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Abstract: Non-contact voltage sensors based on the principle of electric field coupling have the
advantages of simple loading and unloading, high construction safety, and the fact that they are not
affected by line insulation. They can accurately measure line voltage without the need to connect
to the measured object. Starting from the principle of non-contact voltage measurement, this article
abstracts a non-contact voltage measurement model into the principle of capacitive voltage sharing
and deduces its transfer relationship. Secondly, it is theoretically inferred that the edge effect of the
traditional symmetric structure sensor plate will cause the actual capacitance value between the
sensor plates to be greater than the theoretically calculated capacitance value, resulting in a certain
measurement error. Therefore, the addition of an equipotential ring structure is proposed to eliminate
the edge additional capacitance caused by the edge effect in order to design the sensor structure. In
addition, due to the influence of sensor volume, material dielectric constant, and other factors, the
capacitance value of the sensor itself is only at pF level, resulting in poor low-frequency performance
and imbuing the sensor with a low voltage division ratio. In this regard, this article analyzes the
measurement principle of non-contact voltage sensors. By paralleling ceramic capacitors between
the two electrode plates of the sensor, the capacitance of the sensor itself is effectively increased,
improving the low-frequency performance of the sensor while also increasing the sensor’s voltage
division ratio. In addition, by introducing a single pole double throw switch to switch parallel
capacitors with different capacitance values, the sensor can have different voltage division ratios in
different measurement scenarios, giving it a certain degree of adaptability. The final sensor prototype
was made, and a high and low voltage experimental platform was built to test the sensor performance.
The experimental results showed that the sensor has good linearity and high measurement accuracy,
with a ratio error of within ±3%.

Keywords: electric field coupling; non-contact voltage measurement; variable voltage division ratio;
self-adaption

1. Introduction

In the power system, line voltage, as a basic data point, plays a very important role in
numerous engineering projects and theoretical research [1–4]. Voltage measurement, as an
important component of the power system, plays a decisive role in applications such as
relay protection [5], energy metering, intelligent equipment control [6,7], and the online
monitoring of overvoltage [8–11]. The accuracy, reliability, convenience, and speed of volt-
age measurement are key technical requirements in energy metering and relay protection,
power system monitoring and diagnosis, and power system fault analysis, and they are
the foundation for ensuring the safe operation of the power system. In the current power
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system, voltage signals are mainly obtained through voltage transformers. The most com-
monly used voltage transformers in the current power system are electromagnetic voltage
transformers and capacitive voltage transformers. However, with the gradual improvement
in the voltage level of the power grid, in some aspects, the defects of the traditional form
of voltage transformers are gradually exposed and cannot meet the development needs
of the current power system [12–16]. With the increasing pace of smart grid construction,
the power system is rapidly developing towards the goals of intelligence, digitization, and
automation. In addition to stability and reliability, voltage measurement will also face
the needs and challenges of being smaller, digital, and more convenient [17]. However,
traditional voltage measurement methods are no longer able to meet the current develop-
ment needs of power systems. Therefore, there is an urgent need for a low-cost, widely
applicable, and structurally simple voltage measurement device for voltage measurement.
The non-contact voltage sensor based on the principle of electric field coupling facilitates
convenient measurements and has the advantages of a simple structure, a wide linear range
of measurement, a stable transient response, and a fast response speed. It has facilitated a
new method of voltage measurement to meet the measurement requirements of the current
power system [18–22]. Non-contact voltage measurement has been widely studied and
applied in power measurement, the online monitoring of overvoltage, partial discharge
monitoring, and equipment automation [23,24].

The non-contact voltage sensor based on the principle of electric field coupling forms
a coupling capacitance (high-voltage capacitance) between the sensing electrode and the
line to be tested and forms its own mutual capacitance (low-voltage capacitance) between
the two sensing electrodes of the sensor. The voltage of the line to be tested is measured by
the voltage attenuation of the high-voltage capacitance and the low-voltage capacitance in
series. The authors of [25–27] conducted relevant research on non-contact voltage sensors
based on the principle of electric field coupling. Traditional voltage sensors cannot be
used together with integrators or attenuators in actual measurement scenarios due to
their own transfer function, making them applicable to measuring high voltage signals
at specific high frequencies and resulting in their measurement frequency band being
small. The size of high-voltage and low-voltage capacitors directly determines the low-
frequency performance and partial voltage ratio of voltage sensors. In order for the sensor
to have good low-frequency performance and a large partial voltage ratio, the mutual
capacitance between the two sensing electrodes of the sensor, namely the low-voltage
capacitance, should be large enough. However, often influenced by factors such as the size
of the sensor volume and the dielectric constant of the insulation medium between the
electrode plates, low-voltage capacitors cannot have large capacitance values, resulting in
poor low-frequency performance of the sensor, a small partial voltage ratio, and difficulty
in making adjustments. In addition, due to the edge effect of the symmetric structure
sensor plate, there is an additional capacitance at the edge of the sensor plate, resulting in
the actual capacitance value of the sensor being greater than the theoretically calculated
capacitance value.

