy consumers in
this dataset are subjected to two types of tariffs. The first type is the dynamic time of use
(ToU), where the energy consumption prices vary as follows: high (67.20 pence/kWh),
low (3.99 pence/kWh), or normal (11.76 pence/kWh). The second type is the standard
(std), where the consumers pay a flat rate of 14.228 pence/kWh. Additionally, the energy
consumers in this dataset belong to five different geo-demographic groups.

The application considered in this paper aims to segment energy consumers given
their load curve. We use characteristic load profiles to find the optimal number of energy
consumption clusters with similar consumption patterns and determine the cluster mem-
bership of every load curve given in the training dataset. Utility companies can use accurate
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energy-consumer-type identification to make correct decisions regarding the investments
in load-shifting campaigns to prevent over- or under-dimensioning linked to the peak
energy demand. Several performance evaluation metrics [64] are used in this paper. They
are defined as follows.

DI [76]: Dunn’s index is a model performance evaluation metric that is calculated
using the minimum ratio between the closest distance of two observations of different
clusters and the largest distance between two observations in the same cluster. This index
is maximized for the best clustering and it is defined as follows:

DI =
minA∈M

{
minB∈M,B 6=A{φ(A, B)}

}
maxA∈M{Π(A)} (28)

φ(A, B) = min~Xi∈A,~Yj∈B

{
d(~Xi,~Yj)

}
(29)

Π(A) = max~Xi ,~Xj∈A

{
d(~Xi, ~Xj)

}
(30)

where d denotes the distance or the similarity function, φ(A, B) denotes the minimum
distance between two observations that each belong to either cluster A or B, and M denotes
the set of clusters.

EoE [31]: The entropy of eigenvalues is an entropy-based clustering performance mea-
sure; it is obtained from the eigenvalue analysis of the correlation matrix calculated using
raw smart meter data. The index is calculated using the correlation between representative
time series of different clusters and the correlation between different time series within
each cluster. The EoE index is calculated using the following equation:

EoE =
SMB

∑K
k

Nk
N SMwk

(31)

The SM similarity is a normalized average information measure; the larger it is, the greater
the similarity. The term SMb represents the normalized entropy of eigenvalues obtained
from the correlation matrix between different clusters, and SMwk represents the normalized
entropy of eigenvalues obtained from the correlation matrix between time series in each
cluster k. In an ideal clustering, EoE is a small value consisting of high similarity between
time series within each cluster and low similarity between representative time series of
different clusters.

S [77]: The silhouette score is a model evaluation measure that is concerned with
calculating a score for each observation in the training dataset. The measure calculates the
overall evaluation by computing the average score for all the dataset observations. The
metric is maximized for better clustering and is defined in the following equation:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(32)

where a(xi) represents the average dissimilarity of the data point xi to all the other data
points within the same cluster. b(xi) represents the minimum average dissimilarity of data
point xi to data points existing in a cluster different from the data point’s cluster.

CH [78]: The Calinski–Harabasz index is a model performance evaluation index;
the measure calculates the ratio between the inter-cluster variance and the intra-cluster
variance. This measure is maximized for better clustering and is defined as follows:

CH =
N − K
K− 1

∑K
k=1

(
Nkd(ck, c)

)
∑K

k=1 ∑Nk
i=1 d(~Xi, ck)

(33)
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where Nk is the number of observations predicted to belong to cluster k, ck denotes the
centroid of class k, c denotes the global centroid of all the clusters, and d denotes the
distance or the similarity function.

DB [79]: The Davies–Bouldin index is a model performance evaluation measure; it
calculates the ratio of intra-cluster distances to inter-cluster distances for each possible
pair of clusters. The maximum ratio calculated for each pair of clusters is considered in a
summation. The summation result is divided by the total number of clusters to obtain the
metric’s value. This measure is minimized for better clustering, and it is defined as follows:

DB =
1
k ∑

A∈M
maxB∈M,B 6=A

{
O(A) + O(B)

d(cA, cB)

}
(34)

O(A) =
1

$(A) ∑
~Xi∈A

d(~Xi, cA) (35)

where $(A) denotes the cardinality of cluster A, k denotes the number of components
enforced by the mixture model, M denotes the set of clusters, cA denotes the centroid of
class A, and d denotes the distance or the similarity function. M has k elements.