For this paper, by designing the structure of the sensing electrode, we proposed the
notion of adding an equipotential ring to the electrode structure to eliminate the edge
effect between the plates so that the true capacitance value of the sensor is equal to the
theoretically calculated capacitance value. By paralleling ceramic capacitors between the
two sensing electrodes of the sensor, the capacitance value of the sensor itself (low-voltage
capacitance) can be effectively increased, making the sensor operate in self-integration
mode to improve its low-frequency performance. The parallel capacitance value (nF level or
even uF level) is often several orders of magnitude larger than the sensor’s own capacitance
(pF level), which effectively improves the sensor’s partial voltage ratio and provides a
foundation for measurement in high-voltage application scenarios. In addition, a single
pole double throw switch was introduced to switch ceramic capacitors with different
capacitance values. By changing the size of the parallel ceramic capacitors, the sensor has
different partial voltage ratios to adapt to different high- and low-voltage measurement
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scenarios. The sensor has the advantages of being inexpensive, small in terms of sensor
volume, and able to facilitate convenient adaptive adjustments to the partial pressure ratio,
and the feasibility of this sensor has been ultimately verified through experiments.

2. Sensor Measuring Principle
2.1. Principles of Electric Field Coupling Measurement

The non-contact voltage measurement model based on the principle of electric field
coupling is shown in Figure 1. The upper and lower induction electrodes S1 and S2 of the
voltage sensor and the insulating medium in the middle form the sensor‘s own capacitance
(low-voltage capacitance) Cs, the upper induction electrode and the line to be tested form a
coupling capacitance (high-voltage capacitance) Cl , and the lower induction electrode is
connected to the earth to determine the reference potential of the output voltage. Equivalent
to the traditional capacitor voltage division principle, the capacitor Cl and the capacitor Cs
are connected in series to form a voltage divider. The line voltage Ui to be tested is divided
by Cl and Cs, and the voltage Uo is output from the capacitor Cs.
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Figure 1. A non-contact voltage measurement model based on the principle of electric field coupling.

Figure 2 shows the equivalent circuit model of the voltage measurement model in
Figure 1. Here, Ui corresponds to the voltage value of the tested line, Cl is the coupling
capacitance formed by the upper induction electrode and the tested line, Cs is the mu-
tual capacitance formed by the two induction electrodes and the intermediate insulation
medium of the voltage sensor, and Rm is the grounding load resistance.
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The sensor can be equivalent to a first-order RC circuit composed of Cl , Cs, and Rm.
Through Laplace transform, the transfer function of the sensor can be obtained as follows:

H(s) =
Uo(s)
Ui(s)

=
Cl Rms

(Cl + Cs)Rms + 1
(1)
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when (Cl + Cs)Rms << 1, the transfer function can be expressed as follows:

H(s) =
Uo

Ui
= Cl Rms (2)

In this case, the sensor operates in differential mode and requires the integration circuit
to be added to the subsequent circuit in order to achieve a linear relationship between the
measured output signal and the measured signal.

When (Cl + Cs)Rms >> 1, the transfer function can be expressed as follows:

H(s) =
Uo

Ui
=

Cl
Cl + Cs

(3)

At this point, the sensor operates in self-integration mode, with Uo being proportional
Ui. The sensor does not require an integrator to make its input and output linear. The
voltage division ratio k1 of the sensor is as follows:

k1 =
Ui
Uo

=
Cl + Cs

Cl
(4)

From the above equation, it can be seen that the voltage division ratio of the sensor is
determined by the size of the capacitors Cl and Cs. The limitations in the volume size of
the sensor and the small difference in capacitance values between Cl and Cs will limit the
improvement in the voltage division ratio of the sensor, making it difficult to achieve the
direct digitization of its output.

From the above analysis, it can be concluded that if the sensor operates in differential
mode, an integrating circuit needs to be added to the subsequent circuit to make the output
voltage signal linearly related to the voltage signal to be measured. However, using an
integrating circuit can bring a series of problems, including the following: (1) it creates
difficulties in improving the signal-to-noise ratio of the sensor; (2) it results in transmission
waveform distortion due to the spurious parameters of the integration circuit elements;
and (3) it makes the analog integration circuit inaccurate due to the limitations in the
temperature coefficients of the capacitors and resistors. Aiming at a series of problems
in the integration circuit, making the sensor work in the self-integration mode will have
greater advantages. However, in order for the sensor to operate in self-integration mode,
as Cl and Cs are generally in the pF level (10−12), in order to meet the requirements of
(Cl + Cs)Rms >> 1 to operate the sensor in self-integration mode, it is necessary to use
a load resistor Rm with a resistance value of GΩ level. This will have many problems in
selecting resistance and matching impedance, which cannot meet practical needs. At the
same time, due to the small difference in capacitance values between Cl and Cs, the voltage
division ratio of the sensor is limited, making it difficult to directly digitize its output.

2.2. Adaptive Principle of Voltage Sensors

In order to solve the practical situation mentioned above, it is difficult for the sensor
to meet the self-integration condition and work in the self-integration mode. Moreover,
due to the small difference in capacitance values between Cl and Cs, the voltage division
ratio of the sensor is not large, making it difficult to achieve the direct digitization of the
sensor output. Increasing the capacitance Cs of the sensing probe itself is the main way to
make the sensor meet the self-integration condition and improve the voltage division ratio.
Therefore, this article equivalently increases the inherent capacitance Cs of the sensor itself
by paralleling ceramic capacitors in order to make the sensor operate in self-integration
mode while increasing the sensor’s voltage division ratio.