GOF [80]: The goodness of fit statistic value measures the model’s fitting accuracy and
it is calculated as follows:

GOF =
N

∑
i=1

(Υ(~Xi)−Ω(~Xi))
2

Ω(~Xi)
(36)

where Υ(~Xi) and Ω(~Xi) represent the empirical and the expected frequencies of the ob-
servation ~Xi, respectively. The indices ACC, TPR, PPV, TNR, NPV, FPR, FNR, and FDR
represent the average accuracy, average true positive rate, positive predictive value, true
negative rate, negative predictive value, false positive rate, false negative rate, and false
discovery rate, respectively. They are defined as follows:

TPR =
1
M

M

∑
k=1

TPk
TPk + FNk

(37)

TNR =
1
M

M

∑
k=1

TNk
TNk + FPk

(38)

PPV =
1
M

M

∑
k=1

TPk
TPk + FPk

(39)

NPV =
1
M

M

∑
k=1

TNk
TNk + FNk

(40)

FPR =
1
M

M

∑
k=1

FPk
FPk + TNk

(41)

FNR =
1
M

M

∑
k=1

FNk
TPk + FNk

(42)

FDR =
1
M

M

∑
k=1

FPk
TPk + FPk

(43)

ACC =
1
M

M

∑
k=1

TPk + TNk
TPk + FPk + FNk + TNk

(44)
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where TPk, FPk, TNk, and FNk denote the number of true positives, false positives, true
negatives, and false negatives, respectively, for the cluster k. In order to compute the
metrics explained in Equations (37)–(44), cluster k labels are considered a positive class
and all the remaining cluster labels are considered a negative class. MCC represents the
Matthews correlation coefficient evaluation metric [81].

The AIC and BIC are probabilistic model selection methods [82] that attempt to select
the model with the best performance while taking into consideration its complexity (by
adding a complexity-related penalty). Unlike probabilistic model selection criteria, perfor-
mance metrics select models with no regard to their complexity. The distinct probabilistic
model selection criteria used in this paper originate from different fields of study. The
AIC is derived from the frequentist framework, while the BIC is derived from Bayesian
probability and inference. Compared to the BIC, the AIC emphasizes the model perfor-
mance and penalizes complex models less, making it prone to selecting overfitted models.
In comparison to the AIC, the BIC attempts to penalize candidate models more for their
complexity. The AIC and BIC model selection criteria statistics for each candidate model
are computed as follows:

BIC = 2 log(L(Θ)) + κ log(N) (45)

AIC =
−2
N

log(L(Θ)) + 2 ∗ κ

N
(46)

where L(Θ) is the likelihood function estimate given a set of parameters Θ, κ represents the
number of free parameters, and N represents the number of observations. As N approaches
infinity, the BIC criterion is more likely to select the candidate model with the true number
of intrinsic clusters. The candidate model with the lowest AIC and BIC is selected for both
model selection criteria.

In the upcoming sections, the performance of the proposed model is compared to
specific mixture models such as the BAGGMM, the AGGMM, and the FSAGGMM. Model
selection using the proposed model is performed using the MML model selection criterion
and compared against specific model selection methods such as the BIC and AIC, and
model selection methods using performance measures, such as Dunn’s index (DI) and the
entropy of eigenvalues (EoE).

5.1. Synthetic Data

As a first stage, synthetic datasets are used to validate the proposed mixture model
and its model selection method. We propose using a 49-dimensional dataset, which
imitates a real-life smart meter dataset by representing each energy consumer with a load
curve. In order to generate the synthetic datasets used in this paper, the following steps
were followed.

1. For each energy consumer in the real-life dataset, only the first 49 smart meter obser-
vations are considered.

2. The Gaussian mixture model is used to cluster the data into a specific number of
clusters. The mean of each cluster is considered a consumption profile.

3. Each consumption profile inferred from the previous step is summed with instances
generated by Gaussian white noise using five different sets of parameters to form the
observations of the synthetic dataset.

In other words, the origin of each cluster of observations within the synthetic datasets
used in this paper is an actual energy consumption profile concluded from a real dataset.