The equivalent schematic diagram after adding a parallel capacitor is shown in Figure 3.
Following on from the sensor’s own capacitance Cs, the parallel capacitor C effectively
increases the mutual capacitance value (Cs + C) between the two sensing electrodes of
the sensor. During this process, no changes were made to the sensor structure, induction
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electrode position, etc. Therefore, the parallel capacitance C between the two induction
electrodes of the sensor only effectively increased the sensor’s own capacitance value from
Cs to (Cs + C), and the coupling capacitance value Cl between the sensor and the circuit to
be tested was unchanged.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 23 
 

 

The equivalent schematic diagram after adding a parallel capacitor is shown in Fig-
ure 3. Following on from the sensor’s own capacitance 𝐶௦, the parallel capacitor 𝐶 effec-
tively increases the mutual capacitance value (𝐶௦ + 𝐶)  between the two sensing elec-
trodes of the sensor. During this process, no changes were made to the sensor structure, 
induction electrode position, etc. Therefore, the parallel capacitance  𝐶 between the two 
induction electrodes of the sensor only effectively increased the sensor’s own capacitance 
value from 𝐶௦  to (𝐶௦ + 𝐶) , and the coupling capacitance value 𝐶௟   between the sensor 
and the circuit to be tested was unchanged. 

Ui
Cs C

Rm Uout

Cλ

 
Figure 3. Equivalent schematic diagram after adding capacitors. 

Through Laplace transformation, the transfer function of the sensor in this case is 
obtained as follows: 𝐻(𝑠) = 𝑈௢(𝑠)𝑈௜(𝑠) = 𝐶௟𝑅௠𝑠(𝐶௟ + 𝐶௦ + 𝐶)𝑅௠𝑠 + 1 (5)

when (𝐶௟ + 𝐶௦ + 𝐶)𝑅௠𝑠 + 1 >> 1, the transfer function can be expressed as follows: 

𝐻(𝑠) = 𝑈௢(𝑠)𝑈௜(𝑠) = 𝐶௟𝐶௟ + 𝐶௦ + 𝐶 (6)

At this point, the voltage division ratio 𝑘ଶ of the sensor is as follows: 𝑘ଶ = 𝑈௜𝑈௢ = 𝐶௟ + 𝐶௦ + 𝐶𝐶௟  (7)

In Equation (5), capacitor  𝐶 is the lumped parameter capacitor connected in parallel 
to the back end of the sensor. Its capacitance value can be selected from nF level or even 
uF level, meaning that only Rm is MΩ to meet the self-integration condition (𝐶௟ + 𝐶௦ +𝐶)𝑅௠𝑠 + 1 >> 1, effectively improving the low-frequency performance of the sensor. Ca-
pacitors 𝐶 ≫ 𝐶௟、𝐶௦; therefore, the sensor voltage division ratio 𝑘ଶ ≫ 𝑘ଵ after the parallel 
capacitors significantly improve the sensor voltage division ratio, achieving the direct dig-
itization of output voltage and the measurement of higher voltage levels. 

From the above analysis, it can be inferred that the sensor can be equivalent to a high 
pass filter without parallel sampling capacitors at the back end of the sensor. The low-
frequency performance of the sensor is determined by the turning frequency 𝜔ℎଵ: 𝜔௛ଵ = 1(𝐶௟ + 𝐶௦)𝑅௠ (8)

Figure 3. Equivalent schematic diagram after adding capacitors.

Through Laplace transformation, the transfer function of the sensor in this case is
obtained as follows:

H(s) =
Uo(s)
Ui(s)

=
Cl Rms

(Cl + Cs + C)Rms + 1
(5)

when (Cl + Cs + C)Rms + 1 >> 1, the transfer function can be expressed as follows:

H(s) =
Uo(s)
Ui(s)

=
Cl

Cl + Cs + C
(6)

At this point, the voltage division ratio k2 of the sensor is as follows:

k2 =
Ui
Uo

=
Cl + Cs + C

Cl
(7)

In Equation (5), capacitor C is the lumped parameter capacitor connected in parallel
to the back end of the sensor. Its capacitance value can be selected from nF level or even
uF level, meaning that only Rm is MΩ to meet the self-integration condition (Cl + Cs +
C)Rms + 1 >> 1, effectively improving the low-frequency performance of the sensor.
Capacitors C � Cl , Cs; therefore, the sensor voltage division ratio k2 � k1 after the parallel
capacitors significantly improve the sensor voltage division ratio, achieving the direct
digitization of output voltage and the measurement of higher voltage levels.

From the above analysis, it can be inferred that the sensor can be equivalent to a
high pass filter without parallel sampling capacitors at the back end of the sensor. The
low-frequency performance of the sensor is determined by the turning frequency ωh1:

ωh1 =
1

(Cl + Cs)Rm
(8)

when the capacitance C is connected in parallel between the two induction electrodes of
the sensor, the level of capacitance C is generally nF ∼ uF, which is much greater than
the sensor’s own capacitance Cs and coupling capacitance Cl . At this time, the turning
frequency ωh2 is as follows:

ωh2 =
1

(Cl + Cs+C)Rm
(9)
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Therefore, ωh2 << ωh1 improves the low-frequency performance of the sensor and
effectively widens the sensor bandwidth. The amplitude frequency response curve of the
sensor before and after the parallel capacitor C is represented in Figure 4. In the figure, black
represents the absence of parallel capacitor C, while red represents the parallel capacitor C.
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By paralleling a lumped capacitor behind the voltage sensor, the sensor operates in self-
integration mode while increasing the sensor’s voltage division ratio, making the sensor
output voltage digital and suitable for high-voltage measurement scenarios. However, this
method becomes viable upon selecting capacitor C, the voltage division ratio of which,
despite the fact that the method meets the self-integration working mode, is also determined
by the selection of capacitance value. Sensors cannot measure multiple voltage levels at the
same time (e.g., 400 V voltage level and 10 kV voltage level). In order to solve this problem,
this paper introduces a SPDT switch to change the size of the parallel capacitor to achieve
the switching of different sensor voltage division ratios.

As shown in Figure 5, by designing a controllable switch at the back end of the sensor,
different parallel capacitance values are selected for different measurement scenarios. The
switched capacitor needs to meet the following requirements: (1) meet the self-integration
conditions of the sensor and improve the low-frequency characteristics of the sensor;
(2) meet the voltage division ratio at the corresponding voltage level to ensure that its
output voltage meets the collection range.
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3. Voltage Sensor System Design
3.1. Voltage Sensor Structure Design

In an ideal situation, the electric field of traditional symmetrical structure sensors is
uniformly distributed, but in reality, the electric field distribution in the middle part of the
sensor plate is uniform, and the electric field lines at its edges are curved and divergent.
This phenomenon of divergent electric field at the edges is called edge effect. Due to the
edge effect of the symmetric structure sensor plate, there is an additional capacitance at the
edge of the sensor plate, which means that the actual capacitance value of the sensor should
be greater than the theoretically calculated capacitance value. The distribution of electric
field lines on the electrode plate of a symmetrical structure sensor is shown in Figure 6.
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According to the Gauss’s law of the electric field, the electric flux passing through any
closed surface S is equal to the electric quantity surrounded by the closed surface divided
by εo, independent of any charges other than S, which is

‹
S

E·dS =
1
εo

Σ
s
qi (10)

From Equation (10), it can be seen that the total number of electric field lines emitted by
the point charge q is q/εo. No matter how large a sphere is used to surround it, all electric
field lines will pass through the sphere, without any omissions. This also explains why
the actual value of the sensor plate is greater than the theoretically calculated capacitance
value; i.e., the sensor plate electric field effect is the result of the combined action of the
positive electric field effect and the edge electric field effect.

If the sensor plate with a symmetrical structure using air as the medium is analyzed,
let the electric quantity |Q| carried by the upper and lower plates be the following:

|Q| = |Q1|+ |Q2| (11)

In this equation, Q1 is the electric charge of the area band directly opposite the upper
and lower plates; Q2 is the electrical charge of the upper and lower non aligned plates and
the edge bands.

The calculation formula for symmetric structure sensors is as follows:

C =
εoS
d

(12)
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The calculation formula for the potential difference U between the sensor plates is
as follows:

U =

ˆ
E·dl (13)

Combining Equations (11) and (12) yields the following:

C =
Q
U

=
Q1

U
+

Q2

U
(14)

If σ1 is the charge surface density of the area directly opposite the upper and lower
plates, then

Q1

U
=

σ1S´
E·d
∼
L
=

σ1S´ B
A

σ1
εo

dr
=

εoS
d

(15)

In Equations (14) and (15), U represents the voltage between the upper and lower
plates of the sensor, S represents the positive area, and d represents the distance between
the upper and lower poles. Equation (15) represents the capacitance of the sensor plate
without considering edge effects, which clearly states that

When
Q1

U
>>

Q2

U
, there is

C ≈ Q1

U
=

εoS
d

(16)

When considering edge effects, its capacitance should be

C =
Q
U

=
Q1

U
+

Q2

U
=

εoS
d

+
Q2

U
(17)

If
Q1

U
and

Q2

U
are approximately equal, Equation (16) cannot accurately express the

capacitance value and Equation (17) must be used. From this, it can be seen that when Q1
is constant, the smaller Q2, the closer the capacitance value calculated by Equation (16) is
to the actual capacitance value.

To reduce the edge effect caused by the sensor sensing plate, the actual value between
the sensor plates is greater than the theoretically calculated capacitance value. For this
article, we designed the sensing electrode structure by adding an equipotential ring struc-
ture at the position of the lower electrode plate of the sensor, as shown in Figure 7a. The
radius of the upper plate of the sensor is the same as the outer radius of the equipotential
ring. Adding an equipotential ring can ensure that the electric field between the upper
and lower plates of the same area as the lower plate of the sensor is a uniform electric
field. The specific implementation principle is as follows: Figure 7b shows the electric
field distribution diagram when there are only upper and lower induction plates. The
grounding of the lower induction electrode can indicate the presence of edge electric fields
at the two edges of the lower plate; Figure 7c shows the distribution of the electric field
when there are only the upper induction electrode plate and the equipotential ring. The
equipotential ring is grounded like the lower induction electrode, indicating that there is
also an edge electric field at the two edges of the equipotential ring. However, the deviation
direction of the edge electric field near the lower plate of the equipotential ring is opposite
to that in Figure 7b. In Figure 7d, the distorted electric field line at the edge position is
represented by a dashed line. It can be seen that the deviation direction of the edge electric
field at the equipotential ring and the lower induction electrode is opposite, meaning that
the direction of the combined electric field strength here will be approximately the same as
the direction of the electrode directly opposite to the plate to weaken the edge effect of the
sensing electrode. The actual capacitance value of the sensor is approximately equal to the
theoretical calculated capacitance value.
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Figure 7. Schematic diagram of sensor structure: (a) schematic diagram of sensor structure with
equipotential ring; (b) electric field distribution diagram of the upper and lower induction electrode
sections; (c) electric field distribution diagram of the upper induction electrode and equipotential
ring section; (d) electric field distribution diagram of sensor section with equipotential ring.