The data-generating process delineated above provides a systematic approach to
crafting synthetic datasets with asymmetric class distributions and varied shapes. By
grounding the data in real consumption profiles and subsequently introducing variations
via Gaussian white noise, the process ensures a rich diversity of data shapes. This diversity
serves as a rigorous testing ground to evaluate the flexibility and robustness of the proposed
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mixture model, effectively challenging its capability to adapt and accurately represent
varied data structures.

The first dataset consists of five clusters. The five real-life consumption profiles used
to generate the first dataset are demonstrated in Figure 2a. The count of the observations
generated for each energy consumption profile using the distinct Gaussian white noise
parameters is shown in Table 2. The clustering results of our proposed model are evaluated
using several performance measures and compared against the clustering performance
of specific mixture models, as shown in Tables 3 and 4. As an illustrative example of the
data generation process, 378 observations of the first dataset are generated by summing the
white noise vector generated using the parameter set (µ = 0.001; σ = 0.2) of the multivariate
Gaussian white noise with the vector of “Consumption Profile 1”.

Table 2. Count of observations generated for the first synthetic dataset.

Gaussian White Noise Parameters Profile 1 Profile 2 Profile 3 Profile 4 Profile 5

µ = 0.001; σ = 0.2 378 370 379 371 382
µ = 0.01; σ = 0.2 349 364 356 356 355
µ = 0.1; σ = 0.2 352 360 361 359 348
µ = 0.05; σ = 0.3 354 358 359 356 353
µ = 0.01; σ = 0.3 365 353 357 350 355

Table 3. Mixture models’ clustering performance evaluation using the first synthetic dataset.

Performance Index (%) FSBAGGMM FSAGGMM BAGGMM AGGMM

ACC 95.569 94.338 85.458 82.804
TPR/Recall 88.935 85.836 63.589 56.953
PPV/Precision 89.458 88.149 74.838 70.500
MCC 86.291 82.921 58.170 51.104
F1-Score 88.922 85.844 63.644 57.011
TNR 97.231 96.461 90.906 89.245
NPV 97.263 96.591 92.128 90.942
FPR 2.769 3.539 9.094 10.755
FNR 11.065 14.164 36.411 43.047
FDR 10.542 11.851 25.162 29.500

Table 4. Mixture models’ clustering performance evaluation using the first synthetic dataset.

Performance Index Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM

GOF Minimum 3870.683 7261.083 16,397.633 17,765.500
CH Maximum 2081.868 2046.444 1594.215 1405.947
S Maximum 0.107 0.100 0.023 −0.016
DB Minimum 2.549 2.623 2.661 2.503
DI Maximum 0.224 0.219 0.209 0.209
Xie and Benie Index Minimum 1.871 1.881 2.446 2.698
Fowlkes Mallows Maximum 0.799 0.755 0.650 0.648
Log Loss Minimum 0.625 0.901 9.741 12.138
EOE Minimum 0.730 0.758 1.022 1.032
Jaccard Maximum 0.889 0.858 0.636 0.570
ROC AUC Maximum 0.931 0.912 0.773 0.731
V Measure Maximum 0.755 0.740 0.660 0.639
Rand Maximum 0.919 0.899 0.820 0.795
Normalized Mutual Information Maximum 0.755 0.740 0.660 0.639
Mutual Information Maximum 1.213 1.181 0.969 0.887
Homogeneity Maximum 0.754 0.734 0.602 0.551
Adjusted Rand Maximum 0.749 0.691 0.524 0.497
Adjusted Mutual Info Maximum 0.755 0.740 0.660 0.639
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(a) (b)

Figure 2. Consumption profiles used to generate the synthetic datasets. (a) First synthetic dataset.
(b) Second synthetic dataset.

Our model selection approach successfully infers the correct number of components
within this dataset, as demonstrated in Table 5. MML outperforms specific model selection
methods using the clustering results obtained from each instance of our proposed model.

Table 5. Clusters using first synthetic dataset.

Method FSBAGGMM

BIC 7
AIC 7
DI 4

MML 5
EoE 5
GT 5

Figure 3a demonstrates the maximum log-likelihood achieved by clustering the data
using the proposed model in comparison with specific mixture models. The proposed model
achieves the best fit of the training data by achieving the best performance according to all
the performance metrics used in this experiment and by reaching the highest log-likelihood.