Below, we describe how we used the COMSOL simulation software (COMSOL®6.1) to
simulate and visualize the edge effect of the electric field line at the edge of the traditional
symmetrical electrode mentioned above, which is curved and divergent. At the same
time, simulation verification is conducted based on the proposed use of equipotential ring
structure to weaken the edge effect between sensor electrodes. During the simulation
process, the thickness of the induction electrodes is set to 1 mm, the radius of the upper
induction electrode is set to 14 mm, and a 10 V voltage is applied. The lower induction
electrode and equipotential ring are grounded, with a distance of 10 mm between the upper
and lower induction electrodes, and the intermediate insulation medium is air. Figure 8
shows the COMSOL simulation model and its corresponding cross-sectional electric field
distribution diagram. In the figure, (a) shows the traditional symmetrical electrode, with
the same upper and lower induction electrode radii of 14 mm. It can be seen that the electric
field lines at the edge positions are curved and diverging, and there is a significant edge
effect; (b) the radius of the induction electrode in the figure is 14 mm, and the radius of the
lower induction electrode is 10 mm. It can be seen that there is an electric field line that
bends inward and diverges towards the lower induction electrode at the edge position of
the lower induction electrode; (c) the figure retains the upper induction electrode, removes
the lower induction electrode, and adds an equipotential ring structure (with an inner
diameter of 11 mm and an outer diameter of 14 mm). It can be seen that the electric field
line at the edge of the equipotential ring bends inward; (d) the figure shows the sensor
model with an equipotential ring proposed in this article (the upper induction electrode
radius is 14 mm, the lower induction electrode radius is 10 mm, the inner diameter of the
equipotential ring is 11 mm, the outer diameter is 14 mm, and the distance between the
upper and lower parts is 10 mm). From the simulation results, it can be seen that adding an
equipotential ring structure can eliminate the edge effect of the electrode plate and ensure
that the electric field at the position where the upper and lower induction electrodes of the
sensor are directly opposite is a uniform electric field.
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The following paragraphs further explore the relationship between the width of the
insulation trench and the edge effect after introducing an equipotential ring, providing a
basis for subsequent sensor structure design. To make the simulation data quantifiable,
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the method adopted involves directly simulating and obtaining the longitudinal average
electric field mode size at the edge position, comparing it with the uniform electric field
mode size, and calculating the distortion error γ% between them. The calculation formula
is as follows:

γ% =
E′ − E

E
× 100% (18)

In this equation, E′ is the average longitudinal electric field mode at the edge of the
induction electrode plate, and E is the theoretical electric field mode between the two
induction electrodes, which is 1000 V/m (during all simulation processes, the distance
between the upper and lower induction electrodes is kept at 10 mm, the upper induction
electrode is charged with 10 V, and the lower induction electrode and equipotential ring
are grounded).

As shown in Figure 9, when the radii of the upper and lower induction electrodes are
both 10 mm, the average value of the electric field mode line at the edge of the sensor plate
is 1041.5 V/m. By substituting Equation (18), the distortion error γ% can be calculated to
be 4.15%.
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As shown in Figure 10, parameterized scanning of the electric field distortion error
under different insulation trench widths d is performed to determine the optimal structure.
During the simulation process, in which the upper induction electrode radius of 15 mm and
the lower induction electrode of 10 mm were maintained, the distortion error γ% values
under different insulation trench widths d were obtained (Table 1).
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Table 1. Distortion error γ% values under different insulation trench widths d.

Insulation Trench Width d [mm] Average Value of Electric Field Mode Line Distortion Error γ%

0.5 1000.1 0.01
1 1000.2 0.02

1.5 1000.4 0.04
2 1002.8 0.28

2.5 1004.1 0.41
3 1003.5 0.35

3.5 1005.8 0.58
4 1017.5 1.75

4.5 1018.6 1.86

From Table 1, it can be seen that the larger the width d of the insulation trench, the
greater the distortion error γ% of the edge electric field. This means that in the actual design
process, the width of the insulation trench should be minimized as much as possible to
ensure that the electric field is uniformly distributed at the edge positions of the upper and
lower induction electrodes. As shown in Figure 11, the tangential electric field distribution
at the minimum insulation trench width of 0.5 mm and the maximum insulation trench
width of 4.5 mm clearly shows that the electric field distortion at the edge positions of the
upper and lower induction electrodes is more severe when d = 4.5.
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Figure 11. Tangential electric field distribution under different insulation trench widths: (a) the
cross-sectional electric field distribution map when the width of the insulation trench is d = 0.5 mm;
(b) the cross-sectional electric field distribution diagram when the width of the insulation trench
d = 4.5 mm.

In order to verify the proposed method of adding an equipotential ring at the sensing
electrode below the sensor to improve the edge effect of the sensor and ensure that the
actual capacitance value of the sensor is approximately equal to the theoretical calculation
value, COMSOL simulation was used to calculate the capacitance value of the sensor
without the equipotential ring and the actual capacitance value after the equipotential ring
is added, and the deviation between the capacitance value and the theoretical calculation
value was calculated. The simulation model is shown in Figure 12, where Figure 12a shows
a traditional symmetrical structure without an equipotential ring structure. The thickness
of the upper and lower induction electrodes is 1 mm, the radius is 10 mm, and the default
air filling spacing in the middle is 1 mm; Figure 12b shows the sensor structure with an
equipotential ring structure, where the upper sensing electrode is 12 mm, the lower sensing
electrode is 10 mm, and the thickness of the electrode plates is 1 mm. The default air filling
spacing between the electrode plates is 1 mm, ensuring that the area, insulation medium,
and thickness of the two electrode plates are exactly the same. Add an equipotential ring
with an outer diameter of 12 mm and an inner diameter of 10.5 mm.
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The theoretical calculated capacitance value is as follows:

C =
εoS
d

= 2.7816 pF (19)

Here, εo is the dielectric constant in vacuum, S is the face to face area of the sensor,
which is a circular surface with a radius of 10 mm, and d is the distance between the two
induction electrodes of the sensor, which is taken as 1 mm.

The percentage deviation between the capacitance value of the sensor before and after
adding the equipotential ring and the theoretical calculated capacitance value is shown
in Table 2.

Table 2. Capacitance values before and after the addition of equipotential rings and their deviation
from theoretical calculation values.

Sensor Structure Type Capacitance Value (pF) Percentage Deviation from Theoretical Value (%)

No equipotential ring structure 3.3270 19.8%
Adding an equipotential ring 2.8684 3.12%

From the above simulation results, it can be seen that adding an equipotential ring
structure to the sensor’s structure can weaken the edge effect at the position of the sensing
electrode, making the capacitance value of the sensor closer to the theoretical calculated
true value.

Finally, to ensure the accuracy and standardization of the sensor’s own parameters,
a non-contact voltage sensor was made in the form of a printed circuit board (PCB), as
shown in Figure 13. In the figure, (a) shows the upper sensing electrode of the sensor, while
(b) shows the lower sensing electrode and equipotential ring of the sensor.
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3.2. Design of Back-End Signal Processing Circuit

Due to the need to parallel capacitors at the back end of the sensor to operate in
self-integration mode, the sensor has broadband characteristics. At the same time, in
order to make the sensor suitable for different voltage levels, the voltage division ratio of
the sensor can be adjusted by switching the size of the parallel capacitor. Therefore, the
capacitance connected in parallel at the back end of the sensor should have both (1) the
ability to operate the sensor in self integrating mode and (2) the ability to meet the minimum
voltage division under the corresponding voltage level so that the output voltage meets the
collection conditions.

To ensure that the back-end acquisition does not affect the overall performance of the
front-end sensor, a voltage follower is added to the circuit for input and output isolation
processing. The model of the operational amplifier is OPA131UA produced by Texas
Instruments Incorporated (TI) in the United States, with a bandwidth of 4 MHz, a maximum
bias current of 50 pA, an input impedance of 10 GΩ, and a commonly used power supply
voltage of ±5 V. The specific circuit schematic diagram is shown in Figure 14.
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Finally, the sensor measurement system, as shown in Figure 15, integrates the sensor
sensing electrode and back-end processing circuit on the same PCB board, effectively
reducing the overall volume of the sensor to miniaturize the sensor.
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4. Experimental Testing and Result Analysis
4.1. Low-Voltage (400 V) Performance Test

According to the above analysis, the size of the parallel capacitor and the value of
the resistance Rm in the back-end processing circuit of the voltage sensor need to meet
the self-integration condition of (Cl + Cs + C)Rms + 1 >> 1. In the actual measurement
process, the resistance Rm value is 10 MΩ, which is used to calculate the value of the parallel
lumped parameter capacitance. Due to C >> Cl , Cs, the capacitance C only needs to meet
C >> 1

Rms to achieve sensor operation in self-integration mode. Take s = jω = j2π f as
the minimum measurement frequency f = 50 Hz and calculate C >> 3.1831× 10−10F.
Finally, select a chip ceramic capacitor with a nominal value of 1.2 nF. At this point, the
minimum capacitance value is selected. If the output voltage is too large to meet the
collection standard due to the small sensor voltage division ratio during the subsequent
measurement process, a larger capacitance value can be selected to reduce the sensor
voltage division ratio.

In order to study the testing performance of sensors in low-voltage scenarios, a low-
voltage testing platform, a schematic diagram of which is shown in Figure 16, and a testing
experimental platform, as shown in Figure 17, were constructed. In the figure, the DC
voltage source provides ±5 V DC voltage to power the OPA131UA operational amplifier.
The programmable AC voltage source is CS9914BX produced by Nanjing Changsheng
Instrument Co., Ltd. in China, (output voltage range: 0.05–5.0 kV, frequency: 40–400 Hz) to
output the voltage to be tested with a frequency of 50 Hz. The frequency was increased
from 100 V to 400 V in steps of 20 V. The true value Ui of the line voltage to be tested was
measured using the sensing probe 1 Tektronix P5201 produced by Tektronix Inc. in the
United States (measurement voltage peak: 1400 V, bandwidth: 25 MHz). In the experiment,
the voltage sensor was placed below the circuit to be tested, and the output voltage Uo of
the sensor was measured using the SP2035A passive voltage probe model matched with
the sensor probe 2 oscilloscope (with a measured voltage effective value of 300 V and a
bandwidth of 350 MHz). Probe 1 and Probe 2 (shown in Figure 17) were connected to
the SIGLENT SDS200X PLUS oscilloscope channel produced by SIGLENT Technologies
Co., Ltd. in Shenzhen, China to obtain voltage values. The oscilloscope had a simulated
bandwidth of 500 MHz and a real-time sampling rate of up to 2 GSa/s.
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Additionally, we simultaneously measured the true value Ui of the circuit voltage
output from sensor probe 1 and the output voltage Uo of sensor probe 2. The measurement
results are shown in Table 3.