(a) (b)

Figure 3. Mixture model’s log-likelihood function demonstration during the clustering of the syn-
thetic datasets. (a) First synthetic dataset. (b) Second synthetic dataset.
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The second dataset consists of eight clusters. The eight real-life consumption profiles
used to generate this dataset are demonstrated in Figure 2b. Our model selection approach
successfully infers the correct number of components within this dataset, as demonstrated
in Table 6. The count of the observations generated for each energy consumption profile
using the distinct Gaussian white noise parameters is shown in Table 7. MML chooses the
proposed model’s instance with a component count equal to the ground truth, outperform-
ing specific model selection methods used in this comparison. The proposed model fits the
data better than all the mixture models used in the comparison by achieving the highest
maximum log-likelihood, as demonstrated in Figure 3b. According to all the performance
metrics used in this experiment, the proposed model also outperforms the mixture models
selected for the comparison, as shown in Tables 8 and 9.

Table 6. Clusters using second synthetic dataset.

Method BAGGMM+FW

BIC 6
AIC 6
DI 6

MML 8
EoE 8
GT 8

Table 7. Count of observations generated for the second synthetic dataset.

Gaussian White Noise Parameters Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8

µ = 0.001; σ = 0.2 445 448 450 444 449 447 442 455
µ = 0.01; σ = 0.2 442 449 448 448 448 452 445 448
µ = 0.1; σ = 0.2 442 452 455 449 447 443 447 445
µ = 0.05; σ = 0.3 445 448 444 451 453 447 442 450
µ = 0.01; σ = 0.3 460 459 458 468 457 455 466 457

Table 8. Mixture models’ clustering performance evaluation using the second synthetic dataset.

Performance
Index (%) FSBAGGMM FSAGGMM BAGGMM AGGMM

ACC 91.856 88.746 88.481 87.769
TPR/Recall 67.459 54.969 53.862 51.021
PPV/Precision 66.482 55.753 56.402 54.291
MCC 63.813 50.402 49.908 46.726
F1-Score 67.422 54.983 53.922 51.078
TNR 95.347 93.570 93.418 93.012
NPV 95.456 93.921 93.926 93.528
FPR 4.653 6.430 6.582 6.988
FNR 32.541 45.031 46.138 48.979
FDR 33.518 44.247 43.598 45.709

5.2. Real-Life Smart Meter Data
5.2.1. The Commission for Energy Regulation Smart Meter Data

In this section, we investigate the performance of our proposed model using the first
real-life smart meter dataset. As mentioned earlier, the dataset that we consider has smart
meter observations from 3639 Irish energy consumers. Each consumer has 25,728 electricity
usage readings that are recorded in kilowatt-hours. In order to summarize and preserve
the information within the numerous features representing each energy consumer, PCA is
used for feature extraction in this experiment. Several datasets with a different number of
features are considered within the range between 50 and 250. Due to the low reconstruction
error, the dataset with 250 features is favoured for this experiment.
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Table 9. Mixture models’ clustering performance evaluation using the second synthetic dataset.

Performance Index Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM

GOF Minimum 22,539.820 36,474.842 50,310.225 48,011.423
CH Maximum 2100.955 1766.797 1713.450 1674.616
S Maximum 0.054 0.001 −0.052 −0.062
DB Minimum 3.563 4.975 6.767 6.738
DI Maximum 0.210 0.213 0.208 0.194
Xie and Benie Minimum 2.883 3.619 3.683 3.784
Fowlkes Mallows Maximum 0.574 0.486 0.518 0.503
Log Loss Minimum 3.293 10.287 12.618 13.228
EOE Minimum 0.620 0.637 0.685 0.675
Jaccard Maximum 0.674 0.550 0.539 0.511
ROC AUC Maximum 0.814 0.743 0.737 0.720
V Measure Maximum 0.644 0.565 0.593 0.586
Rand Maximum 0.881 0.836 0.831 0.821
Normalized Mutual Information Maximum 0.644 0.565 0.593 0.586
Mutual Info Maximum 1.303 1.088 1.114 1.093
Homogeneity Maximum 0.627 0.523 0.536 0.526
Adjusted Rand Maximum 0.502 0.384 0.407 0.385
Adjusted Mutual Info Maximum 0.644 0.565 0.593 0.585

We used the dataset as an input to three different instances of our proposed model.
Each instance had a different number of mixture components within the range M = [2, 4].
The model selection algorithm concluded that the minimum value calculated using its
objective function was obtained while using the model instance with three components,
as shown in Figure 4a. Table 10 demonstrates the optimal number of clusters concluded
by each model selection criterion used in comparison with MML. In addition to the fact
that our derived model selection criterion infers the correct number of clusters in solid
experiments using synthetic data, the AIC and BIC also agree that the true number of
clusters is three in this experiment.

Figure 4b demonstrates the log-likelihood trail for each mixture model used in the
comparison within this experiment. As observed, the proposed model converged to the
highest log-likelihood, indicating a better fit to the training dataset. The clustering evalua-
tion of the proposed model for the concluded optimal number of clusters is demonstrated
in Table 11 in comparison with specific mixture models. As demonstrated, our proposed
model achieves the best clustering performance according to all the evaluation measures
used in the comparison.

(a) (b)

Figure 4. The mixture models’ performance information during the clustering of the first real-life
smart meter data. (a) Selection of the optimal number of mixture components using MML and the
proposed model. (b) The log-likelihood functions of the mixture models used in the comparison.
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Table 10. Identified optimal number of clusters for the real-life smart meter dataset.

Model Selection Method FSBAGGMM

BIC 3
AIC 3
DI 2

MML 3
EoE 4

Table 11. Mixture models’ clustering performance using the real-life smart meter dataset.

Performance Index Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM

S Maximum 0.250 0.216 0.228 0.176
CH Maximum 7.377 5.824 6.671 5.594
DB Minimum 16.951 23.832 20.626 24.577
DI Maximum 0.253 0.238 0.249 0.224
Xie and Benie Minimum 60.821 72.969 62.157 73.319
EOE Minimum 1.460 1.764 1.613 1.822

As mentioned earlier, we determined the true number of clusters using MML and
achieved the best clustering result using our proposed mixture model. Since this is an
implementation of a real-life application, it is necessary to analyze the resulting clusters to
understand further the energy consumption patterns of each consumption trend discovered.
Figure 5a demonstrates the average power demand of all the energy consumers without
clustering. Comparatively, we demonstrate the average power demand of each energy
consumer cluster in Figure 5b. For all the time intervals available in the dataset, as observed,
the responsibility of each energy consumption pattern to the overall average power demand
can be determined. The proposed model can determine the consumer’s contribution to each
consumption profile and which the consumer is mostly following. Table 12 demonstrates
the ratio of the count of energy consumers in each cluster to the total count of energy
consumers in the dataset; the table also demonstrates the consumption responsibility of each
consumer cluster to the total average energy consumption in the year 2010. Additionally,
the real-life dataset that we use in this experiment provides the tariff assigned for each
energy consumer. We have discovered that the tariff types are distributed almost identically
across the resulting clusters, as shown in Figure 6, which indicates that the tariff type does
not influence the consumer’s electrical usage pattern.

(a) (b)

Figure 5. Household energy consumption segmentation demonstration of the first real-life smart
meter dataset. (a) The average demand of all the energy consumers starting from 14 July 2009 to 31
December 2010. (b) The average demand of the optimal energy consumption clusters from 14 July
2009 to 31 December 2010.
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Figure 6. Number of energy consumers in each cluster.

Table 12. Consumption profile statistics for the year 2010.

Consumption Profile Cluster Average Consumption (kWh) Annual Consumption Responsibility Clusters’ Proportion

1 6536.770 18.650% 64.600%
2 16,117.190 45.980% 1.700%
3 12,394.570 35.360% 33.700%

5.2.2. The UK Power Networks Smart Meter Data

In this section, we validate the performance of our proposed model using the second
real-life smart meter dataset. As mentioned earlier, the dataset that we consider in this
experiment has smart meter observations from 3891 household energy consumers that are
located in London. Each consumer has 17,520 electricity usage readings that are recorded
in kilowatt-hours. In order to summarize the information included in the load curve of
each energy consumer, we have extracted nine features. Following [32], seven features are
extracted after the definition of four key time periods and they are denoted by t ∈ {1, 2, 3, 4}.
The overnight time period (t = 1) is defined between 10:30 p.m. and 6:30 a.m., the breakfast
time period (t = 2) is defined between 6:30 a.m. and 9:00 a.m., the daytime period (t = 3) is
defined between 9:00 a.m. and 3:30 p.m., and the evening time period (t = 4) is defined
between 3:30 p.m. and 10:30 p.m. Based on the four previously explained prominent
time periods, seven features are extracted from the smart meter data to summarize the
representation of energy consumers, and they are calculated as follows.