Table 3. Input and output voltage and ratio error calculation results under a low-voltage (400 V)
measurement scenario.

Line Voltage to Be Tested Ui (V) Sensor Output Voltage Uo (mV) Voltage Division Ratio Ratio Errorε%

104.21 99.86 1044 1.13
121.69 115.74 1051 0.38
142.43 134.21 1061 −0.55
161.65 152.25 1062 −0.60
181.81 171.37 1061 −0.52
203.70 195.26 1043 1.16
222.45 209.56 1061 −0.58
241.87 233.12 1038 1.72
262.56 249.11 1054 0.13
285.97 274.19 1043 1.19
306.13 295.07 1037 1.73
328.55 312.21 1052 0.29



Sensors 2023, 23, 8316 17 of 22

Table 3. Cont.

Line Voltage to Be Tested Ui (V) Sensor Output Voltage Uo (mV) Voltage Division Ratio Ratio Errorε%

343.76 324.85 1058 −0.27
368.51 352.05 1047 0.82
383.09 364.12 1052 0.31
405.01 379.01 1069 −1.24

Fit the actual voltage value Ui of the tested line voltage in Table 3 with the sensor
output voltage value Uo; the fitting results are shown in Figure 18. From the fitting results,
the expression of the fitting curve can be obtained as y = 0.94753x + 0.73809, where x is
the voltage value of the tested line (in V); y is the output voltage of the voltage sensor
(in mV). The slope of the fitting curve is 0.94753, which represents the resolution of the
sensor. The voltage value of the tested line changes by 1 V, and the output voltage of the
sensor changes by 0.94753 mV. Therefore, the rated voltage ratio Kn of the sensor under
this working condition was calculated to be 1 V/0.94753 mV = 1055.376, and a Pearson’s
correlation coefficient of 0.99966 indicated that the sensor had good linearity.
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Figure 18. Sensor linearity and accuracy in low-voltage (400 V) scenarios.

The formula for calculating the ratio error ε% of the sensor is as follows:

ε% =
KnUo −Ui

Ui
× 100% (20)

In Equation (20), Kn is the rated partial pressure ratio of the sensor obtained from the
fitted curve, which, under this operating condition, is 1055.376; Uo is the output voltage
value of the voltage sensor, and Ui is the true voltage value of the tested circuit measured
by the reference probe.

In Figure 18, the horizontal axis represents the output voltage value of the reference
probe 1 Tektronix P5201, which is the actual voltage value Ui of the tested circuit. The left
axis represents the sensor output voltage value Uo measured by probe 2, and the right axis
represents the calculated ratio error ε%. From the figure, it can be seen that the sensor has
good linearity in the low voltage 400 V measurement scenario and that the measurement
error is within ±2.0%.
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4.2. High-Voltage (10 kV) Performance Test

The above experiment involved testing the low-voltage performance of the voltage
sensor in 400 V application scenarios, and its performance is good in low-voltage scenarios,
as evidenced by the sensor exhibiting high testing accuracy. In order to verify the proposed
method of switching the capacitance of the back-end parallel capacitor to achieve the
switching of the sensor’s voltage division ratio, the voltage sensor can be applied to
different voltage measurement scenarios and has a certain degree of adaptability. In
order to apply the sensor to a 10 kV voltage measurement scenario, the back-end parallel
capacitance value is selected as 10 nF to increase the sensor’s voltage division ratio. Based
on the above calculation, the capacitance value needs to be much greater than the voltage
sensor to operate in self-integration mode. Therefore, in high-voltage scenarios, paralleling
a 10 nF capacitor ensures that the sensor operates in self-integration mode while effectively
increasing the voltage division ratio of the sensor.

A schematic diagram of the high-voltage performance test and the experimental
platform of the built high-voltage test are shown in Figures 19 and 20. The difference
between this experimental platform and the low-voltage testing platform is that, in high-
voltage measurement scenarios, isolation voltage regulators (adjustable range: 0–500 V)
and dry-type transformers GTB-5/50 (conversion ratio: 1:250 V) are used to boost voltage
to generate up to 10 kV of the tested voltage value. The output voltage frequency is 50 Hz,
and the voltage is raised from 500 V to 10 kV in steps of 500 V. At the same time, probe 1
TekP6015A produced by Tektronix Inc. in the United States (measuring voltage up to 20 kV,
bandwidth DC-75 MHz) is used to monitor the measured voltage to determine the true
value of the measured line voltage. We simultaneously measured the output voltage of
the high-voltage probe and the output voltage of the voltage sensor, and the measurement
results are shown in Table 4.
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Table 4. Calculation results regarding input and output voltage and ratio error in the high-voltage
(10 kV) measurement scenario.

Line Voltage to Be Tested Ui (kV) Sensor Output Voltage Uo (V) Voltage Division Ratio Ratio Error ε%

0.481 0.116 4147 1.33
0.941 0.229 4109 2.25
1.571 0.378 4156 1.09
2.024 0.489 4139 1.51
2.507 0.609 4117 2.06
3.063 0.731 4190 0.27
3.454 0.816 4233 −0.74
3.952 0.961 4112 2.17
4.516 1.076 4197 0.11
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Table 4. Cont.