• RAPt denotes the relative average power for time period (t) over the entire year; it is
defined as follows:

RAPt =
APt

DAP
, t = 1, 2, 3, 4 (47)

• the mean STD denotes the mean relative standard deviation of the average power
used over the entire year; it is defined as follows:

Mean STD =
1
4

4

∑
t=1

σt

APt
(48)

• The seasonal score is defined as follows:

Seasonal Score =
4

∑
t=1

|APW
t − APS

t |
APt

(49)
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• The weekend vs. weekday difference score (WD-WE diff. score) is calculated as
follows:

WD-WE diff. Score =
4

∑
i=1

|APWD
t −APWE

t |
APt

(50)

where APt, and σt represent the average power used by the specific consumer and its
corresponding standard deviation in the time period (t), respectively, over all the available
smart meter data. DAP represents the average daily power used by the specific consumer
throughout the available smart meter data. APW

t and APS
t represent the average power

used by the specific consumer in the time period (t) throughout winter and summer,
respectively. APWD

t , and APWE
t represent the average power used by the specific consumer

in the time period (t) throughout the weekdays and weekends, respectively, for the available
data. Finally, the eighth and the ninth features represent the consumer’s tariff and geo-
demographic group, respectively.

We have determined the optimal number of clusters for our proposed model using
the MML model selection criterion, similarly to our previous experiments. Among five
candidate FSBAGGMM models of mixture components within the range [2,6], the model
instance with four components achieved the minimum message length.

Most of the model selection methods used in the comparison demonstrated in Table 13
agree on the optimal number of mixture components. Therefore, the data were clustered
into four clusters using our proposed model, and the clustering performance evaluation
was compared against specific mixture models. Table 14 demonstrates how our proposed
mixture model has been able to outperform the different mixture models used in the
comparison using six different performance metrics.

Table 13. Identified optimal number of clusters for the second real-life smart meter dataset.

Model Selection Method FSBAGGMM

BIC 4
AIC 4
DI 4

MML 4
EoE 2

Table 14. Mixture models’ clustering performance using the second real-life smart meter dataset.

Performance Index Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM

S Maximum 0.319 0.288 0.265 0.189
CH Maximum 1984.843 1078.837 545.442 243.243
DB Minimum 1.050 1.075 2.583 3.108
DI Maximum 0.027 0.023 0.019 0.012
Xie and Benie Minimum 0.550 0.719 0.939 1.283
EOE Minimum 0.315 0.434 0.442 0.453

As shown in Figure 7b, the categorical feature representing the tariff for each energy
consumer has an almost identical distribution across the clusters obtained using our pro-
posed mixture model, having little to no influence on the energy consumption behaviour.
Nevertheless, as demonstrated by the CH score in Table 14, our proposed model has
achieved clusters with relatively small intra-cluster (within clusters) variance and relatively
large inter-cluster (between clusters) variance. Additionally, the minimum number of
members within the clusters achieved using the FSBAGGMM is 225 energy consumers,
as demonstrated in Figure 7a. Additionally, Table 15 demonstrates the average values of
several features for the inferred household energy consumer clusters.
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(a) (b)

Figure 7. The UK Power Networks smart meter data clusters information. (a) Percentage of energy
consumers in each cluster. (b) The distribution of tariffs across the resulting clusters.

Since the smart meter data have been modelled successfully, the proposed model is
capable of identifying energy consumer clusters that are suitable for demand reduction
initiatives within several utility programs [2]. As an example, Table 15 demonstrates
that the first cluster has a relatively high evening RAP with a relatively low mean STD,
seasonal score, and WD-WE difference score. The power demand of energy consumers
exhibiting energy consumption patterns similar to the first cluster could be lowered by
implementing storage devices. The third and fourth clusters’ energy consumption patterns
exhibit relatively low variability in demand, as represented by the mean STD and WD-WE
difference score, while exhibiting a relatively high seasonal difference in power demand, as
represented by the seasonal score. Such households could be offered non-electric or more
efficient heating systems to reduce the winter demand.

Table 15. The mean values of the first seven smart meter data features.

Consumption Profile Overnight RAP Breakfast RAP Daytime RAP Evening RAP Mean STD Seasonal Score WD-WE Diff. Score

1 0.686 0.937 1.041 1.344 0.810 0.883 0.458
2 0.664 1.050 0.956 1.411 1.127 1.025 1.557
3 0.672 0.959 1.011 1.381 0.974 2.062 0.553
4 0.860 0.981 0.916 1.249 1.169 4.445 0.591

6. Discussion

In this paper, we have presented an expectation-maximization algorithm within the
MML criterion to optimize the parameters of the bounded asymmetric generalized Gaussian
mixture model and to find the optimal number of consumption profiles and the optimal
subset of features simultaneously. Our approach assumes that the data arise from a mixture
of bounded asymmetric generalized Gaussian distributions. The final results demonstrate
that the load curve of an individual energy consumer shows a probabilistic association with
each class, indicating which pattern of electricity use is more or less likely to be used within
a household. Therefore, it is possible to categorize households and how they consume
energy using our proposed model.

Prior works in household energy consumption segmentation unrealistically approach
model selection and feature selection as independent problems. Our approach successfully
achieves the discovery of the true number of energy consumption profiles and the determi-
nation of the optimal set of data attributes to be used for modelling in our proposed mixture
model in a single optimization process and avoids running the EM algorithm many times.

Clustering synthetically generated smart meter data with a ground truth cluster
size, our proposed algorithm has outperformed most of the existing model selection
approaches. In the same experiment, the proposed model correctly models the first and the
second synthetic smart meter data with high accuracy of 95.569% and 91.856%, respectively.
Similarly, our algorithm has also determined the optimal number of clusters in both datasets
in experiments involving real-life data, and the proposed model outperforms all the mixture
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models used in the comparison, as demonstrated by all the utilized performance metrics.
Thus, the superiority of the proposed algorithm in modelling smart meter data with
different feature extraction methods over all the state-of-the-art clustering algorithms used
in the comparison is proven.

Privacy and security concerns loom large in the realm of smart meter data analytics.
Fortunately, the datasets employed in our research have been thoughtfully curated, with a
paramount emphasis on safeguarding the privacy of individuals whose households are
equipped with smart meters. These datasets meticulously exclude any information that
might compromise the privacy of the participants while providing valuable insights for re-
search. We have underscored in our research paper, particularly in the Results section, that
the conventional categorization, carried out prior to any consumption data observation, is
fundamentally ineffective. Respecting individuals’ privacy is not only an ethical imperative
but also a fundamental human right. Remarkably, our proposed mixture model navigates
this privacy-centric landscape adeptly. It uncovers the underlying data distribution and
identifies energy consumption patterns without the need for additional, potentially in-
trusive information. This privacy-preserving approach aligns with the broader scientific
quest for generalization and effectiveness in solutions that refrain from privacy invasion.
Furthermore, our experiments with real-life datasets, which encompassed features such
as tariff and geo-demographic groups, yielded intriguing results. These attributes, often
considered vital, were deemed unimportant by our meticulous feature selection approach.
This underscores our commitment to privacy and our ability to derive meaningful insights
without resorting to invasive practices.

Finally, our implementation underscores a promising synergy between HPC and
edge cloud computing, especially in the realm of smart meter data processing. As we
progress towards a more interconnected and data-centric world, the amalgamation of these
technologies will prove indispensable in sculpting the future of energy management and
utility programs.

7. Conclusions

Our approach to analyzing real-life smart meter data is effective in determining
households that are suitable for demand reduction initiatives such as DR and EE, thus
providing the opportunity for utility companies to adopt environmentally friendly and
cost-effective technologies.

The application addressed in this paper is well suited for an unsupervised approach,
especially given the absence of ground truth labels. However, many applications would
benefit from supervised or semi-supervised machine learning solutions. A limitation of
the current learning framework presented in this paper is its inability to leverage ground
truth labels. Recognizing this as a crucial area of improvement, future work could involve
proposing a learning method for the mixture model that incorporates these labels to
optimize the model parameters.
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Appendix A. Important Partial Derivatives
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