Line Voltage to Be Tested Ui (kV) Sensor Output Voltage Uo (V) Voltage Division Ratio Ratio Error ε%

5.041 1.210 4166 0.85
5.512 1.329 4147 1.30
6.120 1.481 4132 1.67
6.549 1.572 4166 0.85
6.985 1.639 4262 −1.41
7.469 1.785 4184 0.41
7.995 1.921 4162 0.95
8.465 2.024 4182 0.46
8.958 2.142 4182 0.46
9.468 2.264 4182 0.47
9.989 2.366 4222 −0.48
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Figure 20. Experimental platform for high-voltage performance testing.

We fit the actual voltage value Ui of the tested line voltage in Table 4 with the sensor
output voltage value Uo, and the fitting results are shown in Figure 21. From the fitting
results, the expression of the fitting curve can be obtained as y = 0.23801x + 0.00663, where
x is the voltage value of the tested line (in kV); y is the output voltage of the voltage sensor
(in V). The slope of the fitting curve is 0.23801, which represents the resolution of the sensor.
The voltage value of the tested line changes by 1 kV, and the output voltage of the sensor
changes by 0.23801 V. Therefore, the rated voltage ratio Kn of the sensor under this working
condition is calculated as 1 kV/0.23801 V = 4201.504. We substituted Equation (20) to
calculate the ratio error ε%, and a Pearson’s correlation coefficient of 0.99987 indicated that
the sensor has good linearity.
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Figure 21. Sensor linearity and accuracy in high-voltage (10 kV) scenarios.

In Figure 21, the horizontal axis represents the output voltage of the isolation voltage
regulator measured by TekP6015A of probe 1 and boosted by a dry transformer, which is
the actual voltage value Ui of the tested circuit. The left axis represents the sensor output
voltage value Uo measured by probe 2, and the right axis represents the ratio error ε%.
From the figure, it can be seen that the sensor has good linearity in the low voltage 10 kV
measurement scenario and that the measurement error is within ±3.0%.

In summary, the non-contact voltage measurement method based on the principle of
electric field coupling proposed in this article enables non-contact voltage sensors to have
certain adaptability. By paralleling a ceramic capacitor on the back-end of the induction
electrode, the sensor’s own capacitance is effectively increased, significantly improving
the sensor’s voltage division ratio and improving the low-frequency characteristics of the
sensor. The sensor operates in self-integration mode at a frequency of 50 Hz (or even lower),
effectively expanding the sensor frequency band. In addition, by adding a single pole
double throw switch to control the size of the back-end parallel capacitor and change the
sensor’s voltage division ratio, the sensor has a certain level of adaptability, meaning that it
can meet voltage measurements in different measurement scenarios. Our tests showed that
the sensor has good linearity and that the measurement error is within ±3% in both low-
voltage (400 V) measurement scenarios and high-voltage (10 kV) measurement scenarios.

5. Conclusions

This article has proposed a non-contact voltage measurement method based on the
principle of electric field coupling that can significantly improve the voltage sensor voltage
division ratio, broaden the sensor bandwidth, and adapt to different measurement scenarios
with variable sensor voltage division ratios. This measurement method is expected to be
widely used in the field of non-contact voltage measurement, and the main points of this
work can be summarized as follows:

(1) Based on the principle of electric field coupling, starting from the coupling capaci-
tance between the sensor and the circuit to be tested and the self capacitance between the
sensor plates, a voltage measurement model that is equivalent to the traditional capacitive
voltage sharing principle was constructed.

(2) Based on the equivalent circuit model, analyze the transmission relationship of
the sensors and the influence of their own capacitance and coupling capacitance on their
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output voltage. Due to factors such as the volume of the sensor itself and the dielectric
constant of the insulation medium, the capacitance value of the sensor itself is only at the
(pF) level, resulting in poor low-frequency performance and imbuing the sensing system
with a small voltage division ratio, making it difficult to meet the application requirements
in high-voltage scenarios.

(3) Through theoretical analysis, the edge effect at the edge of traditional symmetric
induction electrodes can cause the actual capacitance value of the sensor to be greater than
the theoretical capacitance value. Therefore, this article proposed an equipotential ring
structure to eliminate edge effects and ensure that the electric field at the position where
the two induction electrodes are facing each other is a uniform electric field. Finally, the
results of this study were verified through COMSOL finite element simulation.

(4) To solve the problem of the small capacitance (pF level) of the sensor itself, as
pointed out in (2), this paper proposed the notion of parallelly adding a ceramic capacitor
with two sensing electrodes to increase the sensor’s capacitance value in order to improve
the low-frequency performance of the sensor and significantly increase the sensor’s voltage
division ratio.

(5) We also introduced a single pole double throw switch to change the size of the
parallel ceramic capacitor, change the voltage division ratio of the sensor, and enable the
sensor to be applied in different measurement scenarios (low-voltage and high-voltage
scenarios) with certain adaptive ability.

(6) We utilized printed circuit boards (PCBs) to make sensor prototypes and build
response testing platforms to test their performance and verify the feasibility of the method
proposed in this paper.

On the basis of realizing non-contact and low-cost voltage sensors, this article solves
the two major problems of poor low-frequency performance and low voltage division ratios
caused by the small capacitance of the sensor itself. At the same time, by switching different
capacitors, the sensor has a certain degree of adaptive ability. However, further research on
certain aspects is still needed (e.g., considering the wireless signal transmission module and
integrating it with sensors for research. In addition, when the measurement scenario is not
a single line with multiphase power lines, shielding or multiphase decoupling algorithm
research needs to be conducted.
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